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The normal theory tolerance interval counterpart to
Formulas (5), (6), and (7) is to use intervals based on
endpoints of the form

y + 75. (16)

Odeh and Owen (1980) present rather extensive tables
of constants 7 useful for both one- and two-sided tol-
erance intervals for various fractions p of an underlying
distribution at various confidence levels y x 100%.
Intervals (16) should be a serious part of introductions
to statistical methods.

But beyond (16) is the possibility of providing at least
one-sided tolerance-interval methods for essentially any
instance of the constant variance normal linear model.
It is a first-year graduate level exercise to show that
under the conditions leading to (15), a y X 100% one-
sided tolerance bound for a fraction p of all future ob-
servations at conditions x can be made using one of the
endpoints

TS, (17)
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where
Ty = Ax : QI(SX,V)(‘Y) (18)

for Q,s.(:) the inverse noncentral ¢ cdf for noncen-
trality parameter 6 and degrees of freedom v, where
6, = Q,(p)A,. [Q.(-) is standing for the inverse stan-
dard normal cdf.]

These days many statistical packages can be used to
provide the noncentral ¢ quantile needed in (18) [for
example, the SAS Supplemental Library function
TINV(P, DF, NCT) could be used]. But there is also
an old route to an explicit approximation of the limits
(17). That is, it is a relatively simple exercise to show
that under the conditions leading to (15), approxima-
tion of the distribution of y, + ks by a normal distri-
bution with mean Ey, + ko and variance 0?(A2 + k%
2v) leads to the conclusion that approximate y X 100%
one-sided tolerance bounds for a fraction p of all future

observations at conditions x can be made using (17) and

0.p) + Ame\/ 1 HED gy
T |20 )
2v

This kind of approximation is common (at least in one-
sample contexts) in the statistical quality control liter-
ature and is traceable to Jennett and Welch (1939).

Formula (19) is usually adequate for practical pur-
poses. Thus, even if one does not have access to soft-
ware needed to use (18), it is possible to specialize (17)
to each one of the spectrum of linear models used in
introductory courses, and to thus provide reasonably
explicit normal theory tolerance bounds.

7. SUMMARY

There is, of course, no end to the list of statistical
interval methods that one might potentially recommend
for inclusion in a first course. (I even believe simulta-
neous interval methods to have a place!) Most readers
will, however, probably conclude that the suggestions
here go beyond what they are presently willing to at-
tempt. But it is hoped that this discussion will provoke
some thought and movement on the part of a number
of instructors toward a more comprehensive early
teaching of “the other intervals.”
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Defying Odds
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1. INTRODUCTION
The calculation of probabilities is central to statistical
inferences; however, teachers find it difficult to guide
students, especially those who are not trained in prob-
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Jumping to Coincidences:

in the Realm of the Preposterous

ability, on how to set up correct probability calculations.
Probabilities of seemingly rare events that are assessed
after the fact are especially problematic; students em-
ploy selective vision and ignore other similar events in
the sample space that would have prompted the same
surprise and should therefore have been included in the
calculated probability.

In a small publication aimed mainly at high school
teachers, Hanley (1984) described three examples where
probability specialists themselves have been ‘“‘near-
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sighted” in assessing or predicting usual and unusual
events generated by state lotteries. In one example, a
lottery official offered “data” which one should expect
from a fair lottery; unfortunately, the logic used to “pre-
dict the usual” was faulty. In the two others, the unusual
(what one should not often expect) was calculated to be
much more unusual than it really was. These types of
calculations are not new; two of the three cases were
variations on the “birthday problem.” Probability cal-
culations such as these are taught in many college courses
that touch on probability; however, they are couched
in prospective (before the fact) terms and involve name-
less coins, dice, beads, and urns.

Since then, a fourth unusual lottery event has been
reported, this time from the New Jersey State Lottery.
This story, and the official statistical reaction to it, were
carried in worldwide publications. Again, the reported
reaction was based on faulty probability calculations.
These four faulty lottery calculations, and several new
ones involving unusual births and birthdays, have
prompted me to bring together in one place my “case
series”” and share it with a larger readership. Along with
Paulos (1988), I argue that these variants of a common
probability blind spot are not sufficiently appreciated
and that we as teachers need to emphasize proper after-
the-fact probability calculations a lot more; I relate my
experiences in trying to do so to nonstatistical students.

A recent article by Diaconis and Mosteller (1989)
dealt with a wider range of problems of coincidences
and developed methods appropriate to students of
probability. [This prompted a newspaper article by
Kolata (1990), the science writer for the New York
Times.] My intended readership here is teachers of wide-
audience courses in statistics, since our aim should be
to get students in all disciplines to be suspicious and ask
good questions when confronted with the urge to cal-
culate (or try to calculate) preposterous probabilities.

2. CASE STUDIES INVOLVING LOTTERIES

Unlike the birth examples to be discussed later, lot-
teries have the special advantage that their probability
structure is usually well laid out, and few simplifying
assumptions are needed. In all, four lottery examples
are given. Since the first three have been discussed in
detail by Hanley (1984), and space is limited, the com-
mentary on them will be shorter than it might otherwise
be; the most recent case, used as an example of the law
of truly large numbers by Diaconis and Mosteller, is
discussed in a little more detail.

Lottery Case 1 (from the Montréal Gazette on
September 10, 1981)

Same Number 2-State Winner

Boston (UPI)—Lottery officials say that there is 1 chance in 100
million that the same four-digit lottery numbers would be drawn in
Massachusetts and New Hampshire on the same night. That’s just
what happened Tuesday.

The number 8092 came up, paying $5,842 in Massachusetts and
$4,500 in New Hampshire. ‘“There is a 1-in-10,000 chance of any four-
digit number being drawn at any given time,” Massachusetts Lottery
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Commission official David Ellis said. But the odds of it happening
with two states at any one time are just fantastic,” he said.

Although this problem is conceptually equivalent to
the textbook example of throwing two dice and having
them show the same number, the reaction to it is quite
different: lottery officials are drawn only to the specific
number 8092. Two techniques can be used to encourage
students to “take off their blinders.” Traditionally, the
calculation is set up by laying out the grid of 10,000 by
10,000 possibilities and using the elementary rules of
multiplication (10~* X 10~%) and addition (summing
this product over the 10* diagonal entries) to arrive at
the correct answer of 10~#. (In the case of the two dice,
it is not clear to students whether the choice of first or
second die is arbitrary—some textbooks make the dice
different colors to make them more “real’’; having two
states makes the counting a lot easier.) The second
approach is to imagine that the Massachusetts draw has
already taken place and that the New Hampshire one
is about to. Thus, the requirement for a newspaper story
is that the New Hampshire match whichever number
has already been drawn.

Of course, one could expand the calculation posed
in the first paragraph of the story (just the specific states
of Massachusetts and New Hampshire) to a much broader
one by asking what are the chances of a match among
some two of the several states with daily four-digit lot-
teries (the event implied by the title of the story)? The
method of calculating this increased probability is a
variation on that used in the following Lottery Case 2
(the number of states in Case 1 plays the same role as
the number of draws in Case 2) and so will not be dealt
with separately here.

The teacher can also use this expansion of Case 1 to
distinguish between the probability of an event (a) oc-
curring and (b) occurring and being noticed and re-
ported. The news media in the adjacent states of Mas-
sachusetts and New Hampshire report the winning num-
bers in both their own and their next-state lotteries.
This overlapping coverage, and the fact that residents
of one state work in, and play the lottery in, the adjacent
state make it more likely that a coincidence is noticed
than, for example, if the match was between geograph-
ically distant Massachusetts and New Mexico or be-
tween states that are lexically distant in USA Today’s
listings, alphabetically by state, of the winning lottery
winners. The example can help teachers to emphasize
that one must take over- and under-reporting ‘‘filters”
into account when, for example, judging the true in-
cidence of a disease or other adverse event from spon-
taneously reported “‘cases.”

Lottery Case 2 (from the Boston Evening Globe of
February 6, 1978)

An article reported an interview with lottery official
David Hughes on how bettors choose numbers in the
above-mentioned Massachusetts Daily Lottery (the
Game), which is played daily:

During the Game’s 22-month existence, the illegal numbers pool has
switched its payoff from the race-track parimutuel pool to the legal



number. In that period, no winning number has ever been repeated,
although the same four digits have won a second time in different
sequences. Hughes, the expert, doesn’t expect to see duplicate win-
ners until about half of the 10,000 possibilities have been exhausted.

In Case 1 (and as we will see in Case 4), players might
be led to infer that unexpected events happen more
frequently than expected! In Case 2, a lottery official
reassured players that his lottery was fair (H,) and of-
fered ‘““data,” which were well within what was ex-
pected, to support that claim. A number of letters to
the Boston Globe quickly pointed out that either (H,):
“the number drawing is rigged so as to prevent repeat
winners” or else that we had witnessed a very unusual
event, since (under H,) “the chance of there being no
repeat in roughly 660 plays is only 22 billionths of a
percent.” The reactions of these statisticians illustrate
the dangers of believing in a two-hypothesis world. The
explanation was H,: Mr. Hughes’s data were incorrect!
Apologetic lottery officials announced one month later
that there “had indeed been repeated numbers’: seven
separate numbers had repeated in the 22 months. “The
misinformation was a sin of omission and a too-hasty
glance at our own listing of previous winning numbers.”
I like to describe this as a Type III error!

Lottery Case 3 (from the Montréal Gazette of July 28,
1982)

Once or twice a year, the Quebec Super Loto pays
out money accumulated from unclaimed prize-money
by adding 500 cars as bonus prizes. Instead of mechan-
ically drawing the large list of winning numbers from
the 2.4 million tickets sold for each drawing, the Loto
generated the 500 winning numbers using a computer,
and published them—in the order drawn—in the local
newspaper. After one such special drawing, the news-
paper reported:

$10 Ticket Wins Buyer Two Olds

Toronto (CP)— Antonio Gallardo has won two Oldsmobile Cutlass
Supremes on a single $10 ticket. A Loto Quebec Corp. official said
that the chance of a single number coming up twice is one in 46,181,926.

Evidently the numbers were being drawn with re-
placement! The unsorted list of 500 numbers made it
difficult for lottery officials to check for any duplicates,
although Mr. Gallardo probably had no difficulty in
finding that Ais number was there twice! In order to
emphasize that “rare events do happen, and the small
probability should not deter you from playing,” it makes
good marketing sense for lottery officials to calculate
the small probabilities of such an event from an indi-
vidual customer’s viewpoint. The official correctly cal-
culated “one in 46,181,926 as the binomial probability
of Mr. Gallardo obtaining two successes when n = 500
and w = 1 in 2.4 million. However, in this instance,
what was an unexpected bonus for Mr. Gallardo was a
major embarrassment for the lottery corporation, which
seemingly failed to appreciate that the chance of some
number being selected twice is not negligible. The prob-
ability calculation is identical in structure to the birthday
problem, but with N = 2.4 million rather than 365, and

n = 500 rather than the customary 20 or 30. For the
probability of no repeat, the 500-term product IT(1 —
i/N), with i = 0to 499, can be very closely approximated
by (1 — 0.5#/N)" to give .95, leaving the probability of
a repeat at around .05. In other words, the lottery of-
ficials should have expected their “one in 46,181,926”
event to occur on average once in 20 draws. In fact, it
happened well before the 20th draw; since then, the
lottery corporation draws 500 distinct winning num-
bers—and publishes them in numerical order!

Lottery Cases 2 and 3 are examples of the duplicate
birthday problem. Of the many explanations of how our
intuition lets us down in this problem, I prefer the one
attributed to Cornfield (Slonim 1960). He said, in ef-
fect, that the average person sees the problem as ‘“What
are the odds that any of the other n — 1 has the same
birthday as mine?”’, whereas he more properly should
ask, “What are the odds that any one of the n has the
same birthday as any other one of the n?”” However, in
a classroom, having students call out their own birth-
days makes the task of looking for a duplicate too easy,
since each student simply continues to check his or her
own against those being called out. The lottery cor-
poration’s task of checking through 500 (Quebec) or
660 (Massachusetts) nameless numbers in an unsorted
list is a lot more boring, and takes one person much
longer to do; however, the amount of work involved is
a clue to the magnitude of the probability. To illustrate
the high probability of duplicate birthdays, I use a
spreadsheet to generate several columns of 23 random
birthdays, and ask students to check for duplicates within
each column and to explain how they cover all possi-
bilities. They quickly see that checking the first entry
against entries 2 to 23, then the second against 3 to 23,
and so on involves a lot of work, and I explain that
every possibility they check adds to the probability, that
is, the numerator is far larger than they had originally
thought.

Lottery Case 4 (from the New York Times of
February 14, 1986)

Odds-Defying Jersey Woman Hits Lottery Jackpot 2d Time

Defying odds in the realm of the preposterous—1 in 17 trillion—
a woman who won $3.9 million in the New Jersey state lottery last
October has hit the jackpot again and yesterday laid claim to an
additional $1.5 million prize . . .

She was the first two-time million-dollar winner in the history of
New Jersey’s lottery, state officials said. They added that they had
never before heard of a person winning two million-dollar prizes in
any of the nation’s 22 state lotteries.

For aficionados of miraculous odds, the numbers were mind-
boggling: In winning her first prize last Oct. 24, Mrs. Adams was up
against odds of 1 in 3.2 million. The odds of winning last Monday,
when numbers were drawn in a somewhat modified game, were 1 in
5.2 million.

And after due consultation with a professor of statistics at Rutgers
University, lottery officials concluded that the odds of winning the
top lottery prize twice in a lifetime were 1 in about 17.3 trillion—
that is, 17,300,000,000,000.

It is interesting how officials use their statistical con-
sultants to “jump to coincidences,” that is, how correct
probabilities in the penultimate paragraph are ‘“tele-
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scoped” to “odds of winning twice in a lifetime.” As
Samuels and McCabe (1986) argued, the type of event
that occurred was far from the miraculous; in fact, it
was to be expected.

The final calculation ignored several pertinent facts
[Hanley, J.A. “Jumping to coincidence” (unpublished)
letter to New York Times, February 24, 1986] first in
calculating the odds in Mrs. Adams’s case, and second
in estimating how soon someone, somewhere (not nec-
essarily Mrs. Adams, or even in New Jersey) would hit
the jackpot twice.

First, in Mrs. Adams’s case, the calculation assumed
that she played only two weeks—once when the game
was “6/39”” with 3.2 X 10° possibilities, and once when
the game was ““6/52”” with 5.2 x 10° possibilities—and
that she bought just one ticket for each of these two
weeks, making the odds 1in 3.2 x 5.2 X 10'2, or 1 in
17.3 trillion. (““k/n” refers to a game where a player
chooses k numbers; the biggest prize is shared among
those players whose k choices match exactly the num-
bers on k balls drawn without replacement from # balls
numbered 1 to #n; the probability of getting x correct
out of k is given by the hypergeometric distribution with
parameters k and n — k.) In fact, she had bought several
tickets each week for some years and had raised her
purchases after she won the first time. Each week, with
about 5 million possibilities, a player who plays just five
tickets a week (or three tickets in the older, “6/39,”
version of the game) has a probability of about 1 in a
million of winning the big prize. In four years or about
200 games, the same type of binomial (or Poisson) cal-
culation as in Lottery Case 3, but with n = 200 and
7 = 1079, puts the approximate chance of not winning
any game at exp( —nr) or practically 100%, of winning
once at exp(—nm) X nw or about 1in 5,000 (i.e., 200
in a million), and of winning twice at exp(—nm) X
[77]?/2 or about 1 in 50 million. If one plays for a
“lifetime” of just under 30 years (n = 1,500), the odds
of a “double” improve to 1 in a million.

Second, odds of 1 in 50 million, or even 1 in a million,
are still daunting for any one player. However, if a
million persons in New Jersey play five tickets a week
for a lifetime, then some one of them can be expected
to hit the jackpot twice. As the saying goes, the double
“has to happen to somebody, sometime” and after all,
“11in a million” means exactly that—one two-time win-
ner in one million lifetimes. Similarly, if 50 million peo-
ple nationwide play five tickets weekly, one of them
can be expected to win twice in just four years.

The Times correspondent correctly put the lifetime
odds given by the officials “in the realm of the pre-
posterous.” Such odds imply that one two-time winner
can be expected only when every person in the entire
world population had played the New Jersey lottery for
4,000 lifetimes! The fact that the game-playing popu-
lation of New Jersey has already achieved this feat in
a few short years should prompt one to reexamine the
basis for the probability calculation. As was emphasized
in my discussion of Case 2, obtaining a very small prob-
ability for an event that has occurred should prompt
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one to be suspicious of both one’s data and of one’s
calculations.

If one knew how many, and how regularly, people
play the nation’s lotteries, how many tickets they buy,
which numbers they choose more often, and whether
they pool their tickets, one could calculate the real odds
more accurately than those given here. Even with these
refinements, however, the correct odds must remain in
the “human” realm. Lottery officials and statisticians,
either because such events are not commonplace, or
because they like to calculate numbers with many ze-
roes, or because they think the public will buy more
tickets, continue to make the odds of “interesting” events
much more preposterous than they really are.

3. CASE STUDIES INVOLVING BIRTHS
AND BIRTHDAYS

We report three examples. The first and third beg us
to multiply small probabilities; the second one does the
calculation for us.

Births Case 1 (from USA Today on March 4, 1987)
Two Sets of Quints, Same Day

It was a statistician’s dream: two sets of quintuplets born the same
day [Monday March 2, 1987] in the USA [one set of four girls and
a boy, in Peoria Ill. and a set of five girls in Las Vegas]. But the
experts could not agree on what statistic to use. Figures of one in 41
million, one in 70 million, and one in 85 million were tossed out
Tuesday—and that was just for the birth of one set of quints. [The
mother of the Nevada quintuplets, who were born 11 weeks early,
didn’t use fertility drugs; the mother of the Illinois quints had taken
the fertility drug Pergonal].

The use of fertility drugs certainly complicates an
already complex, and ill-defined, event. We leave it to
the reader to try to define what are the relevant prob-
abilities to calculate. However, we believe that they
must include specification of the time-horizon (1987? a
span of 10 years? 50 years?) and of which day (presum-
ably any day, not just March 2, would have produced
the same headline) along with a much larger probability
of quints with the use of fertility drugs.

Births Case 2 (from National Enquirer on June 28,
1990)

4 Sisters Beat 1 in 17 Billion Odds—They All Share the Same Birthday

August 3 is a grandslam event for Mary Wohlford—her first four
daughters were born on that date in four different years. The odds
of that happening are a staggering 1 in 17 billion. Her first August 3
child, Connie, arrived in 1949. She was followed by Sandra in 1951,
Ann in 1952 and Susan in 1954.

All were born in Freeport, Ill. and delivered by the same doctor
in the same hospital in the very same room. “The doctors and nurses
were amazed, but it was not planned that way, and the girls weren’t
all due August 3" said the mother.

But the August 3 streak ended after the parents moved their grow-
ing family from Freeport to Dyersville Ill. “Maybe there was some-
thing in the Freeport water” jokes the mother. “After we moved in
1955, we had four more girls over the next nine years and none of
them were born on August 3rd.”

This example was brought to me by Baird Smith, a
physician in my statistics course in our 1990 summer



school (as part of the course assignment, each student
was required to construct an exercise, from real data,
which could be used in next year’s course). Even with-
out insisting on the “same doctor, same hospital, same
room,” the story allowed him to devise a large variety
of calculations and restrictions: four consecutive sisters
with same birthday, any day; four consecutive sibs with
same birthday, specified day; any four sisters with same
birthday; and so on which showed that the National
Engquirer took considerable liberties with its calculation
of 365* = 17 billion. In the usual birthday problems,
the fact that birthdays are not quite uniformly distrib-
uted throughout the year is a minor problem. Here,
however, as in the previous case study, the assumptions
are more critical, if somewhat difficult to quantify, par-
ticularly in relation to the time window available for a
birth in 1952, and in relation to the parents’ possible
deliberate efforts to keep the streak going [for example,
the probability that four children, all due on a certain
date, would all arrive on the same date (not necessarily
the due date) is nontrivial, and is bigger still if gesta-
tional ages are positively correlated within the same
mother]. In any event, when one sees a small probability
such as 1 in 17 billion, shouldn’t one be suspicious and
stop to think “how many families with eight (or even
four) children have there been in the world since people
began to use calendars?” I estimate it is probably of
the order of a few billion—using the size of the current
world population, assuming a generation length of 25
years, and assuming from the geometric rise in the world
population that most of the world’s lifetime population
was born in the 20th century.

Births Case 3 (from the Montréal Gazette in May
1989)

Double Trouble in Moose Jaw School
(caption to a photograph showing six sets of twins)

Every morning, teachers at Prince Arthur school in Moose Jaw,
Saskatchewan see double—and it’s not because of what they were
up to the night before. Six pairs of identical twins attend the school,
which has an enrollment of 375. Identical births occur once in 270
births.

I use this example in class to illustrate how one can
visualize the Poisson distribution using the very useful
cell occupancy approach. I ask students to think of ran-
domly assigning the approximately 10,000 twins in
2,700,000 births in Canada in a space of five to six years
to 7,200 schools of size 375 each, and to imagine how
many schools will receive 0, 1, 2, . . . Students quickly
agree that if there are to be some 0’s, then there must
be some 2’s and 3’s, and a few even bigger clusters, in
order to have an average of 10,000/7,200 = 1.39 twin
pairs per school. (The Poisson distribution should also
apply in the United States; the numbers of schools and
twin pairs would be 10 times bigger, but the mean per
school would remain the same.) I use a microcomputer
to simulate this distribution in real time, so that students
see the twin pairs “piling up” one by one in the various
schools. Because I cannot represent all 7,200 schools
on the computer screen, I scale down the problem by

a factor of 20, and use a grid of 7200/20 = 360 boxes
or cells to represent schools. At any stage of the as-
signment process, the numbers in each of the cells rep-
resent the number of times that each cell has been “‘vis-
ited.” For each of the N = 10,000/20 = 500 ““visits”
(each one representing a twin pair), the target cell is
chosen randomly (with replacement) from the numbers
1 to 360, and that cell’s occupancy is updated (inciden-
tally, when the run is completed, we are left with a table
of random numbers with a Poisson distribution). Fi-
nally, in order to stimulate discussion of the enormous
difference between using named and unnamed towns,
I ask students if the headline would be any less re-
markable if it read “Double trouble in ‘Anytown Can-
ada’ school”” and what the implications of a “write the
headline first, fill in the name after the fact” policy
would be. This example is particularly helpful in teach-
ing students how to think about random disease clus-
tering in epidemiology (imagine “twin pairs” changed
to “childhood cancers’).

This general-purpose cell occupancy program can also
be used, with selectable numbers of cells and numbers
of visits, to simulate duplicate birthdays, and to show
such phenomena as the “multiple events” discussed in
section 7.1.3 of Diaconis and Mosteller. It is pro-
grammed in QuickBASIC®™ and is available from the
author.

4. CONCLUDING REMARKS

Teaching probability continues to be a difficult chal-
lenge. These recent examples reinforce the need to be
wary of coincidences and to be sure that we do not limit
our field of vision in counting the types of events that
evoke surprise. The increased reporting of lottery and
other human-interest events, and the availability of “live”
computing in the classroom are two new ways to make
the subtleties of coincidences, and the dangers in naive
“after the fact” calculations, easier to understand. By
adding these seven case studies to each teacher’s rep-
ertoire, by collecting and using the many more examples
that occur locally, and by use of spreadsheet and other
more special-purpose software to produce live simula-
tions, I hope that we can teach probability better and
that our students will be less likely to unquestioningly
accept inhuman or preposterous probabilities.

Postscript (July 2, 1990) On Friday June 29, 1990
Dave Stewart of the Oakland Athletics and Fernando
Valenzuela of the Los Angeles Dodgers pitched no-
hitters. It was the first time in major-league history that
no-hitters were pitched in each league on the same day.
Can we reasonably expect to see a repeat in our life-
times? Imagine a 180 X 2 grid representing the two
leagues and the approximately 180 playing days in a
year; over this one-year grid one randomly distributes
say four no-hitter games. The chance that all of them
will fall on different days is (358/360)(356/360)(354/360).
Either one of the remaining possible duplicates, namely
“same day, same league” or “same day, different
leagues,” although they would be expected to happen
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as frequently as once in 30 years (more frequently if
no-hitters are not distributed with uniform intensity over
the season) would surely become a headline!

[Received June 1990. Revised August 1991.]
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Using Lottery Games to Illustrate Statistical Concepts

RICHARD A. PAULSON*

Two applications of the analysis of lottery games as an
instructional tool are described. First, the use of lottery
examples in the statistical areas of probability and de-
cision analysis are discussed. Second, two different sys-
tems for predicting lottery numbers are examined, along
with a discussion of the statistical concepts that are
being inappropriately utilized in each case. An analysis
of these misuses of statistics can be an interesting vehicle
for explaining statistical ideas to students in introduc-
tory classes.

KEY WORDS: Lottery games; Randomness; Statisti-
cal misuse.

Over the past decade lotteries have become a popular
source of revenue generation for state governments.
The increase in the number of states offering lotteries
makes the study of these games an area of fairly general
interest to a variety of students. There are a number of
statistical areas for which the analysis of lottery activ-
ities is relevant. This article discusses some of those
areas. It particularly focuses on systems for predicting
future lottery numbers, and how an examination of such
systems can be useful in explaining the abuse of statis-
tical procedures to students.

Most lotto games involve the random selection of six
numbers from a pool of somewhere between 39 and 54
numbers. These differ from instant lottery games where
the payoffs are typically smaller and immediate. For
these lotto games the order in which the numbers are
drawn is not important and the numbers on different
tickets are not necessarily distinct. If the six numbers
on a purchased lottery ticket match the six selected
numbers, then the holder of that ticket wins (or shares
in winning) the first prize for that lottery game. These
“jackpots” can be worth millions of dollars, thus cre-
ating an incentive for people to participate in this gam-
ble. Monetary prizes are also awarded for picking less
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State University, St. Cloud, MN 56301-4498.
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and Abuses

than six numbers correctly. Usually, four or five correct
selections will return money to the ticket holder. Pay-
offs are on a parimutuel basis with a certain percentage
of the total revenue pool being appropriately distrib-
uted to the holders of winning tickets. Typically, state-
run lotteries return approximately 50% of all money
collected to the ticket purchasers in the form of prizes.
The other 50% is kept for expenses and profit. Shenkin
and Wieschenberg (1985) explain that in real terms the
percentage return to the ticket purchasers may be lower
since most jackpots are paid out over a series of years
(thus decreasing the current value of the winnings) and
since winnings are subject to income taxes (while losses
are not deductible from ordinary income).

Lottery games can have a variety of interesting ac-
ademic uses. What is the probability of selecting the
correct six numbers from a pool of 54 numbers? The
number of different ways of selecting » objects from n
objects, ignoring the order of selection, is

n!
Cln, 1) = r(n—r!
Thus, there are C(54, 6) = 25,827,165 different com-
binations of six numbers taken from a total of 54. Only
one of these combinations will match the six selected
numbers. So, the appropriate probability is 1/25,827,165,
or .0000000387. What is the probability of selecting five
of the six numbers that are drawn? There are C(6, 5) =
six ways of choosing five winning numbers out of six
and 54 — 6 = 48 ways of choosing one nonwinning
number. Thus, there are 6*48 = 288 combinations which
yield five of the six correct numbers for a probability
of 288/25,827,165, or .00001115. What is the probability
of selecting four of the six numbers that are drawn?
There are C(6, 4)*C(48, 2) = 15 x 1128 = 16,920
combinations that yield four of the six correct numbers
for a probability of 16,920/25,827,165 or .000655.

A lottery example with expected return computations
is illustrated in Chernoff (1981). He describes the ap-
plication of some basic probability concepts in analyzing
(and attempting to beat) the Massachusetts lotto game.
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