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13.2 The observed number of events in the low energy intake group is 28.
There were 45 events in total and, under the null hypothesis, the probability
of having been exposed is my = 1857.5/4626.4 = 0.402. The score is

U =28 — 45 x 0.402 = 9.93,
and the score variance is

V =45 x 0.402 x (1 — 0.402) = 10.81.

The score test is (U)?/V = 9.12, giving p ~ 0.003.

13.3
28 17
= 18575 ~ 27689 — 0.00893 (8.93 per 1000 person-years).
§ = 28 + 17 = (.00321 (3.21
J =\ {@srae @689z = (3.21 per 1000 person-years).

The 90% confidence interval is

M + 1.6455 = 3.65 to 14.2 per 1000 person-years.

13.4 The log likelihood for A! is approximated by a Gaussian curve with

M = D_l Sl — _”Dl
Yy Tyl
Similarly for A%, X3, ... etc. The weights are the durations of observation,

T1,T2,..., so that the profile log likelihood for the cumulative rate has its
maximum at

D' . D?_,
M= 5T+ 55T+

and the standard deviation of the Gaussian approximation is /

T \? T2\?

—- 1
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Note that, as we narrow the time bands to clicks, the ratio T'/Y approaches
1/N, where N is the number of subjects under observation during the click.

In these circumstances, M is the Aalen—Nelson estimate of the cumulative
rate and S may be used to calculate an approximate confidence interval.

14
Confounding and standardization

14.1 Confounding

Epidemiological studies generally involve comparing the outcome over a
period of time for groups of subjects experiencing different levels of expo-
sure. Such studies are usually not controlled experiments but ‘experiments
of nature’ of which the epidemiologist is a passive observer. In such in-
vestigations, there is always the possibility that an important influence on
the outcome, which would have been fixed in a controlled experiment, dif-
fers systematically between the comparison groups. It is then possible that
part of an apparent effect of exposure is due to these differences, and the
comparison of the exposure groups is said to be confounded. Statistical ap-
proaches to dealing with the problem of confounding aim to correct, during
analysis, for such deficiencies in the design of experiments of nature.

A particularly important potential confounding variable (or confounder
in many epidemiological studies is the age of subjects. We shall consider
an example in which subjects in a follow-up study are classified according
to whether their age at the start of follow-up was less than 55 years or 55
years or more. Suppose that the breakdown between the two age groups is
0.8 : 0.2 and that the conditional probability of failure is 0.1 in the first age
group and 0.3 in the second. When age is ignored the overall or marginal
probability of failure is

(0.8 0.1) + (0.2 x 0.3) = 0.14.

Now suppose that the age distribution differs between the two exposure
groups, being 0.8 : 0.2 in the not exposed group but 0.4 : 0.6 in the exposed
group (see Fig. 14.1). The marginal probability of failure for the unexposed
group is still :
(0.8 x 0.1) + (0.2 x 0.3) = 0.14,

but for the exposed group it is now
(0.4 x 0.1) + (0.6 x 0.3) = 0.22.

The marginal probabilities of failure now suggest an apparent effect of
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Fig. 14.1. Confounding by age.

exposure, but this is entirely due to the difference in age distributions
between the exposed and unexposed subjects.

In this example the apparent effect of exposure is entirely due to age
differences but confounding may also be partial, acting either to exaggerate
or to dilute a real relationship. As an example of this, suppose the effect of
exposure is to raise the probability of failure from 0.1 to 0.2 in the younger
age group and §rom 0.3 to 0.5 for older subjects. When the age distribution
is 0.8 : 0.2 in both exposure groups the overall effect of exposure is to
increase the marginal probability of failure from

(0.8 x0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.8 x0.2) + (0.2 x 0.5) = 0.26

in the exposed group. When the age distribution is 0.8 : 0.2 in the unex-
Posed group and 0.4 : 0.6 in the exposed group the overall effect of exposure
is to increase the marginal failure probability of failure from

(0.8 x 0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.4 x 0.2) + (0.6 x 0.5) = 0.38

in the exposed group. Thus the overall effect of exposure appears greater

—
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when the age distributions differ than when they are the same.

These examples demonstrate that a third variable, such as age, can dis-
tort the relationship between an exposure and failure provided it is related
to both exposure and failure. This dual relationship is often taken as the
definition of a confounder. However, although it is a necessary condition
for a variable to be a confounder, it is not sufficient: a confounder must
also be a variable which would have been held constant in a controlled ex-
periment. For example, in perinatal epidemiology, we might ask whether
birthweight could be regarded as confounding the relationship between the
receipt of proper antenatal care and the risk of perinatal death. Although
birthweight is related to both antenatal care and perinatal risk, it cannot
be regarded as a confounder since one of the results of successful antenatal
care should be adequate birthweights. Since it would not make sense to

envisage an experiment in which we varied the provision of antenatal care

while maintaining the distribution of birthweight constant, differences in
birthweight distribution cannot be regarded as a deficiency in the design
of the experiment of nature. It is not, therefore, a confounder.

14.2 Correction for confounding

The linking of confounding to an imaginary experiment helps to clarify the
ideas which lie behind statistical methods for dealing with the problem.
There are two rather different approaches, and these closely-mimic the
ways in which extraneous influences are dealt with in experimental science.

The classical approach to experimentation is to hold constant all influ-
ences other than the experimental variable(s) of interest. For example, to
avoid confounding by age, we would simply compare failure risks in exposed
and unexposed subjects of a fized age or, at least, falling within a narrow
range of ages. The statistical comparison would then be of failure prob-
abilities conditional upon age. The same comparison can be made in an
non-experimental study by the analytical strategy called stratification. By
dividing (or stratifying) the data according to age, the single experiment of
nature in which age has not been adequately controlled is transformed into
a series of smaller experiments within which age is closely controlled. The
analysis then compares probabilities of failure between exposure groups

within age bands. However, a consequence of this strategy is that individ- .

ual strata may contain too little data to be informative on their own. The
more finely we stratify the data, the more closely we control for confound-
ing, but the sparser our data becomes within strata. This impasse may
only be broken by making the further assumption -that the comparisons
estimate the same quantity within each stratum, and then combining the
information from the separate strata. We shall defer further discussion of
this approach to Chapter 15.

Holding extraneous variables constant is not the only model for good ex-
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perimentation, although it is certainly the most familiar. In the twentieth
century, experimentation has become a valuable tool in fields of study such
as biology, in which such close control of experimental material and con-
ditions is not possible. The idea of randomization has been central to this

development; if we cannot ensure that experimental groups are identical in
all important respects, then by assigning subjects to groups at random, we .

ensure that the probability distributions for extraneous variables do not
differ between exposure groups. Comparisons between the groups can then
be safely made. .

Returning to the comparison of failure probabilities between exposure
groups, it is rarely possible, in epidemiology, to use randomization to ensure
that extraneous variables have equal distributions in the different exposure
groups. However, it is possible to take account of differences in the dis-
tribution of a specific variable, such as age, by predicting the outcome for
exposure groups which have the same age distribution. This is done by
first estimating the age-specific probabilities of failure for each exposure
group, and then using these to predict the marginal probabilities of failure
for exposure groups which have a standard age distribution. This forms
the basis of the second statistical approach to dealing with confounding,
known in epidemiology as direct standardization.

14.3 Standardized rates

The remainder of this chapter concerns the use of direct standardization
to compare rates. Since rates are probabilities per unit time they can be
compared in the same way as failure probabilities. Age-specific failure rates
are estimated for each of the groups being compared, and these are used
to predict the marginal rates which would have been observed if the age
distributions in the comparison groups had begn the same as the standard
age distribution. These estimates are called standardized rates.

The choice of the age distribution to use for standardization depends
on the purpose of the analysis. It is quite common for the overall distribu-
tion of age, added over exposure groups, to be used as the standard, thus
simulating the results of an experiment in which the total study group was
randomly allocated between exposure categories. However, if one of ouy
aims is to facilitate comparisons with other published studies, it is more
useful to use an age distribution which is in general use. Several distribu-
tions are commonly used for this purpose. One is the age distribution of
the world population, another is the age distribution for developed coun-
tries. Since there is no ‘correct’ standard there is much to be said in favour
of using a uniform age distribution where the percentage falling in each
age group is the same. One advantage of using a uniform age distribution
is that the standardized rate is then directly proportional to the cumula-
tive rate for a subject experiencing the age-specific rates from the study
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Table 14.1. IHD incidence rates per 1000 person-years

Exposed : Unexposed
(< 2750 kcal) (= 2750 keal)
Age Cases P-yrs  Rate Cases P-yrs Rate
40-49 2 311.9 6.41 4 607.9  6.58
. 50-59 12 878.1 13.67 5 1272.1  3.93
60-69 14 667.5 20.97 8 888.9  9.00

Total 28 1857.5  15.07 17 27689  6.14

throughout life.

Direct standardization is most commonly used when comparing quite
large groups, such as the populations of different countries or regions. When
used with less extensive data it will yield statistically unreliable estimates
if some of the age-specific rates, although based on very few cases, receive
appreciable weight in the analysis.

To illustrate the technique of direct standardization we shall return to
study of ischaemic heart disease and energy intake, discussed in Chapter 13.
The incidence of ischaemic heart disease in the exposed group (low energy-
intake) is 15.1 per 1000 person-years while the rate in the unexposed group
is 6.1 per 1000 person-years. These rates, which take no account of any
possible confounding effect of age, are often referred to as crude rates to
distinguish them from standardized rates.

Table 14.1 shows the data stratified by 10-year age bands. The age
distribution is different in the two exposure groups; this may be seen by
converting the person-years to a proportion of the total person-years in each
group giving 0.168, 0.472, and 0.359 in the three age bands for the exposed
(low energy-intake) group and 0.210, 0.459, and 0.321 for the unexposed
(high energy-intake) group. These age differences might explain some of
the difference in the crude IHD incidence rates.

Using the uniform age distribution as standard, our estimate of the
marginal rate for a group of exposed subjects with a uniform age distribu-
tion is

(0.333 x 6.41) + (0.333 x 13.67) + (0.333 x 20.97) = 13.67

per 1000 person years and, for a group of unexposed subjects with a uniform
age distribution, it is

(0.333 x 6.58) + (0.333 x 3.93) + (0.333 x 9.00) = 6.50
per 1000 person-years. The standardized rates for the two groups are there-

fore 13.7 and 6.5 per 1000 person-years. These do not differ greatly from
the crude rates of 15.1 and 6.1 per 1000 person-years, showing that the
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confounding effect of age is small in this case.

Exercise 14.1. Find the standardized rates for the exposed and not exposed
groups using as standard the age distribution with probabilities of 0.2, 0.5, and
0.3 in the three age bands.

14.4 Approximating the log likelihood

When there are three age bands, as in the IHD and energy example, the
standardized rate parameter takes the form of a weighted sum of the age-
specific rate parameters,

WIN 4 W2AZ + W33,
where
AL AZ )3
are the rate parameters for the age bands and
wtw? w3

are the probabilities of the standard age distribution. Since A, % and
A% have independent log likelihoods, we can use the ideas introduced in
section 13.4 and Appendix C to derive a Gaussian approRimation to the
profile log likelihood for the standardized rate. The most likely value is

Wiml + w2mM? + wiMs3

where M! = D'/Y? is the most likely value of the age-specific rate pa-
rameter in band 1, and similarly expressions hold for bands 2 and 3. The
standard deviation of the Gaussian approximation is

VWIS 1 (W282)2 + (W353)2

where S = v/D!/Y! is the standard deviation of the Gaussian approxima-
tion to the log likelihood for A!, again with similar expressions for bands 2
and 3.

For the THD and energy example the proability weights are

wl=w?=w3=0.333.

The age-specific rate for the first age band of the exposed group is 6.41 and
the corresponding standard deviation is

V/2/311.9 = 0.00453,

or 4.53 per 1000 person-years. The most likely values for the rates in the
other two age bands are 13.67 and 20.97 with standard deviations 3.94 and
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5.61 per 1000 person-years. The standard deviation of the standardized
rate is therefore

/(0.333 x 4.53)2 + (0.333 x 3.94)2 + (0.333 x 5.61)2 = 2.74

per 1000 person-years.

Exercise 14.2. Show that the standard deviation of the standardized rate for
the unexposed group is 1.63 per 1000 person-years.

LOG TRANSFORMATION OF STANDARDIZED RATES

Just as for any other rate, Gaussian approximations to the log likelihood are
more accurate when related to the log of the standardized rate. The most
likely value on the log scale is, of course, just the log of the standardized
rate, and the corresponding standard deviation can be calculated by using
the rule described in Chapter 9. There we saw that the standard deviation
of the Gaussian approximation to the likelihood for log()) is obtained from
the standard deviation of the Gaussian approximation to the likelihood for
A by multiplying by 1/M, where M is most likely value of A\. It follows
that for the example of energy intake and IHD incidence, the standard
deviations of the standardized rates on a log scale are 2.74/13.67 = 0.200
and 1.63/6.50 = 0.251.

A simple extension of the same ideas allows us to calculate estimates
and confidence intervals for the ratio of two standardized rates. The log
of this ratio is equal to the difference between the logarithms of the two
standardized rates, and from section 13.4 and Appendix C the standard
deviation of the log of the ratio of the standardized rates is

1/(0.200)2 + (0.251)2 = 0.321.

This can be used to obtain a confidence interval for the ratio of the stan-
dardized rates by using the error factor

exp(1.645 x 0.321) = 1.696.

Exercise 14.3. Use this error factor to find an approximate 90% confidence
interval for the ratio of the two standardized rate parameters.
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Solutions to the exercises
14.1 The estimated standardized rates are
(0.2 % 6.41) + (0.5 x 13.67) + (0.3 x 20.97) = 14.41
for the exposed group, and
(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98

for the unexposed group.

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and
3.18 respectively. The standard deviation of the standardized rate is

/(0.333 x 3.20)% + (0.333 x 1.76)2 + (0.333 x 3.18)% = 1.63.

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90%
range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 .

15
Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding
but it does have some limitations. This chapter deals with the alterna-
tive and more generally useful approach of stratification. We shall again
illustrate our argument using the study of the relationship between en-
ergy intake and IHD first introduced in Chapter 13 and further analysed
in Chapter 14. There, in Table 14.1, we showed the data stratified by
10-year age bands and demonstrated that the low energy intake group is,
on average, rather older. This might explain some, or all, of the increase
in IHD incidence rate. The method of direct standardization predicts the
marginal rates for energy intake groups with the same standard age dis-
tribution. This chapter explores the alternative approach which compares
age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat-
ing rate ratios within each age band. This demonstrates the main prob-
lem with this approach to confounding; holding age constant and making
comparisons within age strata leads to variable and unreliable estimates,
because the age-specific rates are based on so few data.

This problem is resolved is by combining the age-specific comparisons
from the separate strata, but any such procedure carries with it a further
modelling assumption, because combining the age-specific comparisons can
only be legitimate if we believe that they all estimate the same undetlying
quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Exposed Unexposed
(< 2750 kcal) (> 2750 kcal) Rate
Age D Y Rate D Y Rate ratio
40-49 2 .311.9 6.41 4 607.9 6.58  0.97
5
8

50-59 12 878.1 13.67 12721 393 3.48
60-69 14 667.5 20.97 888.9 9.00 233

Total 28 1857.5 1507 17 27689 6.4 245
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14 Confounding and Standardization

14.1 Confounding

Ezperimental vs. non-experimental

JH prefers this implied distinction to the ‘experimental’ vs. ‘observational’
that many authors use. After all, all studies (even randomized trials) make
observations. The word ‘observational’ might also be confused with the term
‘observed only’ for those in the ‘no treatment’ arm of a treated vs. not treated
comparison — even if that comparison is formed experimentally. The word ex-
periment (check any dictionary) refers to ‘a distortion deliberately introduced
in order to learn about its effects’

Miettinen glossary: EXPERIMENT: a study in which a determinant is inten-
tionally perturbed for reasons none other than the goals of the study itself.”

C&H’s depiction of the epidemiologist as a ‘passive observer’ also focuses on
this key ‘intentional vs not’ distinction.

Extreme examples of confounding

Rather that rely on made-up examples, it is also good to have real ones, and
even extreme ones, to make the point. JH likes the extreme one Does Smoking
Improve Survival? in the Expansion Modules in the website for the Moore and
McCabe Statistics text [also given in the 1st chapter of Rothman’s 2002 intro-
ductory text, with finer age-categories| Twenty-year survival status for 1314
women categorized by age and smoking habits at the time of the original sur-
vey. http://www.whfreeman.com/statistics/ips/eesee4/eeseesd.htm.

JH’s other favourite (again of extreme confounding) is the apparent gender-
bias in admissions to the graduate schools at Berkeley (cf. “Sex Bias in
Graduate Admissions: Data from Berkeley”, an article by P. J. Bickel et al.
in Science 7 February 1975: Vol. 187. no. 4175, pp. 398 - 404. [faculty-
specific data are also in worked example of M-H technique in JH’s notes for
‘Chapter 9 epi’ of course 607.] Most confounding is less extreme than in these
two examples.

JH has a third example (a story told as a joke), which involves the taboo
subjects of sex, religion and politics — topics that we are told we should not
bring up in polite conversation, but which he is willing to tell anyway.

Confounding by age (Fig 14.1)

The key is that the crude comparison is distorted by age: the ‘exposed vs.
unexposed’ comparison is really a comparison of ‘somewhat younger exposed’
vs. ‘somewhat older exposed’. The diagram below explains confounding with

(q?

fewer numbers: the comparison of the more- (‘A’) vs. less- (‘a’) exposed is
distorted or confounded: the ‘pan’ that supports A is — by itself — heavier (by
an amount C' — ¢) than the one that supports a.
The 'A vs. a' comparison
is confounded by

the 'C vs. c' difference

Y\ : A

a+20 A

. C

14.2 Correction for confounding

C&H offer two options for minimizing confounding. The first is the ‘classical’
one of holding constant all factors except the one of interest. If one has the
option, one can do this by ‘blocking’, or matching, on these extraneous factors
ahead of time (if one has that option; in the analysis one then combines the
results of the within-statum (within-block) contrasts, under the assumption
that each of these is an estimate of the same (common) parameter value. The
second is the use — when possible — of randomization to make the compared
groups more equal from the outset, and not just on measured, but also on
unmeasured confounders.

C&H present direct standardization as though it were an alternative way of
combining the results of the within-statum (within-block) contrasts. But in
fact, as is described in the next section of these notes, it can sometimes be
regarded as a weighted average of these stratum-specific contrasts.
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14.3 Standardized Rates

The key is the use of the same set of weights W7, ..., Wik to form the weighted
average (w.a.) ;\o,w.a. => ij\mk of the K stratum-specific rates observed
in the unexposed (0), and S\I,M‘a. = Zk ij\l’k of the stratum-specific rates
observed in the exposed(1).

One can also see the difference of these two standardized (weighted averages
of the stratum-specific) rates as a weighted average of the stratum-specific
rate differences, since

j\l,w‘a‘ - 5\(),w‘a‘ = Z Wk{j\l,k - 5\O,k}~
k

Although JH does not advocate calculating a weighted average of ratios (pre-
ferring, as Mantel does to take a single ratio of sums), one can — provided
all of the ratios are finite — also write the ratio of these two standardized
(weighted average of the) rates as a (different) weighted average of the K
stratum-specific rate ratios [A1x/Xo.x]:

M w.a. _ 2k Wi _ S Wi do ] % A/ o] _ 2 Wi X Atk /Ao ]
Mojw.a. 2o Wrkdok >k WiAok > Wi

In this re-expression, the ratio of the two standardized rates is a weighted av-
erage of the observed stratum-specific rate ratios, with weights W, = Wi Aq 1.

CORRECTION VIA ‘REGRESSION-MODELS’ VS. ‘STANDARDIZATION’ (JH)

Increasingly, corrections for confounding are carried out using generalized
linear model versions of what in the simplest case is classically called ‘analysis
of covariance’. These glm’s (and others such as Cox regression) are described
in C&H chapters 22 and beyond. However, before we get there, it is good to
appreciate the basic difference between the type of standardization described
in section 14.3, and these regression models.

One way to think of the difference is via an example where we would like to
create an unbiased (i.e., a fair) comparison between two groups of students,
one that had experienced experimental condition “1” (e.g., distance learning)
and the other under experimental condition “0’ (e.g., face-to-face in class
contact with the teacher on-site). Let’s denote the two conditions by the
subscripts 1 and 0. Suppose that it was unavoidable that one of the classes
was on average older than (and thus at an advantage relative to) the other.

Correction by standardization

We could think of two ways to reduce (eliminate) the age-difference, and arrive
at an unbiased estimate of the true difference (A) in the means — assumed to be
constant across ages. The first is to stratify the students into K age-bands and
take (the same) weighed average of the within-age-band mean scores for each
group, to arrive at §iw.a. = »_, Wi,k and Jo,.w.a. = »_ Wrlo,k respectively.
As discussed above, the difference of these two standardized means is also a
weighed average of the within-age-band differences in the mean scores, i.e.,

Z Wid91x — Yok}
k

One can think of this as the numerical equivalent of artificially ‘evening up’
the two teams/classes: it is as though one forced some of the distance students
to take the face-to-face version, and vice versa, so that the two classes had
the same age-composition (W7, ..., Wk).

Say that the age distributions in those who had intended to take the course
were:

age-band: 20-25 25-30 30-35
no. who applied to be ‘distance’ students: 20 33 46
no. who applied to be ‘on-site’ students: 50 35 14
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Then one possibility would be to — if it were possible — ‘transfer some students
from one to the other format’ so that the age distributions in the classes were:

age-band: 20-25 25-30 30-35
no. of ‘distance’ students: 35 34 30
no. of ‘on-site’ students: 35 34 30

If actual transfers were mot possible, one could still ‘mathematically’ move
some students from one to the other format. In other words, one would leave
the students in the class they applied for, and use the observed results to
create results for two synthetic classes with the same age-distribution in each.
Suppose the actual results in the 20, 33 and 46 who took the distance class,
and the 50, 35 and 14 who took the on-site class were:

age-band: 20-25 25-30 30-35
means for actual ‘distance’ students: 741 Yd,2 ¥d,3
means for actual ‘on-site’ students: Yo, 1 Yo,2 Yo,3

From these we could create results for two synthetic or hypothetical classes,
with the same age-distribution, say {35,34,30} in each, just as above:

mean for ‘synthetic’ class

‘distance’ (35 X Fg.1 + 34 X Fa,2 + 30 X Fa,3)/99
‘on-site’s (35 X o1 + 34 X o2 + 30 X Fo.3)/99,

and compare these two weighted averages.

Since these 2 ‘classes’ are synthetic or hypothetical, the choice of weights is
not restricted by the same constraints we had in the situation we we actually
transferred students from one to the other class. Thus, we could just as well
have, say {33,33,33} — or {43,33,23} — in each of the two synthetic classes.

Correction by a regression model

The other way out of this confounding by age is via a regression model. It
requires a somewhat stronger assumption than a ‘constant (or common) across
ages A’: its also requires that we use a model that links the mean response
at each age to age. The most commonly used model is a basic analysis-of-
covariance model, with parallel lines for the distance (d=1) and on-site (d=0)
classes:

E[y|age,d] = Hylage,d = ﬂO + /Bage X age + Bd x d.
In our example, the average ages in the distance and on-site classes are 28.8

and 25.7 respectively, a difference of 3.1 years, and so we can obtain an ad-
justed difference by subtracting a correction factor from the crude difference.

This correction is the product of the Ea—g\e and the 3.1 years. The crude and
adjusted difference are therefore:

mean of: y age
actual ‘distance’ students: Y4 age,
actual ‘on-site’ students: Y, age,
(crude) difference: U - Yo 3.1 years

(yd - yo) - ﬁage x 3.1

One can see from this that the magnitude of the correction is a function of
how strong the effect of age is and how different the average age is in the
compared groups.

adjusted difference:

In the (synthetic) standardization approach, conceptually one alters the com-
position of the two compared groups — it is as though one adds distance
subjects to, or takes away some distance subjects from, the 3 age-strata of
the distance arm, and likewise adds on-site subjects to, or takes away some
on-site subjects from, the age-strata of the on-site arm. This way one cre-
ates two ‘pseudo-samples’, to use a term used by Robins in causal inference
to describe the samples formed by inverse probability of treatment weighting
(IPTW). Oner can also think of the adding and taking away of students as
giving different weights to the contributions of students in different age-bands.
For example, in the distance class, the result of each student in the youngest
age-band is up-weighted and given a weight of 35/20; likewise the results of
each student in the middle age-band is slightly up-weighted and given a weight
of 34/33, while the result of those in the oldest age-band is down-weighted
and given a weight of 30/46. the corresponding up/down-weightings for the
results of each student in the on-site class are 35/50, 35/34 and 30/14 in the
youngest, middle and oldest age-bands respectively.

To see why Robins calls it IPTW, consider the first age-band, where of the
70 students, 20 took the distance course and 50 the on-line one. So the
probability that a student in this band took the distance course is 20/70 and
that (s)he took the on-line one is 50/70. The inverses of these probabilities
are 70/20 and 70/50, double the 35/20 and 35/50 used above, and the same if
we scale the IPTW’s so that our pseudo-sample is the same size as our actual
sample.

In the regression approach, conceptually one takes the group means of the two
entire samples of subjects and then adjusts their scores to those of persons of
the mean age.
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Supplementary Exercise 14.1 Sharper and Fairer Comparisons:

Effect of sexual activity on the longevity of male fruitflies

[Limit analysis to fruitflies with 1 partner/2 days ..

the effect is obvious in

those with 8|

Aside: When we first analyzed this dataset, student PE, now on McGill
faculty, argued that thorax size cannot be used as a predictor or explanatory
variable since fruitflies who die young may not be fully grown, i.e., it is also an
“intermediate” variable. Later, student NK (now on faculty elsewhere) had
studied entomology and assured us that fruitflies do not grow longer after
birth; i.e., thorax length is not time- (age)-dependent!

ii.

iii.

iv.

vi.

Use 1m in R to calculate the difference in mean longevity (mean days
lived) of sexually active flies (index category) relative to sexually inactive
flies (reference category), ignoring other covariates. Is this difference (i)
substantial? (ii) statistically significant at the conventional a@ = 0.05
level?

Again ignoring other covariates, calculate the overall mortality rate (no.
deaths / 100 fruitfly-days lived — effectively, apart from the scaling by 100,
the reciprocal of mean longevity) for each of the two compared categories.

How different are the mean thorax lengths of the active and inactive flies?
Is this difference “statistically” significant? Is it substantial? Is statistical
significance a non-issue here anyway? Explain.

(Independently of which flies were subsequently assigned to an ac-
tive/inactive partner) divide up the thorax range into 3 (roughly equal-
sized) strata: small, medium and large. Compute the mortality rates
(no. deaths / fruitfly-days) for the resulting 6 cells. Then, using the
overall proportions of flies in each stratum as the same 3 weights for
both, compute standardized mortality rates for the active and inactive
groups.

Using these same strata, compute the mean longevity for each of the 6
cells. Then, again using the overall proportions of flies in each stratum
as the 3 weights, compute a standardized mean longevity for each of the
two compared groups.

If — other things being equal — flies 0.01 mm larger live on average 1 day
longer, how much of a longevity “advantage” would the active flies have
from the outset as a result of their larger average thorax size? On this

Vii.

viii.

ix.

xi.

basis, how much lower would the mean longevity of active than inactive
flies be if it were “adjusted” for the difference in thorax size?

Instead of using the “out of the air” value of 1day/0.01mm, use multiple
regression to simultaneously estimate the additional mean days/mm and
the decrease in days associated with (due to) activity i.e., fit the model:

Ellongevity | thorax, activity] = Bo+ Bthoraz X thoraz + Bactive X active.

Verify that if you correct/adjust the comparison as in (vi) but using the
fitted Biporas from (vii) instead of the ‘out of the air‘ 0.01, and using the
the thorax difference in (iii), you arrive at the Bsctive Obtained in (vii).
Hint: cf schematic diagram in JH notes on confounding.

Use the correction for confounding in the Women and Math study (see
the last few pages of JH’s notes appended to the end of the Science
article) to explain — in just a few sentence, and in English rather than
in ‘Statistical-ese’ — to your father in law how ‘adjustment by regression’
works.

In the mother’s-milk and IQ study, Lucas et al use multiple regression
to correct for several IQ determinants that are ‘imbalanced’ between the
‘Mother’s milk’ and ‘No-mothers-milk’ groups. To understand how it
works, extend the ‘Adjusted Contrast’ equation on page 2 of JH’s Notes
on Confounding: Reducing it by Regression (the same ones at the end
of the Women and Math article) so that it accommodates imbalances in
several variables (hint: think of X as a vector rather than a scalar variate).
This time, using Tables I, IT and IV, explain the (now multivariable)
correction/adjustment to your grandparents — who strongly believe that
the mother’s milk - IQ link is causal. Use Tables I, IT and IV.

{A ‘sharper’ comparison} The p-value for the activity contrast in (vii)
is smaller (and the associated CI narrower) than the corresponding one
in (i). One reason is that the larger adjusted estimate of the effect (the
numerator of the t-test on adjusted difference); another is the smaller SE
of the estimated effect (the denominator of t-test).

Why is the SE of the estimated longevity difference from analysis (vii)
smaller?
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