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Simple and multiple linear regression: sample size considerations
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Abstract
Objective: The suggested ‘‘two subjects per variable’’ (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring
out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression.

Study Design and Setting: This article distinguishes two of the major uses of regression models that imply very different sample size
considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing ‘‘expo-
sure’’ (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre
guides clinical practice. It addresses Y levels for individuals with different covariate patterns or ‘‘profiles.’’ It focuses on the profile-specific
(mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates.

Results and Conclusion: By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple
regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research gen-
res. � 2016 Elsevier Inc. All rights reserved.
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1. Introduction and background

The suggested ‘‘two subjects per variable’’ (2SPV) rule
of thumb in the Austin and Steyerberg [1] article is a chance
to bring out some long-established and quite intuitive sam-
ple size considerations for both simple and multiple linear
regression. The basis for these considerations is becoming
increasingly obscured by the use of specialized black-box
power-and-sample size software, by reliance on rules of
thumb based on very specific and not always informative nu-
merical simulations, and by limited coverage of the structure
of the variance formulae behind the regression outputs.

By way of orientation, it is important to distinguish two
major uses of regression models; they imply very different
sample size considerations, neither served well by the
2SPV rule. The first is etiological research, which contrasts
mean Y levels at differing ‘‘exposure’’ (X) values and thus
tends to focus on a single regression coefficient; I will deal
later with the sample size issues for this genre, particularly
in (nonexperimental) etiological research involving adjust-
ment for confounders. I will begin with statistical
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considerations for a second research genre, one that guides
clinical practice. This type of research addresses Y levels
for individuals with different covariate patterns or ‘‘pro-
files.’’ It focuses on the profile-specific (mean) Y levels
themselves, estimating them via linear compounds, that is,
combinations of regression coefficients and covariate values.

2. Sample size issues in fitting ‘‘clinical prediction’’
models

In the ‘‘clinical prediction’’ models used in Steyerberg’s
2012 book [2] to estimate diagnostic and prognostic prob-
abilities, the ‘‘Y’’ is binary. The antilogit of the fitted linear
compound yields the fitted mean Y at any specific profile
(covariate pattern) and serves as the estimated probability
for that profile. Assuming that the statistical model is
appropriate and that the setting remains the same, a
profile-specific estimate of say 76% probability, with a
(say 95%) ‘‘margin of error’’ of 10% conveys the entire sta-
tistical uncertainty concerning the Y of a new (i.e., unstud-
ied) individual with that same profile. Of course, the
interval could be narrowed, to say 74% plus or minus
5%, by using a sample size four times larger. (If the issue
is the probability that a cancer in a particular type of patient
is confined to the prostate, or that therapy will be success-
ful, or that it will rain tomorrow, it is not clear how much is
gained by the increased precision.)
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What is new?

Key findings, What this adds to what was known
� Variance formulae in multiple regression can be re-

arranged and used heuristically to plan the sizes of
studies that use linear regression models for clin-
ical prediction and for confounder adjustment.

What is the implication and what should change
now?
� These two different research genres demand

different sample size approaches, focusing on
either the value of one specific coefficient in a mul-
tiple regression, or a linear compound of the
regression coefficients and the variates formed
from a patient-specific covariate profile.

� Formulae derived from first principles are more
instructive than rules of thumb derived from
simulations.

Many of the principles in the textbook apply equally to sit-
uations where Y is ‘‘continuous’’ (e.g., the length of catheter
[3] or breathing tube [4] required, or body surface area esti-
mate for a drug dose calculation) in a patient with a specific
anthropometric or clinical profile. However, although ‘‘regu-
lar’’ (i.e., quantitative Y) regression is considered simpler to
understand than, and usually taught before, its logistic regres-
sion counterpart, there is one important aspect in which it is
more complex. The single parameterdthe probability or
proportiondthat governs a ‘‘Bernoulli’’ random variable Y
allows us to fully describe the distribution of Y. But (ever
and ever more precise estimates of) the mean of the distribu-
tion of a quantitative random variable Y tell(s) little else
about the distribution: its center and spread are usually gov-
erned by separate parameters. A profile-specific estimate of
say 40 cm, with a (say 95%) margin of error of 1 cm, for
the mean catheter length required for children of a given
height, conveys no information about where, in relation to
this 39- to 41-cm interval, the required length might be in a
future child of that same height.

2.1. Simple linear regression

Many of the sample size/precision/power issues for mul-
tiple linear regression are best understood by first consid-
ering the simple linear regression context. Thus, I will
begin with the linear regression of Yon a single X and limit
attention to situations where functions of this X, or other
X’s, are not necessary. As an illustration, I will use a
genuine ‘‘prediction’’ problem. (Some clinical ‘‘pre’’-
diction problems, including diagnostic ones, and the quan-
titative examples I cite and use, do not involve the future
but the present. They might be more suitably described as
‘‘post’’-diction problems. The Y already exists, and the un-
certainty refers to what it would be if it were measured now,
rather than allowed to develop and be observed in the
future.) Although it erupts much more frequently than
others, the Old Faithful geyser in Yellowstone Park is not
nearly as regular as its name suggests: the mean of the in-
tervals (Y) between eruptions is approximately 75 minutes,
but the standard deviation is more than 15 minutes. So that
tourists to the (quite remote and not easily accessed) Park
can plan their few hours onsite, officials (and now the live
webcam [5] and special app [6]) provide them with an es-
timate of when the next eruption will occur. Rather than
providing the overall mean and SD, they use the duration
of the previous eruption (X, lasting 1e5 minutes) to consid-
erably narrow the uncertainty concerning the wait until the
next one.

Panels AeD in Fig. 1 show the prediction intervals
derived from nonoverlapping samples of size n 5 16, 32,
64, and 128 daytime observations from November 1995.
(Subsequent earthquakes in the region have lengthened
the mean interval and altered the prediction equation.)
For illustration, we show the (estimated) prediction inter-
vals at three specific X values (X 5 2, 3, and 4 minutes).
Each prediction interval reflects the statistical uncertainty
involved. Its half width is calculated as a Student-t multiple
of an X-specific standard error (SE). The SE, in turn, is a
multiple of the root mean squared error, or RMSE, an n-2
degrees-of-freedom estimate of the standard deviation
(s), obtained from the n squared residuals.

As shown in the Fig. 1A inset, the SE has three compo-
nents. The first is related to how precisely the point of
departuredthe mean Y level at the mean X of the studied
observationsdis estimated. This precision, reflected by the
narrowest part of the inner shaded region, involves just (the
RMSE estimate of) s, and n. The second, related to the
estimated mean Y level at the X value of interest, is gov-
erned by the precision of the estimated slope (this precision
is a function of the RMSE, n, and the spread of the X’s in
the sample) and how far the X value associated with the
‘‘new’’ Y is from the mean of the X’s in the sample. The
X factor can be simplified to a z-value, one that governs
the bow shape of the inner region. The first and second
components involve the RMSE and n in the same way,
and so, as Fig. 1 shows, the width of the inner region can
be narrowed indefinitely by increasing n. However, the in-
ner region only refers to the center of the X-specific distri-
bution of Ys, not to the possible individual Y values. For
this, one must add the third variance component (s2 itself)
reflecting the variation of a future individual.

A number of lessons can be illustrated with this simple
example. First, the research ‘‘deliverable,’’ and thus the sta-
tistical focus, is not a regression coefficient or an R-square
value. For every X value that might arise, it is a pair of
numbers, both measured in minutes. Assuming that the dis-
tribution has a Gaussian form (In scientific contrasts
involving means, the Central Limit Theorem helps statistics



Fig. 1. (AeD) Prediction intervals for time to next Old Faithful eruption (vertical axis), based only on duration of previous eruption, derived from four
different size samples. Estimated prediction intervals at three specific X values (2, 3, and 4 minutes) are shown. The darker and lighter shaded
regions reflect the uncertainties associated with the mean and the individual, respectively. The half width of each interval is the product of the
t-value and the SE (formula shown in inset). The s in the latter is estimated by the root mean squared error, or RMSE, the standard deviation
of the residuals from the simple linear model. These residuals are repeated at the right side of the panel. Shown on the left of each panel are
the residuals from the null (intercept only) model, and above them their standard deviation. The means of the X and Y values are shown as triangles.
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such as regression coefficients, based on Ys from non-
Gaussian distributions, to have a close-to-Gaussian sam-
pling distribution. This law-of-cancellation-of-extremes
does not apply to individual Y values, and so the assump-
tions concerning the shape of the X-specific Y distribution
are important.), they are the best estimates of the bound-
aries that enclose some central percentage (usually 95%)
of the distribution of future Y values at that X.

Second, because the first two components of the SE
involve n, larger sample sizes can narrow the statistical un-
certainty about the center of this distribution, but they
cannot alter s itself, even if the greater number of degrees
of freedom ensure that it is estimated more precisely. In the
Old Faithful context, additional powers of X, and additional
easily measured variables (e.g., the height of the previous
eruption, the duration of and intervals between even earlier
ones) did not substantially narrow s. In the clinical con-
texts, the smallest (and honestly estimated) s achievable
is very much a function of the anthropometric or physiolog-
ical or conceptual proximity of the Y and one of just a few
determinants and is seldom reduced by increasing addi-
tional more distant ones.

Third, in many situations, only one of the two boundaries
will be of interest: to avoid injury to the target organ, the
specialist blindly introducing the catheter will stop short of,
and maybe use fluoroscopy to guide the tip to, its final loca-
tion; thus, the lower boundary is more relevant. Park officials
also are probablymore legally concerned about the statistical
correctness of statements concerning the earliest the next
eruption will occur, whereas in a somewhat related context
[7], concern is with the statistical correctness of statements
concerning an upper boundary of a reference distribution.

Fourth, most textbooks limit their coverage of ‘‘predic-
tions for a new individual’’ to point-estimates of the bound-
aries, just as the panels in Fig. 1 do, and ignore the
estimation error involved in these. Nowadays, with resam-
pling methods, it is possible, as we did [7] to widen the
boundaries to allow for this additional uncertainty.

Finally, both the Old Faithful and the anthropometric ex-
amples show the limitations of focusing on R-square as a
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measure of ‘‘fit’’ or goodness of the predictions. How useful
they are is better measured (or, rather, judged) in the same
units as Y is, namely by the RMSE, and by the narrowness
of the X-specific Y intervals. By contrast, the R-square mea-
sure is range dependent: it will have a higher value if calcu-
lated over a wider X range, although the s of the X-specific
Ys does not necessarily change over that wider X range. In
addition, even if we ignore this arbitrariness, the fact that
R-square is based on reductions in variance (rather than
SD) leads to exaggerated measures of performance. Narrow-
ing the standard deviation from 15 to 5 minutes narrows it by
2/3rds, or 67%, not by 8/9ths or R2 5 89%. Variance (the
square of the SD) is indeed the more useful entity in mathe-
matical statistics: as is evident inside the square root sign in
the inset, uncertainties add ‘‘in quadrature’’; moreover, when
they occur together in a term, it is s2, not s that opposes (is
counteracted by) the sample size, n. But thevariance (squared
SD) is not a useful unit for Park officials or clinicians, or their
clients. (A former colleagueda physician and statisticiand
liked to point out that if the average is 1.4 children permother,
and the standard deviation is 1.5, then the variance is 2.25
square children per square mother.)

Finally, there are two technical statistical comments. They
concern the estimation of s, and the numbers of subjects per
variable that Austin and Steyerberg focused on. First, the
various sample sizes used in Fig. 1 give an informal sense
of the (in)stability of the estimates of the dominant parameter
s. The margins of error in estimating s follow a predictable
pattern (percentages derived theoretically [MSE | s2�Chi-
Sq/df; exact lower limit. Upper limits different; approx.] but
rounded to nearest 5 for simplicity). As Table 1 summarizes,
the precision depends directly on the number of degrees of
freedom, and thus (across situations where p may vary
widely) only indirectly on the SPV.

Second, the instability of the RMSE at lower sample sizes
can be compensated for by using t multiples rather than z
multiples of the SE, but the two multiples are practically
equal from 30 degrees of freedom onwards. Ultimately, how-
ever, the concern is not so much with the (reducible by sam-
ple size) uncertainty in estimating s, but withdeven if s
were known perfectlydthe uncertainty that s itself implies
about the Y value for a future individual. How small s needs
to be to be of practical use is a subject-matter judgment, not
something that is settled with a larger or smaller n.
2.2. Multiple linear regression

What changes, as for sample sizes, as one moves up
from predictions based on multiple, rather than simple,
Table 1. Margin of error as a function of degrees of freedom

Degrees of freedom used to
estimate s

10 20 40 80 160

95% margin of error in
estimating s

30% 25% 20% 15% 10%

See chapter 4.4 of Harrell [8] for additional details and on why a
higher SPV is needed if predictability is low.
linear regression? The prediction of adult heightdan early
application of linear regression to human datadis instruc-
tive. In Pearson and Lee’s carefully collected late 1880s
family data set [9], the overall standard deviation (the
RMSE in the null, intercept-only regression model) of the
n O 2,000 adult heights was approximately 3.7 inches. In
their fitted regression models, the RMSE was 2.5 inches
when the model was limited to gender, 1.5 inches when
one or other parental height was added, and 1.3 inches
when both heights were added. In the nz 60 Berkeley data
set of children, born in 1928/9, and used in Weisberg’
classic regression textbook [10], the RMSEs obtained by
beginning with a null model, and sequentially adding
gender, and height at 2 or 9 years were 3.6, 2.5, 1.8, and
1.4 inches, respectively. Current online calculators [11]
use a combination of the (half a dozen or so) parental
heights and child gender height and age variables. Geno-
mics companies will likely soon offer predictions based
on several thousand. However, although they may be able
to further reduce the ‘‘nature’’ component of variance, the
‘‘nurture’’ component will not be tamed.

The 2SPV rule does not help plan the n for studies of
how much the overall standard deviation (here more than
3.5 inches) can be reduced by including p variates (variate:
a term in the model; several variates might be a derived
from one variable). When n O p, the main determinant
of the precision with which the SD can be estimated is
the number of degrees of freedom, (n � 1) � p, not (n/p)
per se. Table 1 continues to apply, as long as p is small rela-
tive to n. If it is not, then the RMSE multiplied (inflated) by
the square root of n/(n � p) provides a more realistic mea-
sure of future performance. [(n � 1)/[(n � 1) � p] is used in
computing an adjusted R-square, a quantity introduced to
econometrics by Theil in 1961. It is based on the same the-
ory that governed the behaviors studied, via extensive sim-
ulations, by Austin and Steyerberg.]. The fact that one
needs to consider both n � p and p, and not just the n/p ra-
tio, explains why the SPV-only rules cited in the first para-
graph of section 2 of Austin and Steyerberg’s article, as
well as their own rule, vary as much as they do.

Clearly, when n ! p, so that NPV !1, as it often is in
genomic studies, there are no degrees of freedom to provide
an internal estimate of s. Even if n O p, but the ‘‘p’’ used
in the final model is a ‘‘best’’ subset of the much larger set
of p variates searched, sample size guidelines based only on
an n:p ratio are difficult to specify. The honest way to
assess the performance in future subjects is to use an
entirely separate test sample.
3. Etiological research: the sample size cost of
adjusting for confounding

Vittinghoff and McCulloch [12] used simulations to
study binary (as well as failure time) end points (Ys). To
mimic analyses of causal influences in observational data,



Fig. 2. (In)stability of fitted hearing loss regression equations (planes) when the correlation between age and duration of work (shown as open cir-
cles on the ‘‘floor’’ of each panel) is minimal (3 leftmost panels) and very high (3 rightmost panels) (squared correlations: 0 and 0.83 5 5/6).
Hearing loss data (filled circles) were generated from true regression coefficients of 0.3 (work) and 0.4 (age). The fitted regression coefficients
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they focused on a primary X, either binary or continuous.
They regarded the other Xs (taken to be multivariate normal
with pairwise correlations of 0.25; and having a multiple
correlation of 0, 0.25, 0.5, or 0.75 with the binary X, and
0, 0.1, 0.25, 0.5, or 0.9 with the continuous X) as adjust-
ment variables.

For continuous Ys, sample size calculations can again be
based on closed-form formulae, derived from mathematical
statistics and matrix algebra. These show directly and
explicitly what determines the precision and power with
which the primary regression coefficient can be investi-
gated. These and other formulae have already been set
out for a larger number of settings [13] and so only those
relevant to the present context will now be summarized.
3.1. Simple linear regression

Central in the precision and power considerations is the
SE of the estimated primary regression coefficient. Again,
its structure is best understood in the simple regression
context, where it equals the RMSE multiplied by the inverse
of the square root of the number, n, studied, and by the in-
verse of the standard deviation, SDX, of the Xs studied:
SE 5 RMSE � [1/SDX] � [1/sqrt(n)]. (As explained in
Hanley and Moodie [13], there is no need to consider a bi-
nary and a continuous X separately.) Sadly, this structure
is rarely used and often goes without comment, although it
can be taken as a very valuable point of departure for heuris-
tic purposes [13]. Some prefer the standardized regression
coefficient, that is, B’ 5 B � SDX; its SE is RMSE/sqrt(n),
a helpful form JH has not seen given explicitly elsewhere.

Null and alternative values (For planning purposes, they
would usually be considered equal under the null and the
alternative.) of the SE can be used in the universal sample
size and power formula Za/2 � SEnull þ Zb � SEalt 5 D,
and algebraically rearranged as needed to project the preci-
sion or power achievable with a given n, or the n required
for a given precision or power [13].

A related issue needs to be addressed before considering
multiple regression. The fact that the SE of the estimated
regression coefficient is inversely related to the SD of the
X values used makes explicit what researchers instinctively
know: it is difficult to measure a slope (e.g., fuel consump-
tion of a car) over a short X range (distance). Even if the
range cannot be widened, the slope is more precisely esti-
mated if (as in the Old Faithful example in Fig. 1) the X
values are spread more evenly over, or even more toward
the extremities of, that range. Sadly, some researchers insist
that their trainees check both the Ys and the Xs for
for years worked and age (which fluctuate more in the imbalanced instances
both designs to achieve the same precision of the estimated work coefficient,
than the balanced one. The instability (the fluctuation in fitted regression c
many different samples) available on the author’s web site (http://www.b
randomly generated, each one showing a different amount of variation amon
variation lay at the 67th percentile was selected for this figure.
normality. Neither check makes sense. If normality is in
fact relevant for the ‘‘Y’’ variable (it is in an individual pre-
diction setting, but not in an etiological setting), it is the
normality of the residuals (not the Ys themselves) that mat-
ters. But normality of the X’s is not a good thing; it would
be better if, over the range of interest, the Xs had a closer to
upside-down-normal distribution, with maybe some addi-
tional values from the center of the X range so as to check
for linearity. Indeed, this author has heard a well known
teacher make this point using a (hypothetical,
Framingham-like) study where the sole focus was the slope
of the relationship between heart disease and serum choles-
terol concentrations (X). A random sample of subjects
would lead to Xs concentrated near the center. It would
have been far more statistically efficient to use say a
three-point design, with equal numbers sampled from the
bottom, middle, and top of the cholesterol range. If
possible, unless the naturalistic X distribution is already
favorable, one should choose the X values at which to mea-
sure Y. If one could be assured of linearity, the ideal is an X
distribution where all observations are 1 standard deviation
for the mean, that is, half are at each extreme.
3.2. Adjustment via multiple linear regression

Perhaps surprisingly, the SE of the estimated primary
regression coefficient from a model that also includes
p � 1 adjustment variables has a closed form that, when
presented in a suitable didactic form, is again both concise
and intuitive. It contains just one additional multiplier,
involving a squared multiple correlation R2

X-otherX0s, that re-
flects the correlation between the primary X and these
adjustment variables:
) are sh
the un
oefficie
iostat.
g the th
SE5RMSE� ½1=SDX� � ½1=sqrtðnÞ�
� �

1
�
sqrt

�
1�R2

X�otherX0s

��
:

Hanley and Moodie [13] have rearranged this formula to
link n with the precision and to estimate the power which
the primary regression coefficient can be studied.

To understand why and how this additional term comes
into it, and why the 2SPV rule is too limiting, consider two
researchers who are interested in estimating the effect of
working in a noisy workplace on hearing loss. They mea-
sure it as loss per year worked, that is, as a regression
‘‘slope,’’ taking care to separate their estimate from the
(also substantial) effect of age. Each has a budget to mea-
sure loss in n workers who have been exposed to a noisy
work environment for different numbers of years.
own in bold along the edges of the fitted regression planes. For
balanced sample would need to be 1/(1 � 5/6)5 6 times larger
nts) is easier to appreciate using the animated versions (using
mcgill.ca/hanley/software). Many versions of this figure were
ree regression coefficients for years worked. The version whose

http://www.biostat.mcgill.ca/hanley/software


Table 2. Variance (sample size) inflation as a function of the multiple
R2 of X with the remaining Xs

Multiple R2 of X with remaining Xs 0.4 0.5 0.6 0.7 0.8

Variance (sample size) inflationa 1.7 2.0 2.5 3.3 5.0

a VIF 5 1/(1 � multiple R2).
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The two use different sampling schemes, illustrated in
the two columns in Fig. 2. One simply randomly selects
n workers with a range of ages, hoping to obtain a sample
with a sufficiently wide spread in the numbers of years
worked in a noisy environment. However, because many
workers began working at around the same age, these n
ages may, to a considerable extent, determine the numbers
of years worked, and thus may lead to a very ‘‘unbalanced’’
sample, such as those in the rightmost panels of Fig. 2. Age
and duration of work will be highly correlated, and it will
be very difficult to isolate the effect of one from that of
the other, even if it will be easy to obtain a precise estimate
of the combined effect of the two.

The other researcher purposefully selects workers from
each of several age slices, not randomly, but on the basis
of years worked. In doing so, she tries to ensure, within
each slice, the widest possible spread of numbers of years
worked, and thus the greatest possible degree of ‘‘balance’’
(the lowest possible correlation) between age and work
duration (leftmost panels of Fig. 2).

The mean age and the mean numbers of years worked
are the same in both designs; the variance in the years
worked is similar in both, whereas the variance
in age is identical. Yet, the estimates of the work effect
are much less variable in the second design because they
fluctuate independently of those of age and because they
are estimated across a wider range of work duration.

In the unbalanced design, the spread of the work dura-
tions within each age slice is much smaller and thus makes
it more difficult to estimate the slope. This instability is
easily visualized if, as J.H. does, one thinks of the fitted sur-
face (regression model) as a ‘‘hammock’’ that is only
secure at the bottom left and top right corners: but it can
easily tip sideways so that the duration and age slopes (co-
efficients) are negative and positive, respectively, or vice
versa. (R and Excel files that produce animated versions
of Fig. 2 are available on the author’s web site [http://
www.biostat.mcgill.ca/hanley/software].) Only their sum
(true value 0.3 þ 0.4 5 0.7) is reliably estimated. Other
teachers [14] have likened this situation to resting a flat sur-
face (e.g., a rectangular sheet of cardboard) on a narrow
base, or in the extreme, on a knife edge. Yet others
[15,16] have used the ‘‘picket fence’’ analogy, where ‘‘re-
sponses resemble the pickets along a not-so-straight fence
row’’ and ‘‘fitting a regression surface to these data is anal-
ogous to balancing a sheet of plywood on these pickets.’’
(Yet others [17] make the task even more arduous by imag-
ining that the picket fence runs uphill!) By contrast,
because the fitted model in the balanced cases is secured/
supported by a wide ‘‘base,’’ its fitted coefficients are much
more stable.

The increased instability with the unbalanced (collinear
X) design is reflected in the multiplier 1/sqrt(1 � R2

X-otherX0s).
In Austin and Steyerberg’s investigation, these ‘‘SE inflation
factors’’ for each of the 13 predictor variables were all
less than 5%, a negligible degree of multicollinearity,
seldom found in etiological studies. So as to guide the
design of such studies, Table 2, adapted from that in Hanley
and Moodie [13] shows the inflation in variance, and thus in
sample size, to offset researchers’ inability to study an etiol-
ogy factor using an ideal (balanced) sample with no
confounding.
4. Concluding remarks

In these two genres of research, sample size consider-
ations are dominated by rules/algebra other than those that
led Austin and Steyerberg to the 2SPV rule. The findings
that lead to their ‘‘rule’’ could have been predicted from
the same long-established mathematical-statistics theory
relied on here. The absence of bias in Fig. 1 of Austin
and Steyerberg is to be expected, and the negligible bias
for a few variables at the lower subjects/variable end of that
same figure may well stem from the fact that the full 13-
term model could not always be fitted. The correct mean
coverage proportions in Fig. 2 of Austin and Steyerberg
are again a vindication, if such were needed, of the z-
and t-based CIs worked out by Fisher in the 1920s; the
tightness and size of empirical variation in the individual
proportions are no surprise to (but surely the subject of
envy by) pollsters who work with margins of error from
samples of a thousand persons rather than a million simu-
lated data sets (again, at the left end of the SPV scale,
the extra amplitude probably reflects the attrition when
the full model could not be fitted).

Austin and Steyerberg chose to plot the ratio of the
mean estimated standard error to the standard deviation
of the estimated coefficients. In their Figure 3, it starts
at about 0.95 for the lowest SPV values, and increases
to, but never quite reaches unity. Had they reported the
mean estimated variance to the variance of the estimated
coefficients, the pattern would have been simplerdand
might have led to different conclusions. The complex
behavior they reported was to be expected, given their
choice of a quantity characterized by the chi rather than
the chi-squared distribution. In a nonregression context,
s2 is a mean-unbiased estimator of s2 but s is not a
mean-unbiased estimator of s. In the regression context
of their Figure 3, the estimated variance is a mean-
unbiased estimator of the true variance, no matter the
SPV value, whereas the estimated standard error is never
an unbiased estimator of the square root of the true vari-
ance. In the regression setting that Austin and Steyerberg
studied, the choice of scale was not an issue because

http://www.biostat.mcgill.ca/hanley/software
http://www.biostat.mcgill.ca/hanley/software
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both patterns can be predicted using closed-form expres-
sions derived from mathematical statistics. In more com-
plex simulations, where we cannot rely on such laws, it
is not obvious which reporting scale makes more sense.
The broader issue of the difference between median-bias
vs. mean-bias deserves to be better appreciated by the
increasing number of investigators who rely on simula-
tions to study the performance of statistical estimators.

We, like others, were impressed by Austin and Steyer-
berg’s use of a real data set to simulate a million data sets
of each of 50 different sample sizes from 13 � 1 5 13 to
15 � 50 5 6,500. Unfortunately, the statistical criteria
they used are not the most relevant ones, so that the re-
sulting 2SPV ruledwhich could have been derived
directly from mathematical statistics, and for any number
of variables or sample sizedis of limited value. They did
warn that such a ‘‘rule’’ should not be used to justify a
proposed sample size to a peer review committee, where
adequate statistical power and precision are more
relevant.

It was the gaps in these latter and more important as-
pects that this note attempted to fill. An important first
step was to draw a clear distinction between studies
focusing on etiology, group prediction, and individual pre-
diction, so that corresponding differences in sample size
considerations for these different genres become more
obvious. The second was to rely on relevant results from
mathematical statistics as they apply to the reliability of
results from fitted regression models. By some simple
manipulation of the closed-form variance formulae found
there, considerable sample size guidance can be found for
a wide range of research scenarios, both etiologic and
clinical.
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