The 2 existing approaches

low we fit fully-parametric mode

Illustration

iscussion

Summary

# Fitting smooth-in-time prognostic risk functions via logistic regression

#### James A. Hanley<sup>1</sup> Olli S. Miettinen<sup>1</sup>

<sup>1</sup>Department of Epidemiology, Biostatistics and Occupational Health, McGill University

Ashton Biometric Lecture Biomathematics & Biostatistics Symposium University of Guelph, September 3, 2008

The 2 existing approaches

How we fit fully-parametric mode

Illustratio

Discussio

Summary

### OUTLINE

#### Introduction

The 2 existing approaches Semi-parametric model Fully-parametric model

How we fit fully-parametric model

Illustration

Discussion

Summary

The 2 existing approaches

How we fit fully-parametric mode

Illustration

cussion Su

# CASE I

- Prob[surv. benefit] if man, aged 58, PSA 9.1, c
   Gleason 7' prostate cancer, selects radical over conservative Tx?
- RCT: prostate ca. mortality reduced with radical Tx (HR 0.56). 10-y 'cum. incidence, Cl' of death: 10% vs. 15%.
- "Benefit of radical therapy ... differed according to age but not according to the PSA level or Gleason score."
- Nonrandomised studies: (1) 'profile-specific' prognoses but limited to conservative Tx (2) few patients took this option (3) n= 45,000 men 65-80: "Using propensity scores to adjust for potential confounders," the authors reported "a statistically significant survival advantage" in those who chose radical treatment (HR, 0.69)". An absolute 10-year survival difference (in percentage points) was provided for each "quintile of the propensity score",
- MD couldn't turn info. into surv.  $\Delta$  for men with pt's profile.

The 2 existing approaches

Illustration

sion Sun

### CASE II

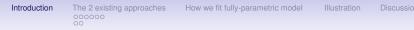
- Physician consults report of a classic randomised trial (Systolic Hypertension in Elderly Program (SHEP) to assess 5-year risk of stroke for a 65-year old white woman with a SBP of 160 mmHg and how much it is lowered if she were to take anti-hypertensive drug treatment.
- Reported risk difference was 8.2% 5.2% = 3%, and the "favorable effect" of treatment was also found for all age, sex, race, and baseline SBP groups.
- Report did not provide information from which to estimate the risk, and risk difference, for this specific profile.

# STATISTICS AND THE AVERAGE PATIENT

• For a patient,  $\widehat{HR} = \widehat{IDR} = 0.6$  not very helpful.

• 
$$\widehat{Cl_{0-10}} = 15\%$$
 if  $Tx = 0$ ; 10% if  $Tx = 1$ , more helpful.

• Not specific to this particular type of patient, if grade & stage {of Pr Ca} or age/race/sex/SPB {SHEP Study} not near the typical of those in trial.



# ARE THESE ISOLATED CASES?

- Are survival statistics from clinical trials and non-randomised studies – limited to the "average" patient?
- Is Cox regression used merely to ensure 'fairer comparisons'?
- How often is it used to provide profile-specific estimates of survival and survival differences?

Introduction The 2 existing approaches How we fit fully-parametric model Illustration Discussion Summary

### SURVEY: SURVIVAL STATISTICS IN RCT REPORTS

- RCT's : Jan June 2006 : NEJM, JAMA, The Lancet
- 20 studies with statistically significant survival difference between compared treatments w.r.t. primary endpoint.
- Documented whether presented profile-specific *t*-year and Tx-specific survival, { or complement, *t*-year risk }.
- Most abstracts contained info. on risk and risk difference for the 'average' patient.
- Some articles provided RD's or HR's for 'univariate' subgroups (e.g. by age or by sex).
- Despite range of risk profiles in each study, and common use of Cox regression, none presented info. that would allow reader to assess Tx-specific risk for a specific profile, e.g., for a specific age-sex combination.

# WHY THIS CULTURE?

Predominant use of the semi-parametric 'Cox model.'

- Time is considered as a non-essential element.
- Primary focus is on hazard ratios.
- Form of hazard per se as function of time left unspecified.
- Attention deflected from estimates of profile-specific CI.
- Many unaware that software provides profile-specific CI.

# DIFFERENT CULTURE

Practice of reporting estimates of profile-specific probability more common when no variable element of time of outcome.

- Estimates can be based on logistic regression.
- Examples
  - ("Framingham-based") estimated 6-year risk for Myocardial Infarction as function of set of prognostic indicators;
  - estimated probability that prostate cancer is organ-confined, as a function of diagnostic indicators.

# WHAT WE WISH TO DO

- Model the hazard (h), or incidence density (ID), as a function of
  - set of prognostic indicators
  - choice of intervention
  - prospective time.
- Estimate the parameters of this function.
- Calculate  $\widehat{CI_x(t)}$  from this function.

Summary

### COX MODEL

Hazard modelled, semi-parametrically, as

$$h_x(t) = [\exp(\beta x)]\lambda_0(t),$$

- T = t: a point in prognostic time,
- $\beta$  : vector of parameters with unknown values;
- *X* = *x* : vector of realizations for variates based on prognostic indicators and interventions;
- λ<sub>0</sub>(t) : hazard as a function unspecified of t corresponding to x = 0.

The 2 existing approaches

How we fit fully-parametric mode

Illustration

Discussion

Summary

# FROM $\hat{\beta}$ TO PROFILE-SPECIFIC CI's

- Obtain  $\widehat{S_0(t)}$  { the complement of  $\widehat{Cl_0(t)}$  }.
- Estimate risk (cum. incidence)  $CI_x(t)$  for a particular determinant pattern X = x as  $\widehat{CI_x(t)} = 1 \widehat{S_0(t)}^{\exp(\hat{\beta}x)}$ .
- Breslow suggested an estimator of λ<sub>0</sub>(t) that gives a smooth estimate of Cl<sub>x</sub>(t). However, step function estimators of S<sub>x</sub>(t), with as many steps as there are distinct failure times in the dataset, are more easily derived, and the only ones available in most packages.
- Step-function *S*<sub>0</sub>(*t*) estimators: "Kaplan-Meier" type ("Breslow") and Nelson-Aalen. heuristics: jh, *Epidemiology 2008*
- *Clinical Trials* article (Julien & Hanley, 2008) encourages investigators to make more use of these for 'profiling'.

i Summa

# TOO MUCH OF A GOOD THING? - 1992

the success of Cox regression has perhaps had the unintended side-effect that practitioners too seldomly invest efforts in studying the baseline hazard...

a **parametric** version, ... if found to be adequate, would lead to more precise estimation of survival probabilities.

Hjort, 1992, International Statistical Review

Summa

# TOO MUCH OF A GOOD THING? - 2002

Hjort's statement has been "apparently little heeded"

in the Cox model, the baseline hazard function is treated as a high-dimensional nuisance parameter and is highly erratic.

*{we propose to estimate it} informatively (that is, smoothly), by natural cubic splines.* 

Royston and Parmar, 2002, Statistics in Medicine

# TOO MUCH OF A GOOD THING? - 1994

**Reid**: How do you feel about the cottage industry that's grown up around it [the Cox model]?

**Cox**: Don't know, really. In the light of some of the further results one knows since, I think I would normally want to tackle problems parametrically, so I would take the underlying hazard to be a Weibull or something. I'm not keen on nonparametric formulations usually.

# TOO MUCH OF A GOOD THING? - 1994 ...

**Reid**: So if you had a set of censored survival data today, you might rather fit a parametric model, even though there was a feeling among the medical statisticians that that wasn't quite right.

**Cox**: That's right, but since then various people have shown that the answers are very insensitive to the parametric formulation of the underlying distribution [see, e.g., Cox and Oakes, Analysis of Survival Data, Chapter 8.5]. And if you want to do things like predict the outcome for a particular patient, it's much more convenient to do that parametrically.

- .... Reid N. A Conversation with Sir David Cox.
- .... Statistical Science, Vol. 9, No. 3 (1994), pp. 439-455

00

# FULLY-PARAMETRIC MODEL: FORM

 $\log\{h(x,t)\} = g(x,t,\beta) \iff h(x,t) = e^{g(x,t,\beta)}$ 

- x is a realization of the covariate vector X, representing the patient profile P, and possible intervention I.
- $\beta$  : a vector of parameters with unknown values,
- g() includes constant 1, variates for P, I;
- g() can have product terms involving P, I, and t.
- g() must be 'linear' in parameters, in 'linear model' sense.
- 'proportional hazards' if no product terms involving t & I
- If t is represented by a linear term (so that 'time to event' ~ *Gompertz*), then  $CI_{p,i}(t)$  has a closed smooth form.
- If t is replaced by log t, then 'time to event'  $\sim$  Weibull.

# FULLY-PARAMETRIC MODEL: FITTING

- Parameters of this loglinear hazard function can be numerically estimated by maximizing the likelihood.
- Unable to find a ready-to-use procedure within the common statistical packages.
- Likelihood becomes quite involved even if no censored observations.
- Albertsen and Hanley(1998), Efron(1988, 2002), and Carstensen(2000-) have circumvented these technical problems of fitting by dividing the observed 'survival time' of each subject into a number of time-slices and treating the number of events in each as a Binomial (1988) or Poisson (2002) variate.

# FULLY-PARAMETRIC MODEL: OUR APPROACH

- An extension of the method of Mantel (1973) to binary outcomes with a time dimension.
- Mantel's problem:
  - (*c* =)165 'cases' of *Y* = 1,
  - 4000 instances of Y = 0.
  - Associated regressor vector X for each of the 4165
  - A logistic model for Prob(Y = 1 | X)
  - A computer with limited capacity.

# MANTEL'S SOLUTION

- Form a reduced dataset containing...
  - All *c* instances (cases) of Y = 1
  - Random sample of the Y = 0 observations
- Fit the same logistic model to this reduced dataset.

"Such sampling will tend to leave the dependence of the log odds on the variables unaffected except for an additive constant."

Anderson (Biometrika, 1972) had noted this too.

• Outcome(Choice)-based sampling common in Epi, Marketing, etc...

on Summ

# DATA TO EXPLAIN OUR APPROACH

#### Systolic Hypertension in Elderly Program (SHEP)

..... SHEP Cooperative Research Group (1991).

..... Journal of American Medical Association 265, 3255-3264.

- ??? Effectiveness of antihypertensive drug treatment in preventing (↓ risk of) stroke in older persons with isolated systolic hypertension.
- We obtained data, without subject identifications, under program "NHLBI Datasets Available for Research Use".
- 4,701 persons with complete data on P = {age, sex, race, and systolic blood pressure} and I = {active, placebo}.
- Study base of *B* = 20,894 person-years of follow-up; *c* = 263 events ("cases") of stroke identified.

The 2 existing approaches

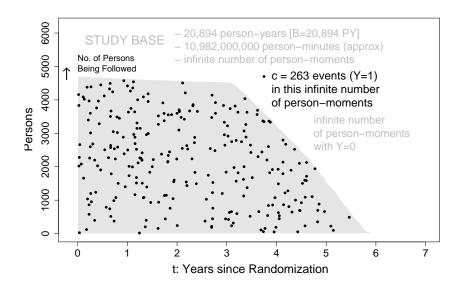
How we fit fully-parametric model

Illustration

Discussion

Summary

### STUDY BASE, and the 263 cases



#### 000000 00

# THE ETIOLOGIC STUDY IN EPIDEMIOLOGY

- Aggregate of population-time: 'study base.'
- All instances of event in study base identified  $\rightarrow$  study's 'case series' of person-moments, characterized by Y = 1.
- Study base infinite number of person-moments sampled → corresponding 'base series,' characterized by Y = 0.
- Document potentially etiologic antecedent, modifiers of incidence-density ratio, & confounders.
- Fit Logistic model
- With our approach ...
  - $\rightarrow$  Incidence density,  $h_x(u)$  in study base.
  - $\rightarrow CI_x(t) = 1 \exp\{-H_x(t)\} = 1 \exp\{-\int_0^t h_x(u)du\}.$

The 2 existing approaches

# WHAT MAKES OUR APPROACH WORK

- Base series: representative (unstratified) sample of base.
- $\rightarrow$  logistic model, with *t* having same status as *x*, and offset, directly yields  $\widehat{ID_{x,t}} = \exp{\{\widehat{g(x,t)}\}}$ .
- Using same argument (algebra) as Mantel...

*b* = size of base series

B = amount of population-time constituting study base.

$$\frac{\operatorname{Prob}(Y=1|\{x,t\})}{\operatorname{Prob}(Y=0|\{x,t\})} = \lim_{\epsilon \to 0} \frac{h(x,t)\epsilon}{1-h(x,t)\epsilon} \times \frac{B/\epsilon}{b} = h(x,t) \times \frac{B}{b}$$
$$\log\left[\frac{\operatorname{Prob}(Y=1|\{x,t\})}{\operatorname{Prob}(Y=0|\{x,t\})}\right] = \log[h(x,t)] + \log(B/b).$$

•  $\log(B/b)$  is an Offset [a regression term with *known* coefficient of 1].

n Summ

# How large should *b* be on relation to *c*?

Mantel (1973)... [our notation, and slight change of wording]

By the reasoning that  $cb/(c + b) [= (1/c + 1/b)^{-1}]$  measures the relative information in a comparison of two averages based on sample sizes of c and b respectively, we might expect by analogy, which would of course not be exact in the present case, that this approach would result in only a moderate loss of information. (The practicing statistician is generally aware of this kind of thing. There is little to be gained by letting the size of one series, b, become arbitrarily large if the size of the other series, c, must remain fixed.)

• With 2008 computing, we can use a b/c ratio as high as 100.

• 
$$b/c = 100 \rightarrow Var[\hat{\beta}]_{b/c=100} = 1.01 \times Var[\hat{\beta}]_{b/c=\infty}$$
, i.e. 1%  $\uparrow$ 

•  $Var[\hat{\beta}] \propto 1/c + 1/100c$  rather than  $1/c + 1/\infty$ .

.....................

Summary

# OUR HAZARD MODEL FOR SHEP DATA

 $\log[h] = \Sigma \beta_k X_k$ , where

 $X_1$  = Age (in yrs) - 60  $X_2$  = Indicator of male gender  $X_3$  = Indicator of Black race  $X_4$  = Systolic BP (in mmHg) - 140

 $X_5$  = Indicator of active treatment

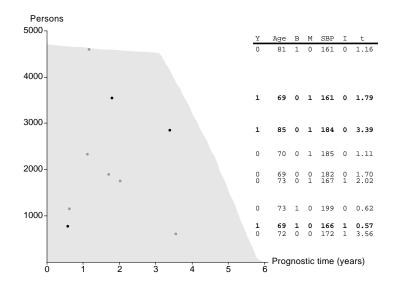
 $X_6 = T$ 

 $X_7 = X_5 \times X_6$ . (non-proportional hazards)

# PARAMETER ESTIMATION

- Formed person-moments dataset pertaining to:
  - case series of size c = 263 (Y = 1)and
  - (randomly-selected) base series of size b = 26,300
    (Y = 0).
- Each of 26,563 rows contained realizations of
  - $X_1, ..., X_7$
  - Y
  - offset = log(20, 894/26, 300).
- Logistic model fitted to data in the two series.

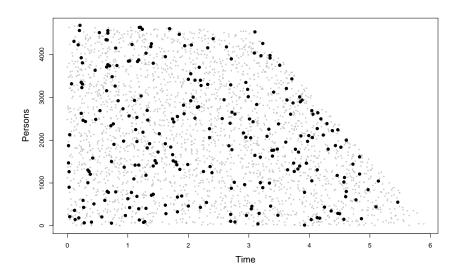
# DATASET FOR LOGISTIC REGRESSION (SCHEMATIC)



The 2 existing approaches

ssion Summary

### DATASET: *c* = 263; *b* = 10 × 263



The 2 existing approaches

How we fit fully-parametric model

Illustration

Discussion

Summary

### FITTED VALUES

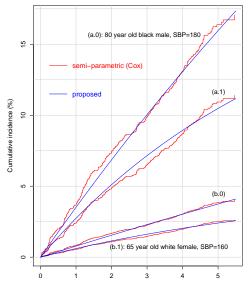
|                                         | Proposed    |            | Cox    |  |
|-----------------------------------------|-------------|------------|--------|--|
|                                         | logistic re | regression |        |  |
| $\beta_{age-60}$                        | 0.041       | 0.041      | 0.041  |  |
| $\beta_{I_{male}}$                      | 0.257       | 0.258      | 0.259  |  |
| $\beta_{I_{black}}$                     | 0.302       | 0.301      | 0.303  |  |
| $\beta_{SBP-140}$                       | 0.017       | 0.017      | 0.017  |  |
| $eta_{I_{Active treatment}}$            | -0.200      | -0.435     | -0.435 |  |
| $\beta_0$                               | -5.390      | -5.295     |        |  |
| $\beta_t$                               | -0.014      | -0.057     |        |  |
| $\beta_{t \times I_{Active treatment}}$ | -0.107      |            |        |  |

- Fitted logistic function represents  $\log[h_x(t)]$
- $\rightarrow$  cumulative hazard  $H_X(t)$ , and, thus, X-specific risk.

| Introduc |                                 | 0000       | approaches How we                        | fit fully-parametric model              | Illustration Discussion                                   | on Summai |  |
|----------|---------------------------------|------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-----------|--|
|          | ESTIMATED 5-YEAR RISK OF STROKE |            |                                          |                                         |                                                           |           |  |
|          | Risk                            | I          | h(t)<br>[ ID(t) ]                        | $H(5)$ $\left[\int_0^5 h_x(t)dt\right]$ | <i>CI</i> (5)<br>[ 1 – <i>e</i> <sup>-<i>H</i>(5)</sup> ] | Δ         |  |
| -        | Low                             | 0<br>1     | $e^{-4.86-0.014t}$<br>$e^{-5.06-0.124t}$ | 0.037<br>0.024                          | 0.036<br>0.024                                            | 1.2%      |  |
|          | High                            | 0<br>1     |                                          |                                         | 0.16<br>0.10                                              | 6%        |  |
|          | Overa                           | ull 0<br>1 |                                          |                                         | 0.076<br>0.049                                            | 2.7%      |  |

Low: 65 year old white female with a SBP of 160 mmHg. High: 80 year old black male with a SBP of 180 mmHg

| Introduction | The 2 existing approaches | How we fit fully-parametric model | Illustration | Discussion | Summary |
|--------------|---------------------------|-----------------------------------|--------------|------------|---------|
|              | 000000<br>00              |                                   |              |            |         |



Prospective time (years)

| Introduction The 2 existing approaches | How we fit fully-parametric model       | Illustration | Discussion | Summary |
|----------------------------------------|-----------------------------------------|--------------|------------|---------|
|                                        |                                         |              |            |         |
| Points                                 |                                         | 6 7 8        | 9 10       |         |
| Age                                    | 60 65 70 75 80                          | 85 90        | 95 100     |         |
| Male                                   | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |              |            |         |
| Black                                  | φ <u>1</u>                              |              |            |         |
| SBP                                    | 155 165 175 185 195 205                 | 215          |            |         |
| I                                      | 1                                       |              |            |         |
| t                                      | 6 0                                     |              |            |         |
| I.t<br>Total Points                    | 6 5 4 3 2 1 0                           |              |            |         |
| Linear Predictor                       | 0 2 4 6 8 10 12                         |              |            |         |
| 5-year Risk (%) if not treate          |                                         |              | -3 -2.5    |         |

5-year Risk (%) if treated

-0.15

10 15 20 25

sample

The 2 existing approaches

How we fit fully-parametric mode

Illustration

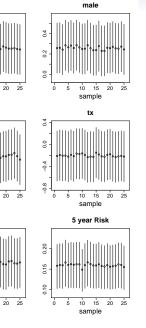
iscussion Sun

intercept age 4.8 0.06 -5.2 0.04 -5.6 6.0 0.02 10 15 20 25 10 15 sample sample black sbp 0.6 0.025 0.4 0.015 0.2 0.0 0.005 10 15 20 25 10 15 sample sample tx\*t t 5.0 0.05 0.0 9 -0.05

0.3

15

sample



#### STABILITY ?

Point and (95% confidence) interval estimates of hazard function, and of 5-year risk for a specific (untreated) high-risk profile. Fits are based on 25 different random samples of b = 26,300from the infinite number of person-moments in the study base, and same c = 263 cases each run.

The 2 existing approaches

# **KEY POINTS**

- Focus on 'individualized' profile-specific risk functions.
- Cox model CI's seldom used: dislike 'step-function' form?
- Smooth-in-*t* h(t)—and Cl's– not new; fitting procedure is.
- Borrow from *the* etiologic study in epidemiology: case series + base series + logistic regression.
- Not just hazard ratio, but hazard per se.
- Keys: 1. representative sampling of the base; 2. offset.
- Information re  $h_x(t)$  constrained by *c*.
- Virtually 100% extracted when *b* suitably large relative to *c*.
- b/c = 100 feasible and adequate.

# MODELLING POSSIBILITIES

Log-linear modelling for  $h_x(t)$  via logistic regression ...

- Standard methods to assess model fit.
- Wide range of functional forms for the *t*-dimension of  $h_x(t)$ .
- Effortless handling of censored data.
- Flexibility in modeling non-proportionality over t.
- Splines for h(t) rather than hr(t).

The 2 existing approaches

How we fit fully-parametric mode

Illustration

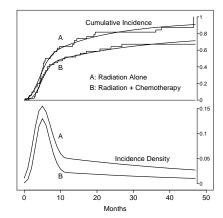
Discussion

Summary

### DATA ANALYZED BY EFRON, 1988

Arm A [time-to-recurrence of head & neck cancer] Cum. Inc. estimates – K-M, Efron & Proposed Arm A vs. Arm B

Cumulative Incidence -0.8 -0.6 -0.4 -0.2 r0.15 -0.1 -0.05 Incidence Density 10 Ó 20 30 40 50 Months



Inc. density estimates – Efron & Proposed

Discussion

# CLINICAL POSSIBILITIES / DESIDERATA

- PDAs (personal digital assistants)  $\rightarrow$  online information.
- Profile-specific risk estimates for various interventions.
- Already, online calculators: risk of MI, Breast/Lung Cancer; probability of extra-organ spread of cancer.
- RCT reports should contain: suitably designed risk function, fitted parameters of h<sub>x</sub>(t), and risk function.
- (Offline:) risk scores  $\rightarrow$  risks via nomogram/table.

The 2 existing approaches

sion Summary

# SUMMARY

- Profile-specific risk (CI) functions are important.
- Two paths to CI, via...
  - Steps-in-time  $S_0(t)$
  - Smooth-in-time  $ID_x(t)$ .
- New simple estimation method for broad class of smooth-in-time ID functions.
- Biostatistics & Epidemiology methods: a little more unified?

ussion Summary

# FUNDING / CO-ORDINATES

Natural Sciences and Engineering Research Council of Canada

James.Hanley@McGill.CA

