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The following excerpt is from the article Student and Small-Sample Theory, by E. L. Lehmann,

in Statistical Science, 1999, Vol. 14, No. 4, 418-426.

In 1912 R. A. Fisher, then 22 years old and a Cambridge undergraduate, was

put into contact with Gosset through Fisher’s teacher, the astronomer F. J. M.

Stratton. As a result, Gosset received from Fisher a proof of the z-distribution

and asked Karl Pearson to look at it, admitting that he could not follow the argu-

ment (which was based on n-dimensional geometry) and suggesting, “It seemed

to me that if its alright perhaps you might like to put the proof in a note [in

Biometrika of which K. P. was the Editor]. It’s so nice and mathematical that

it might appeal to some people. In any case I should be glad of your opinion of

it. . . .”

Pearson was not impressed. “I do not follow Mr. Fisher’s proof and it is not the

kind of proof which appeals to me,” he replied (Pearson 1990, page 47). As a

result, the proof was only published in 1915 together with the corresponding proof

for the distribution of the correlation coefficient that Student had conjectured in

his second 1908 paper. In the correlation case, the n pairs of observations are

considered as the coordinates of a point in 2n-dimensional space, in which the

two sample means, two sample variances, and the sample covariance have, as

Fisher writes, “a beautiful interpretation,” [Fisher, 1915] from which the desired

density can be obtained.
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The following is the first page of Fisher’s 1915 article in Biometrika.

FREQUENCY DISTRIBUTION OF THE VALUES OF THE 
CORRELATION COEFFICIENT IN  SAMPLES FROM 
AN INDEFINITELY LARGE POPULATION. 

BY R. A. FISHER. 

1. My attention was drawn to the problem of the frequency distribution of the 
correlation coetricient by an article published by Mr H. E. Soper* in 1913. Seeing 
that the problem might be attacked by means of geometrical ideas, which I had 
previously found helpful in the consideration of samples, I have examined the two 
articles by "Studentt," upon which Mr Soper's illore elaborate work was brtsed, 
with a view to checking and verifying the conclusions there attained. 

"Student," if I do not mistake his intention, desiring primarily to obtain 
a just estimate of the accuracy to be ascribed to the mean of a small sample, 
found it necessary to allow for the fact that the mean square error of such a 
sample is not generally equal to the standard deviation of the normal population 
from which i t  is drawn. He was led, in fact, to study the frequency distribution 
of the mean square error. He  calculated algebraically the first four moments of 
this frequency curve, both about the zero point, and about its mean, observed 
a simple law to connect the successive moments, and discovered a frequency curve, 
which fitted his moments, and gave the required law. 

Thus if xl, xa, ...xn are the members of a sample, 

and npa=(x1- Q a +  ( x a - 5 y  + ,..+ (x,,-z)2, 
the frequency with which the mean square error lies in the range d p  is propor- 
tional to 

--nf 

pn-% 2u2 dp. 


This result, although arrived a t  by empirical methods, was established almost 
beyond reasonable doubt in the first of "Student's" papers. It is, however, of 
interest to notice that the form establishes itself instantly, when the distribution 
of the sample is viewed geometrically. 

* Biometrika, Vol. IX. p. 91. t Ibid. Vol. VI. pp. 1 and 309. 

Biometrika x 65 

Biometrika, Vol. 10, No. 4. (May, 1915), p. 507.
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The following is from the third page of Fisher’s 1915 article in Biometrika. In section 2, he

had defined the sample means, variances and covariance, and promised to show us that these

quantities “have, in fact, an exceedingly beautiful interpretation in generalised space, which

we may now examine.”

For the variables x and y i t  is now necessary to substitute the statistical 
derivatives determined by the equations 

and i t  is evident that  the only difficulty lies in the expression of an element of 
volume in 2n dimensional space in terms of these derivatives. 

The five quantities above defined have, in fact, an exceedingly beautiful 
interpretation in generalised space, which we may now examine. 

3. Considering first the space of n dimensions in which the variations of x 
are represented, the mean and mean square error of n observations are determined 
by the relations of P ,  the point representing the n observations, to the line 

x1=x2=x3= ...= E n ,  

for the perpendicular YM drawn from P upon this line will lie in the region 

x1+ x, + . . . + xn = nE, 

and will meet i t  a t  the point M, where 
-

x1=2, x2=z, . . . X g L=X ; 

further, since, PM2=(xl - z ) ~+ (x2-E)'+ ...+ (%n-gY, 

the length of P M  is pl Jn. 

x3 

An element of volume in this n dimensional space may now without difficulty 
be specified in terms of 11: and f i  ; for, given 3 and p,, P must lie on a sphere in 
n - 1  dimensions, lying a t  right angies to the line OM, and the element of 
volume is 

Cpln-2dpl dz ,  

where 0 is some constant, which need not be determined. 

from Biometrika, Vol. 10, No. 4. (May, 1915), bottom portion of page 509.
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Working through Fisher’s “instant” geometric insight...

Joint density, g(s, x̄), of s & x̄

Following the usual rules for the probability density of functions of random variables,

g(s, x̄)dsdx̄ =

∫
f(x1, . . . , xn) dx1 . . . dxn =

∫
f(x) dx,

where x is one of the inverses of (s, x̄), and the integration is over all x′ = {x′1, . . . , x′n} within

a distance ds of s = {(1/n)
∑

(xi − x̄)2}1/2 and a distance dx̄ of x̄ = (1/n)
∑

xi.

Now, if, w.l.o.g., E[x] = 0, then

f(x) =
∏

f(xi) ∝ e−
P

x2
i /2σ2

.

As did Student, Fisher defined s2 using a divisor of n. Thus,
∑

x2
i = ns2 +nx̄2, so that f(x)

factors into

f(x) ∝ e−ns2/2σ2 × e−nx̄2/2σ2

.

Therefore

g(s, x̄)dsdx̄ ∝
∫

e−ns2/2σ2 × e−nx̄2/2σ2

dx1 . . . dxn,

with the integral taken over the region described above.

The integrand is constant over this region. Thus, as can be inferred from the n = 2 and

n = 3 cases shown in the Figures overleaf,
∫

dx1 . . . dxn, is ∝ sn−2dsdx̄. Therefore

g(s, x̄) ∝ sn−2 × e−ns2/2σ2 × e−nx̄2/2σ2

;

i.e., g(s, x̄) factors into gs() ∝ sn−2 × e−(n/2)s2/σ2
and gx̄() ∝ e−x̄2/2(σ/

√
n)2 .
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Figure 1: Expanded version of Fisher’s diagram : the n = 2 case, with the concrete
example x = {1.4, 0.4}, so that x̄ = 0.9, s = 0.5. The other {X1, X2}’s within a distance
{ds, dx̄} of these summary values lie within the two 2-D rectangles, each with area ds× dx̄.
Thus the dx1×dx2 volume in R2 corresponding to the area ds×dx̄ in R+×R is 2× s(n−2)×
ds× dx̄.
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Figure 2: Expanded version of Fisher’s diagram : the n = 3 case, with concrete
example x = {1.4, 0.5, 0.8}, so that x̄ = 0.9, s = 0.37. The other X’s within a distance
ds, dx̄ of these summary values are contained in the 3-D region enclosed between the inner
and outer surface of two cylinders, with inner and outer radii s and s + ds, and between the
planes (1/3)(X1 +X2 +X3) = x̄ and (1/3)(X1 +X2 +X3) = x̄+dx̄. Thus the dx1×dx2×dx3

volume in R3 corresponding to the area ds×dx̄ in R+×R is s(n−2)×ds×dx̄. Not shown, but
imaginable: the n = 4 case, where the total probability mass associated with the X’s that
have close to the same summary values, lies ‘near’ the surface of a sphere with surface area
∝ s2 = sn−2, and thus, within a volume 4π × sn−2 × ds× dx̄. And so on for higher values of
n. 7



Note

There is one confusing item in Fisher’s 1915 article: in his section 1, he refers to the “fre-

quency with which the mean square error [italics ours] lies in the range dµ” (or, ds, as we

would write it today. Given that the density he describes is proportional to µn−2 (or sn−2)

he can only have meant the root mean square error square error. In his more expansive 1925

Metron paper, he again derives the joint distribution of s and x̄, (as we do above) with the

density of s proportional to s(n−2); from these he derives the joint distribution of s2 and x̄,

with the density of s2 proportional to (s2)(n−3)/2.

Incidentally

Although Gosset did not fully establish that s and x̄ are statistically independent, Fisher’s

derivation of g(s, x̄) shows that they are.

JH MJ EM; January 2, 2008
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