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Summary. We describe selected artistic and statistical depictions of the force of mortality
(hazard or mortality rate), which is a concept that has long preoccupied actuaries, demog-
raphers and statisticians. We provide a more graphic form for the force-of-mortality function
that makes the relationship between its constituents more explicit. The ‘Bridge of human life’ in
Addison’s allegorical essay of 1711 provides a particularly vivid image, with the forces depicted
as external. The model that was used by Gompertz in 1825 appears to treat the forces as
internal. In his 1897 essay Pearson mathematically modernized ‘the medieval conception of the
relation between Death and Chance’ by decomposing the full mortality curve into five distribu-
tions along the age axis, the results of five ‘marksmen’ aiming at the human mass crossing this
bridge. We describe Addison’s imagery, comment briefly on Gompertz’s law and the origin of
the term ‘force of mortality’, describe the background for Pearson’s essay, as well as his imag-
ery and statistical model, and give the bridge of life a modern form, illustrating it via statistical
animation.
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1. Introduction

How might we visualize and describe the concept of the force of mortality (hazard or mortal-
ity rate) and make more explicit the relationships between its constituent components? What
illustrations and imagery have been used by early writers? This essay begins with the mid-
20th-century statistical concept of a hazard function, which arose in reliability and failure time
analysis in industrial settings, and then describes some cultural and statistical imagery that was
used for its human mortality counterpart over the three previous centuries. The paper ends
by bringing out of the archives a little known late 19th-century work that combines statistical
teaching, imagery and non-standard data analysis.

1.1. Early uses of terms ‘hazard rate’ and ‘hazard function’
The hazard function is central to modern survival analysis. Whereas the concept of an instanta-
neous failure rate is much older, the term ‘hazard rate’ appears to have been introduced relatively
recently. The first mention of it that David (1995) had found is in Davis (1952), where he
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‘introduce[d] a new probability function which has been found useful in interpreting the physical causes
of failure in terms of probability distributions. This function is termed the conditional density function
of failure probability with time and is defined as the instantaneous probability rate of failure at time t
conditional upon non-failure prior to time t’

(page 114). He denoted this ‘conditional density function’ f.t/={1 − F.t/} by Z.t/, noted that
Z.t/ dt =Pr.t !T ! t +dt|T " t/ and pointed out that

‘the actuarial concept of “force of mortality” is precisely this conditional density function if a human
being is considered as a system and death is defined as the failure of the system’.

Later when comparing this function in various failure time models for systems composed of
equipment and operating personnel with that for ‘human mortality’, he noted that

‘[the function] for human mortality is similar in general characteristics to that of the normal theory
except that in early life human mortality exhibits a non-zero conditional density. This suggests the
rationale that in youth, humans are subjected to a small death-hazard rate (force of mortality), but
as they age they become increasingly weaker and, therefore, subject to an increasing death-hazard
rate’

(page 117, italics added).
Zelen (1959), who referenced Davis, seems to be the first to have used the letter h. In section

6 of his paper, he tells us that all the results that he established for the exponential distribution
can be used for (failure time) distributions having the probability density function of the form

f.t/=h.t/ exp
{

−
∫ t

0
h.x/ dx

}
,

where ‘the function h.t/ is simply a non-negative function of the time to failure t’, and ‘h.t/ is
sometimes referred to as the “hazard”, “instantaneous rate of failure”, or “conditional failure
rate” ’. Incidentally, in view of the direct link between the survival function and the integral
of the hazard function (textbooks provide various proofs of this, e.g. Collett (2003), pages
11–12), one might be tempted to take his statement to mean that the results apply to all distri-
butions.

Parzen (1962), page 168, is the first textbook that we know of that defines the hazard function.
He denoted it by µ.x/ and called it the intensity function, or hazard function or conditional rate
of failure function. Gaver (1963) and Barlow et al. (1963) appear to be the first to have included
the word hazard in the title of a paper. Gaver used λ.t/ for the hazard function and H.t/ for its
integral. Barlow et al. (1963) denoted the hazard function by q.x/ and tell us that it

‘is known by a variety of names. It is used by actuaries under the name of “force of mortality” to com-
pute mortality tables. In statistics its reciprocal for the normal distribution is known as “Mill’s ratio”,
. . . and in extreme value theory is called the intensity function.’

Klein and Moeschberger (2003) tell us that the

‘hazard function is also known as the conditional failure rate in reliability, the force of mortality in
demography, the intensity function in stochastic processes, the age-specific failure rate in epidemiology,
the inverse of the Mill’s ratio in economics, or simply as the hazard rate’.

Although the actuaries continue with the letter µ, the letters Z and q have since been replaced
by the letter h or λ—and the argument x by t—in the statistical literature, and even in popular
Web sources. When we accessed it on March 13th, 2009, Wikipedia had defined the instantaneous
hazard rate as the ‘limit of the number of events per unit time divided by the number at risk as
the time interval decreases’,
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h.t/= lim
∆t→0

{
observed events.t/=N.t/

∆t

}
:

They have since revised their definition. We find it clearer to omit the somewhat contradictory
‘(t)’ that follows the word ‘events’, and to make both the number of events and the number of
people at risk more precise. Seen as a parameter, the hazard involves the expected number of
events; the empirical version involves the observed number. Either way, the events occur within
an interval of width ∆t centred on or to the immediate right or left of (i.e. that begins or ends
at) t—we use the left, so that the limit is defined at t = 0. If we replace the somewhat inexact
N.t/ by N̄, the average number of people at risk during (i.e. contributing follow-up time to) the
interval, then the quantity

number of events in .t, t +∆t/

N̄ ∆t
= number of events in .t, t +∆t/

persontime in .t, t +∆t/

takes the form of an incidence density, a term that was introduced to epidemiology by Miettinen
(1976):

‘Incidence density (“force of morbidity” or “force of mortality”)—perhaps the most fundamental mea-
sure of the occurrence of illness—is the number of new cases divided by the population-time (person-
years of observation) in which they occur’.

Whereas epidemiologists have become comfortable with this term, and with incidence
density as a function of t, statisticians reserve the term density to describe distributions mathe-
matically and are more comfortable with the concept of intensity functions that was introduced
by Andersen, Keiding and others in the counting process formulation of survival analysis.
However, in the short term, i.e. especially if we think in terms of expected numbers, and thus
theoretical values, we can speak interchangeably of an incidence density function ID.t/, an
intensity function I.t/, a hazard function h.t/ and a force-of-mortality function µ.t/.

1.2. Predecessors of, and imagery used for, hazard rate and hazard function
Whereas statisticians have little difficulty with the idea of a mathematical limit, and thus
with the value of the function h or ID at an instant t in time, the concept of an instan-
taneous ID is more difficult for others. Even if one understands a mathematical limit, the
concept of an instantaneous force of mortality of, for example, ‘0.00152 deaths per man-
year’ or ‘0.00092 per woman-year’ for the instant at which one’s internal clock momentar-
ily registers 40:00:00:00 years is not easy to communicate. How might we visualize it and
describe it to others, even our mathematically trained students? What statistical images of
the hazard function, or force of mortality or incidence density have been used by earlier
writers?

Our three selected teachers, all British, are Joseph Addison (1672–1719), an eminent early
18th-century essayist, poet and politician, Benjamin Gompertz (1779–1865), a self-educated
mathematician best known among demographers and actuaries, and Karl Pearson (1857–1936),
an accomplished historian, ‘Germanist’ and mathematician who founded the world’s first uni-
versity statistics department. Between them, they used a mix of allegories, physical models and
mathematics to visualize and represent the force of mortality, its components and the quanti-
ties that are derived from it. Our selection of ‘consultants’ is not representative, but rather a
product of chance connections and circumstances that we shall explain briefly. After describing
and commenting on their work, we describe two java applets that we have constructed. They
are based on the historical imagery but give the force of mortality or hazard function a modern



4 E. L. Turner and J. A. Hanley

form, illustrating it via statistical animation. They also give form to the f.t/ and 1−F.t/ func-
tions that define the hazard function.

We begin and end with two striking images, the earlier verbal and the latter visual.

2. Addison, 1711

2.1. The vision of Mirza
‘The vision of Mirza’ (Addison, 1711) by Joseph Addison (1672–1719) was published on
September 1st, 1711, in the magazine The Spectator, which he co-founded. On-line versions
of the full text of this allegorical essay are easily found by searching for ‘Addison Vision of
Mirza’, as are reproductions of subsequent drawings based on it. Thus, for brevity, only the
central section—with our emphasis added—is reproduced here: Mirza’s dialogue with ‘one in
the habit of a shepherd’ who appeared to him when he ascended the high hills of Baghdad to
meditate and pray.

‘He then led me to the highest pinnacle of the rock, and placing me on the top of it, “Cast thy eyes
eastward,” said he “and tell me what thou seest.” “I see,” said I, “a huge valley and a prodigious tide of
water rolling through it.” “The valley that thou seest,” said he, “is the Vale of Misery, and the tide of
water that thou seest is part of the great tide of eternity.” “What is the reason,” said I, “that the tide I see
rises out of a thick mist at one end, and again loses itself in a thick mist at the other?” “What thou seest,”
said he, “is that portion of eternity which is called time, measured out by the sun, and reaching from
the beginning of the world to its consummation. Examine now,” said he, “this sea that is thus bounded
by darkness at both ends, and tell me what thou discoverest in it.” “I see a bridge,” said I, “standing
in the midst of the tide.” “The bridge thou seest,” said he, “is human life; consider it attentively.” Upon
a more leisurely survey of it I found that it consisted of more than threescore and ten entire arches, with
several broken arches, which, added to those that were entire, made up the number to about a hundred. As
I was counting the arches, the genius told me that this bridge consisted at first of a thousand arches;
but that a great flood swept away the rest, and left the bridge in the ruinous condition I now beheld it.
“But tell me further,” said he, “what thou discoverest on it.” “I see multitudes of people passing over
it,” said I, “and a black cloud hanging on each end of it.” As I looked more attentively, I saw several of
the passengers dropping through the bridge into the great tide that flowed underneath it; and upon further
examination, perceived there were innumerable trap-doors that lay concealed in the bridge, which the pas-
sengers no sooner trod upon, but they fell through them into the tide and immediately disappeared. These
hidden pitfalls were set very thick at the entrance of the bridge, so that throngs of people no sooner broke
through the cloud, but many of them fell into them. They grew thinner towards the middle, but multiplied
and lay closer together towards the end of the arches that were entire.’

The eminent 19th-century epidemiologist William Farr, whom many (e.g. Eyler (1979)) credit
with the population-based life table that we know today, was also struck by, and quotes from,
Addison’s imagery. He does so when writing of ‘Uncertainty of individual life and constancy of
averages’ (Farr (1885), page 455). Although he does not cite any evidence, Farr suggested that
Addison’s essay ‘was probably suggested by Halley’s [1693] table’. Then, following up on his
comparisons of the sicklier Liverpool, with an average (mean) duration of life of 26 years, and
the healthier Surrey, where the average was 45, Farr continued

‘Our table follows “a throng” of 100,000 that “brake through the cloud” into life at the same moment,
and counts them as they step on every arch. It shows, therefore, how many fall through the “hidden
pitfalls”. The danger is exactly measured. The arches over which sickly multitudes pass, are the same in
number as those traversed by a healthy people; but the “trap-doors” and “hidden pitfalls” in their way
are twice as numerous, though they can only be perceived by careful observation and counting; while
a difference of 26 and 45 “arches” would be obvious to the unassisted eye.’

It is interesting that Addison, although not a statistician, wrote of pitfalls that ‘multiplied
and lay closer together towards the end of the arches that were entire’. This would seem to be
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one of the first descriptions of the smooth-in-time multiplicative hazards model that Gompertz
parameterized, that Edmonds and Farr exploited (see Section 3) and that Cox (1972) preferred
not to specify parametrically.

2.2. Animated versions of Addison’s bridge
As best we can discern, the original Addison essay was not illustrated. We have developed
a java applet, which is available at http://www.biostat.mcgill.ca/hanley/
BridgeOfLife/, that animates his imagery. It shows successive groups of 20 people (blue dots)
entering the bridge and marching to the right, and ultimately stepping on a trapdoor (red) and
disappearing. Those still surviving continue to walk abreast, with white gaps showing their miss-
ing peers. The age-specific numbers of survivors and deaths (proportional to the survival func-
tion, S.t/, and f.t/) are shown in blue and red, and their ratio—the age-specific incidence density
or hazard—in black. Also shown in grey is the logarithm of this function of age—its approximate
(piecewise) linearity is the focus of the ‘law’ that was discovered by Gompertz (see below).

The Web site has three examples—the earliest based on the actual experience of the ‘cohort’
of Swedish females born in 1751; the most recent based on applying the mortality rates of Cana-
dian females in the 3 years 2000–2002 to a hypothetical cohort—i.e. by using a ‘current’ life
table. The middle one applies the mortality data of English males in the 10 years 1871–1880 to
a hypothetical cohort, as had been done in the current life table from which Pearson extracted
the unconditional frequency distribution for his bridge of life (Section 4).

Users can make their own by replacing the conditional transition probabilities (the q-values in
the source life table) in the hypertext file. As an example, and to emphasize that a life table refers
to a transition from any initial state—desirable or otherwise—to another (absorbing) state, we
show a bridge, with just a few arches, based on the time that was spent in pursuit of a doctorate
by students in our McGill department over the years 1970–2002.

We next pursue the origins of the evocative term ‘force of mortality’. We find them among the
early 19th-century actuaries, for whom mental images tended to be secondary to mathematical
models and calculus.

3. Gompertz, 1825

There is an extensive literature on the history of life tables and the many individuals who have
contributed to their development and the concepts behind them. Some of these are John Graunt
(1620–1674), Christiaan Huygens (1629–1695), Ludwig Huygens (1631–1699), Edmund Halley
(1656–1742), Abraham DeMoivre (1667–1754), Nicholas Bernoulli (1687–1759), Daniel
Bernoulli (1700–1782), Antoine Deparcieux (1703–1768), Thomas Simpson (1710–1761),
Benjamin Gompertz (1779–1865), Thomas Edmonds (1803–1889), William Farr (1807–1883)
and William Makeham (1826–1891). Some of the work has been characterized as mere ‘shop-
keeper’s arithmetic’, involving repeated divisions, or use of first differences; other work involved
a more formal mathematical approach and applied the methods of calculus to mortality rates
by treating them as continuous functions. However, we singled out Gompertz, and his 1825
work (Gompertz, 1825) because of the paradigm shift in his work, and the smooth-in-time or
age hazards model that was named after him that we now use in survival analysis. As an eminent
actuary, Hooker (1965) wrote 100 years after Gompertz’s death,

‘to the actuarial profession, [his] paper of 1825, in which he propounded his well-known “law” of mor-
tality, marked the beginning of a new era, not merely because his formula was, for several reasons, an
enormous improvement on others which had been suggested previously but because it opened up a new
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approach to the life table. Previously, the table had been regarded as little more than a record of the
number of persons surviving to successive integral ages out of a given number alive at an earlier age;
Gompertz introduced the idea that lx [the survival function] was a function connected by a mathematical
relationship with a continuously operating force of mortality.’

Although Gompertz used the word ‘intensity’ of mortality in his 1825 article, he did not use
‘force’ of mortality. Morabia (2005) has suggested that William Farr was the first to use for-
mally the word ‘force’ of mortality in his 1838 article ‘On prognosis’ (Farr, 1838; Hill, 2003a, b;
Gerstman, 2003). He wondered whether Farr used the word to characterize a mortality rate
because ‘he must have been familiar with Newton’s 1687 definition of the concept of physical
force’. However, Farr merely used the term and we suspect that he took it from Edmonds, a
political economist and actuary, and neighbour of Farr’s, who strongly influenced Farr’s work.
Edmonds is the first person whom we know of to define the term: he did so by putting it in
italics and in quotes in the first paragraph of Edmonds (1832) (see also the link to an on-line
digital version http://books.google.com). In chapter 2, where he formally introduced
the algebraic expression for his law, he also made a statement that later became the subject of
an acrimonious primacy debate within the actuarial profession:

‘The honour of first discovering that some connexion existed between Tables of Mortality and the
algebraic expression (abx ) belongs to Mr. Gompertz: but, to arrive at this single common point, his
course of investigation differs so widely from mine, that appearances will be found corresponding to
the reality,—that my discovery is independent of the imperfect one of Mr. Gompertz.’

As many have commented, quite apart from his use of the fluxions notation of his hero
Newton, Gompertz’s writing and mathematics were not easy to follow. Indeed Edmonds’s deri-
vations, using modern notation for differentiation and integration, are much clearer. Edmonds
does not give a mathematical rationale for his ‘algebraic expression’ (abx

) other than to say
that it is a law that seems to be borne out by facts—others had noticed this empirical pattern
earlier (Woods, 2000). Gompertz does, but we could not translate the imagery in Gompertz’s
words

‘If the average exhaustions of a man’s power to avoid death were such that at the end of equal infinitely
small intervals of time, he lost equal portions of his remaining power to oppose destruction which he
had at the commencement of those intervals’

into its mathematical expression

‘then at the age x his power to avoid death, or the intensity of his mortality might be denoted by aqx, a
and q being constant quantities’.

Moving—by integration—from there to his ‘law’ concerning ‘Lx, or the number of persons
living at the age of x’, namely .Sx =/ Lx =d.g/qx

, is easier—but not as easy as Edmonds’s way.
Gompertz’s numerical investigations of the fit of his law to the life tables of the time focused
on the survival function Lx rather than on the mortality function. But how did he come by
the form µ.x/=aqx for the mortality function in the first place? Should we interpret his words
to mean that there is a constant external force or threat? Is a man born with a certain power to
avoid death, which is progressively exhausted with age? Chiang (2005) has provided a way to
see how ‘a power to resist death that decreases at a rate proportional to the power itself ’ can
indeed lead to the stated form:

‘since the force of mortality µ.t/ is a measure of a person’s susceptibility to death, Gompertz used the
reciprocal 1=µ.t/ as a measure of a person’s resistance to (i.e., power to oppose) death’.

Thus, with k = log.c/, where c is a constant, we can write the ‘constant loss of power to
oppose’ as
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d
dt

{
1

µ.t/

}
=−k

1
µ.t/

:

This also implies that dµ.t/=dt =kµ.t/, and that µ.x/ has the form µ.x/=aqx.
Gompertz’s main justification for considering his law to be ‘deserving of attention’ was that

‘it appears corroborated during a long portion of life by experience’ rather than ‘in consequence
of its hypothetical deduction’. However, he did add that it

‘in fact is congruous with many natural effects, as for instance, the exhaustions of the receiver of an air
pump by strokes repeated at equal intervals of time’.

In the words of one of our medical colleagues,

‘the idea of internal decay or loss of power is a correlate of the machine model of pathophysiology with
breakdowns and scrapyards being the prevailing metaphors’

(A. Fuks, personal communication).
Gompertz showed the good fit of his law to five life tables of his time, by comparing ‘observed’

and fitted values of what he called Lx. Edmonds and Farr both used different (piecewise) ver-
sions of Gompertz’s parameteric law for three or four different periods of life, thereby greatly
simplifying the calculation of the various quantities, such as age-specific expectation of life,
derived from life tables.

We now describe the imagery—again involving a bridge—employed by someone who used
his considerable literary and mathematical talents in an essay that deserves to be better known.
His graphical depiction helped to illustrate mixture models and competing risks.

4. Pearson, 1897

4.1. Context for Pearson’s The Chances of Death
Our interest in Pearson’s essay was aroused by an image that was commissioned by him and
used as the frontispiece to his book The Chances of Death and Other Studies in Evolution
(Pearson (1897); see also the link to an on-line digital version http://pds.lib.harvard.
edu/pds/view/8144959). Pearson, Cambridge-trained mathematician, ‘Germanist’, histo-
rian, legal trainee and statistician, as well as founder of the first university statistics department
(University College London, 1911), was a polymath. Born Carl Pearson, he formally adopted
the Germanic spelling Karl in keeping with his love for a country where he spent several years
in the late 1870s. His interest in the numerous cultural and artistic representations of mortality
may have been kindled in 1875 when, as an 18-year-old, he had seen the many paintings dating
from 1626 to 1635 representing a ‘Dance of Death’ under the roof of the Spreuer bridge in
Lucerne (Switzerland, 2009).

In his essay The Chances of Death, which was first delivered as a lecture in January 1895,
before the Leeds Philosophical and Literary Society, Pearson described—in words and figures—
medieval, cultural images of ‘Death as the lawless one, the one who strikes at random’. He
provided considerable evidence for the non-random nature of chance (and hence Death) and
suggested that we should move away from medieval concepts of chance as something unex-
plainable. The ‘blindness to age’ in the dances of Death may have been from the less-age-specific
mortality patterns that were observed during plagues, and Pearson may have underemphasized
the deterministic nature of these dances (Klein (1997), chapter 2). However, his poetic licence
makes a more interesting statistical application.

Pearson does not refer to Gompertz’s work, the term ‘force of mortality’ or to the purposes
for which, two centuries earlier, Caspar Neumann collected the Breslau information that was
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subsequently converted into the first data-based life table by Edmond Halley (Ward (1992),
page 69). Pearson was, however, aware of, and possibly influenced by, Addison’s essay; indeed,
he begins his essay with five sentences from Mirza’s description of the bridge. He then proceeds
to describe in detail, and to illustrate with reproductions of medieval drawings, some common
cultural images of the time. He begins

‘There is an old German proverb: “Death has no calendar”, which taken in conjunction with our English,
“Death is no respecter of persons,” strongly marks the folk-conception of Death as of one who obeys
no rule of time, or of place, or of age, or of sex, or of household. This idea of Death as the lawless one,
the one who strikes at random, arose early in mediæval tradition and is represented in the well-known
Dances of Death, from the primitive block-book to the finished designs of Holbein. Parallel with this
notion of the random character of Death’s aim, has run the mind of the folk idea of Chance as that
which obeys no rule and defies all measure and prediction.’

The convergence of the concepts of chance and Death came through the folk ideas of the gam-
bler casting dice at a point in time to determine whether Death would pay a visit to a given
individual.

4.2. Pearson’s ‘modern’ notion of chance and frequency distributions
Pearson argued as incorrect the notion of chance as something ‘which obeys no rule and defies
all measure and prediction’, and thus devoted the early part of his essay to building up evidence
for order and rules in chance distributions by showing four empirical frequency distributions
that were obtained in large numbers of repetitions of ‘experiments’ in his first figure. These
involved the number of

(a) red counters out of 10 drawn from a bag of 25 each of four different colours;
(b) hearts in 10 cards drawn from a pack of 52 cards;
(c) dice showing a 5 or a 6 in throws of 12 dice and
(d) heads in tosses of 10 coins.

With these, Pearson introduced the notion of the mode or most frequent outcome. He also
used the counter and card drawing examples to emphasize the concept of non-independence
of the results of the successive draws and—although his data analysis ignored it—of the
importance of such a concept for the mortality curves to be presented: ‘frequency of death
at later ages must depend on the incidence of death at earlier ages’. Likewise, he used the four
experiments to reiterate that, although results of a single trial remain difficult to predict, a
large number of experiments do indeed obey a law. Such a law can be represented by using a
frequency curve, which has properties of centre, which he described as measured by the mode,
mean or median, and of spread as measured by the standard deviation, which Pearson
described as the measure of ‘concentration of frequency around the mean’ itself analogous
to the notion of swing radius in the mechanics course that he had taught so often as Pro-
fessor of Applied Mathematics at University College London. Likewise, he emphasized the
notion of skewness of distributions providing a measure of the amount of asymmetry of the
frequency curve, defined as the ratio of the deviation of the mean from the mode, to the standard
deviation.

Using the examples of the specific physical experiments that were described above, Pearson
coaxed the reader into extending the ideas of frequency distributions to other data which arise
as a ‘product of Nature’. From the physical measurements of sizes of crabs and of human skulls
to age scale measurements such as the ages of brides at marriage, he provided examples of fre-
quency curves and hence ‘law’ in the behaviour of, and events that befall, humans. (He did admit
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Fig. 1. Fig. 5 of Pearson (1897)

that the longer left-hand tail of the distribution of the ages of the brides (of bridegrooms in their
25th year) meant that ‘theory and practice do not, it is true, agree quite as well here as they
should do’, but hastened to add ‘and I fear this is due to brides understating their ages, especially
in cases where they are older than their bridegrooms’.) From these examples, he argued that
‘. . . if birth and marriage fall under the general laws of frequency, we may surely expect that
death will do so’. Thus we should also be able to represent the force of mortality by using
frequency curves and their law.

Before going on to his main task, Pearson gave one last important side illustration, asking us
to imagine the distribution of a large number of bullets, each of which, on striking the target,
fell ‘without rebound into one of a series of columnar receptacles placed immediately beneath
its point of incidence’ (Fig. 1). This distribution might be symmetric, with a standard deviation
that reflects ‘the precision peculiar to a marksman or his weapon’. Or it might be that ‘owing to
some peculiarity of marksman, weapon or target’ the marksman is ‘more liable to miss badly’ to
one side and to generate a skew distribution. Thus we can picture the regularity of the frequency
of the ages of death by ‘thinking of Death as a marksman with a certain skewness of aim and a
certain precision of weapon’.

Pearson’s figure will remind many of the ‘pins . . . disposed in a quincunx fashion’ in the
apparatus that was devised a decade earlier by Galton to show his curve of frequency (Galton
(1889), page 63). But—possibly because the subject was mortality rather than stature, and
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because some of the medieval ‘Deaths’ that were depicted in the dances of Death carried arms—
Pearson seems to have been more fascinated with the imagery of marksmen. He was not alone:
under the heading ‘metaphor and reality of target practice’, Klein (1997), who devoted seven
pages to Pearson’s 1897 essay, tells us that her book ‘is about men reasoning on the likes of target
practice’, that this imagery pervades the thinking and work of natural philosophers and statis-
ticians and that it was not merely a conceptual tool—see Fig. 1.3 on page 11 of Klein (1997).
Incidentally, Klein also urged those of us who use the word stochastic to appreciate its roots.

4.3. Pearson’s ‘modern’ notion of the dance of Death
In his summary remarks Pearson argued that the ‘regularity’ that is represented by frequency
distributions means that

‘artistically, we no longer think of Death as striking chaotically; we regard his aim as perfectly regular in
the mass, if unpredictable in the individual instance. It is no longer the Dance of Death which pictures
for us Death carrying off indiscriminately the old and young, the rich and poor, the toiler and the idler,
the babe and its grandsire. We see something quite different, the cohort of a thousand tiny mites starting
across the Bridge of Life, and growing in stature as they advance, till at the far end of the bridge we see
only the graybeard and the “lean and slippered pantaloon”. As they pass along the causeway the throng

Fig. 2. The bridge of life: frontispiece to Pearson (1897)
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is more and more thinned; [a number of] Deaths are posted at different stages of the route longside the
bridge, and with different skewness of aim and different weapons of precision they fire at the human
target, till none remain to reach the end of causeway—the limit of life.’

As is also illustrated by the many sketches that we found in the Pearson collection in the
University College London archives, Pearson went to considerable lengths to convey this imag-
ery to the reader:

‘It would need a great artist to bring that human procession vividly before the reader. Such alone could
not fully realise my dream on the Mühlenbrücke at Luzern of twenty years ago. But I ventured to put the
roughest of sketch suggestion before two artists. The one, trained in the modern impressionist school
failed, I venture to think, in fully grasping the earnestness of life; the other [his wife Maria Sharpe
Pearson], reared among the creations of Holbein, Flaxman, and Blake, shows more nearly the spirit of
my dream.’

That imagery which was successfully realized by his wife—the initials ‘MSP April ’94’ are seen
at the bottom right, and the book is dedicated to her—is reproduced in Fig. 2. The Pearson
collection contains several unsigned sketches of Pearson’s bridge of life, one of which links
explicitly with the data fitting that is described below, suggesting that some of the imagery was
inspired by the data rather than the imagery solely inspiring the model fitting.

Before he described his data and their analysis, Pearson asks us to
‘imagine a thousand babes to start together along [this] bridge or causeway of life. . . . our cohort shall
march slowly across it, completing the journey in something perhaps over the hundred years. . . . At
each step Death, the marksman, takes his aim, and one by one individuals fall out of the ranks—terribly
many in early infancy, many in childhood, fewer in youth, more again in middle age, but many more
still in old age. At every step forward the target alters; those who fall at twenty cannot be aimed at, at
sixty, . . . .’

4.4. The data, mixture model and fitting
Pearson analysed data on the age at death of a hypothetical cohort of 1000 English males who
were born at the same time based on 1871–1880 death data published in the 1894 edition of
Whitaker’s almanac (Whitaker, 1894). The raw data, consisting of 100 age-specific bin frequen-
cies, adding to 1000, are shown as a series of connected crosses in Fig. 3 and exhibit a bimodal
distribution with many deaths at a young age, which rapidly decreases with a slow increase to
older age. Pearson was very much interested in building skew into curves and, where necessary,
using mixtures of frequency curves. Although most details of his methods of analysis are omitted
from his Chances of Death essay, it is evident that Pearson approached the analysis of such data
in the manner that he had commonly used at that time, namely by selecting a frequency curve,
specifically a mixture of frequency curves, of the type which was most suitable to the form of the
shape of the observed data. This is a little different from the approach that is commonly used in
statistical inference where a specific form or mixtures of forms (e.g. normal distributions) of fre-
quency distribution is posited and their parameters then estimated. Nonetheless the frequency
distribution approach is something that, as noted above, Pearson provided much evidence for
in the earlier arguments of his essay.

The specific details of his approach in this instance can be found in an earlier article
(Pearson, 1895). Rather than use his commonly employed technique of the methods of moments,
a technique that was much influenced by his background in mechanics, he used the method of
least squares that had recently been introduced to him by his assistant Udny Yule (Porter (2004),
page 241). He proceeded sequentially from right to left—from the marksman aiming at the old
to the marksman aiming at infants. For old age mortality, he fitted one of his generalized
frequency curves (in this case a reverse gamma distribution—with a longer left-hand tail) to just
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four or five observed frequencies (crosses) at the far right-hand side of the distribution, where the
contributions from the competing components would be negligible. He obtained its parameter
values by a least squares fit to these four or five numbers. He then subtracted these fitted (and
extrapolated to the left) subfrequencies from the still-to-be explained frequencies and proceeded
leftwards through the other marksmen, each time using the method of least squares on four or
five points at the right-hand edge of the remaining frequencies. To fit the theoretical distribu-
tion of ages at death for the leftmost curve, he extended the timescale backwards to begin at
conception and to include antenatal deaths—an approach that he had adopted for an earlier
analysis of deaths from enteric fever.

His unorthodox approach of sequential, mixture curve fitting was pragmatic in nature.
Pearson (1895), page 406, told us that

‘the theoretical resolution of heterogeneous material into two components, each having skew variation,
is not so hard a problem as might at first appear . . . . If there be more than two components, the equations
become unmanageable.’

He noted, however, that if ‘the components have rather divergent means, a tentative process will
often lead to practically useful results’. The last (15th!) example in Pearson (1895) illustrates
this with an example of ‘a mortality curve resolved into its chief components’, aided perhaps
by the new technology of the era—the Brunsviga calculator. Pearson was a proponent of the
method of moments in the late 1890s (Porter, 2004) and generally not in favour of the method
of least squares.

Pearson did not explain why he chose five components, or whether Shakespeare’s model of
seven ages (to which he referred) was a better fit. Table 1, modelled after Table 2.7 of Klein (1997),
describes the five components and the ‘marksman’ assigned to each: the greater precision of a
marksman corresponds to a smaller standard deviation of the corresponding distribution as
evidenced by the two leftmost distributions, namely of infancy and childhood. Both of these
distributions combine skewness of aim of the marksman.

Pearson’s treatment of deaths in infancy is of statistical, political and ideological interest for
several reasons. First, the distribution of infant deaths posed an additional challenge in statis-
tical modelling since ‘in order to get any fit at all, [it] had to be started very approximately nine
months before birth’. Second, he noted that

‘in England, about a quarter [246/1000 in his fitted model], in France nearer a third than one-quarter
of all persons born die as infants’

and suggested that

Table 1. Description of Pearson’s five-component mixture for frequency of ages at death

Pearson’s Descriptors (years) Density function Total Marksman’s
description deaths weapon

Mode† µ σ

Infancy‡ −9=12 −1=12 0.94 415:6x−0:5 exp.−0:75x/ 246 Bones of ancestry
Childhood 3 6 3.52 9.1+x/0:3271 exp.−0:3271x/ 46 Maxim gun
Youth 23 23 7.8 N.23, 7:8/ 51 Bow and arrow
Middle life 42 42 12.8 N.42, 12:8/ 173 Blunderbuss gun
Old age 72 67 13.4 15:2.1−x=35/7:7525 exp.0:2215x/ 484 Rifle

†Pearson imagined the marksman aiming at the mode, which is denoted by x=0 in the density function.
‡246 postnatal deaths; 605 antenatal deaths.
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‘a comparatively small reduction in the number of infants who die would be a readier means of checking
the decline in the French population than any plan for fostering a higher birth-rate’.

Third,

‘Our own infantine mortality—amounting to a quarter of all males born—is quite sufficient, however,
to occupy our attention, without turning to our neighbours’ shortcomings. . . . Thus the sources of this
mortality must be sought for in causes common to both periods. These causes must be inevitably associ-
ated with parentage. Bad parentage is probably largely the source of this great infantile mortality—bad
parentage, showing itself not only physically, but mentally in the want of proper care of the young life,
is the one possible cause of death continuous from the antenatal to the postnatal period.’

Thus, whereas he represented the other four marksmen as external forces, ‘The marksman Death
strikes down the young life with the bones of its ancestry’. Whereas these arguments stem from
Pearson’s interest in eugenics, Klein (1997) reminded us that decreases in childhood mortality
were not achieved by controlling human breeding patterns in subsequent years but by advances
in hygiene and nutrition.

The weapons of the marksman of youth and middle life (the bow and arrow and the blun-
derbuss gun respectively) combined both lower precision (larger standard deviation) of aim,
less ‘deadliness’ (fewer total deaths) and no skewness of aim (both were normal distributions).
The rifle of the marksman of old age, aimed at an age of 72 years, combined some skewness to
younger ages with the least precision but greatest deadliness (484 of 1000 total deaths). Com-
bined, the mixture represents a series of competing marksmen, namely of competing risks for
death, although Pearson’s procession from oldest to youngest seems to have the arrows of time
statistically reversed.

The reverse gamma distribution that Pearson used for deaths from old age induced an arte-
factual theoretical upper limit of life of 106.5 years. He did concede that it was a model-based
rather than a biologically based limit and in any case

‘not much stress, however, can be laid on this limit, as an insensible change in the form of the curve
sent up, I found, the theoretical end of life some ten years. What is of significance, however, is that a
skew curve of this type does give somewhere a theoretical limit to life. The normal chance distribution
suggested by Professor Lexis would make the age of Methuselah (969 years) only extremely improbable,
not impossible.’

Even with a theoretical limit on the range of the last marksman, it is of course possible that a
Methuselah could escape the aim of not just this last one, but also the two marksmen aiming
symmetrically but with a theoretically infinite range at youth and middle age.

Overall, the five-part mixture achieves an extremely good fit to the data, no doubt
partly because of the smoothness of the overall frequency distribution, which itself was derived
from a life table based on 10 years’ deaths. The empirical evidence of the frequency-of-death
data and such a smooth fit complete Pearson’s argument that Death, as governed by chance,
is not random, and that there is ‘obedience to law’ with Death explainable in a population
rather than Death acting as the ‘lawless one’, with no regard for characteristics of the per-
son, in particular for the age of the person. Moreover, through his imagery of the marksman,
he suggests that hazards are external to the individual, although age is internal to an
individual.

4.5. Animated versions of Pearson’s bridge of life
The Web site http://www.biostat.mcgill.ca/hanley/BridgeOfLife/ contains
a java applet that we have developed to animate Pearson’s imagery. It shows successive
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people (blue stick figures) entering the bridge and marching to the right, ultimately being
struck by one of the five marksmen (to distinguish them better, shots from two of the marks-
men are shown in black rather than red) and disappearing, leaving blank spaces in the pro-
cession.

The example is based on the mortality data of English males in the 10 years 1871–1880 and
is derived from the same current life table that Pearson used for his bridge of life (Section 4.4).
Users can supply their own five hazard functions. The programming of the frames, and the
decisions on how to have the collisions reproduce the observed data, would be an instructive
exercise for statistics students, since it may not be immediately obvious how to go from Pearson’s
five frequency distributions to the rates and ranges at which the marksmen fire.

5. Discussion

Our three teachers have presented a range of allegorical, conceptual, mathematical and statistical
models of the force of mortality and quantities derived from it (namely the frequency-of-death
distribution and the survival distribution). Table 2 summarizes the contributions of our three
teachers in our quest to give a graphic form to the force of mortality and quantities derived
from it. Imagery was used by all three: both Addison and Pearson suggested that the force of
mortality operated externally to the individual. Gompertz’s imagery, invoking the notion of the
‘body wearing out’, was of forces acting internally.

The bridge in Addison’s allegorical vision of Mirza and the imagery in the dances of Death
clearly influenced Pearson. He ‘modernized’ the bridge of life, inspired by the model fitting of
the frequency distribution of the ages of death (the numerator of the force of mortality (hazard
function)) by using the imagery of marksmen rather than the ‘trapdoors’ of Addison. In both
cases, the axis of the imagery was that of age. Addison’s imagery conveys a ‘mass’ of people
moving through life over a river, whereas Pearson’s imagery, as realized by his wife, conveys the
bridge of life for a single individual passing through the five phases of life (as determined by his
mathematical fitting of the mortality data of Fig. 2) aimed at by marksmen standing on solid
ground.

Whereas Addison relied on words, Pearson and Gompertz both developed statistical models
for the two components whose ratio comprises the force of mortality. Even though the ‘data’ in
the almanack consisted of the two columns ‘Of 1,000,000 born, the number surviving at the end
of each year of life’ and ‘Mean after-lifetime (expectation of life)’, Pearson addressed only the
numerator, the frequency distribution of age of death, which he obtained by successive subtrac-
tions. Gompertz began with a mathematical form for the force of mortality itself and from it
derived the form of the survivor function. Both used grouped data from existing life tables. We
have not studied when it was that actuaries made the transition from ‘mortality’ tables to ‘life’
or ‘vitality’ tables, or how often contemporary biostatisticians focus on the hazard function

Table 2. Summary of the contributions of our three teachers

Teacher Allegory Conceptual model Statistical model

Addison, 1711 Yes External—trapdoors —
Gompertz, 1825 — Internal—body wears out Smooth hazard or survival

function
— External—marksman Mixture of frequency functions
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rather than the survival function. Readers are referred to the second chapter of Klein (1997) for
further discussion of Pearson’s treatment of time.

The concept of the force of mortality is the human mortality forerunner of the item failure
concept that led in the mid-20th century to the hazard function in the context of industrial life
testing. Ironically, the term hazard has now been widely adopted for the study of life events in
humans, replacing, in biostatistical texts at least, any use of the term force of mortality, hinted
at by Gompertz, and defined by Edmonds, a term which our research suggests is one of the
oldest synonyms for the hazard function. Although not historians, we have used the powerful
artistic, cultural imagery and statistical depictions in the work of our three selected historical
teachers, as well as modern (electronic) computers to trace and animate the concept of the force
of mortality and its constituents. In so doing we hope that we have provided a more graphic
form for the force of mortality and made more explicit the relationship between its constituent
components, to the benefit of students and statistical practitioners alike.
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