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Summary. Pooling of controls under nested-case control settings can produce substantial efficiency gains compared to
standard time-matched analysis using the Mantel–Haenszel method or conditional logistic regression. In the context of possible
adverse effects of early childhood vaccinations, we propose pooling of the information from the controls to estimate the
population exposure prevalence as a parametric or nonparametric function of time, and possibly other factors. This function
in turn may be used as a plug-in estimate to control for confounding in the subsequent estimation of rate ratios. We derive
standard errors for the resulting two-step estimators, demonstrate through simulations the efficiency gains compared to
standard matched analysis, and propose a novel graphical presentation of the vaccination and adverse event time data. We
formulate the methods in the general framework of case-base sampling, which subsumes the different case-control and case-only
methods.
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1. Introduction

1.1. Background

The study carried out in Mexico and Brazil on the role of ro-
tavirus vaccination in the occurrence of intussusception (Patel
et al., 2011) is a good example of the classic time-matched
case-control study of adverse effects of vaccinations. Four con-
trols per case, matched by age and other factors, were selected,
and classified as exposed in the 7 days following vaccina-
tion and unexposed otherwise. Customary matched analysis
of such data may be carried out by using Mantel and Haen-
szel (1959) or conditional logistic regression (e.g., Langholz
and Goldstein, 1996) methods.

Pooling of controls under time-matched sampling (a.k.a.
nested case-control study, risk set sampling, or incidence den-
sity sampling), originally suggested by Samuelsen (1997), has
been extensively discussed in the literature; reviews of vari-
ous methods are contained for instance in Breslow and Well-
ner (2007), Samuelsen, Ånestad, and Skrondal (2007), Saarela
et al. (2008), and Gray (2009). What is common to these
methods is the existence of an enumerable study population
or sampling frame, for instance in the form of a cohort, onto
which the inferences can be generalized using either weight-
ing by the inverses of the inclusion probabilities or likelihood-
based missing data methods.

Compared to standard analysis through conditional logis-
tic regression, where the riskset at each event time involves
only the sampled controls, as well as the case itself, pooling
of the controls does result in improved efficiency. This is also
our motivation for pursuing alternatives to standard matched
analyses. However, instead of weighting, our approach is based

on estimating the population exposure prevalence, which does
not require an enumerable sampling frame or determination of
the inclusion probabilities. Our approach is valid irrespective
of the particular sampling scheme, as long as the sampling
is independent of the exposure status and the eventual event
status. This is true for instance under case-cohort (Prentice,
1986) sampling schemes, and under nested case-control sam-
pling schemes if the outcome event does not terminate the
follow-up (Section 2.2.2).

Our approach based on estimation of the population expo-
sure prevalence function also enables a novel graphical presen-
tation for the vaccination and adverse event time data. Con-
ventional one-dimensional graphical presentations of temporal
association between the vaccination time and event time dis-
tributions, such as Figure 1 in the study of H1N1 vaccination
and childhood narcolepsy reported by Nohynek et al. (2012),
do not enable direct comparison of incidence density in the
exposed versus unexposed population time. For this purpose,
we use a two-dimensional population-time plot, which is free
of confounding due to age, the main time scale in our analy-
sis. This is especially important in studies of scheduled early
childhood vaccinations, where age is a major confounder. A
conventional graphical display for temporal association is ob-
tained when the two-dimensional presentation is collapsed
over the population dimension.

1.2. Concepts, Notation, and Plan of the Article

The etiologic study characterized by Miettinen and Karp
(2012) can be seen as a unified framework for understanding
the sampling aspect of epidemiological study designs. To
place their concepts into an appropriate mathematical
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context, we first define a history of follow-up experience as a
generated σ-algebra Fit = σ{Ni(u), Zi(u), Xi : 0 ≤ u ≤ t} (e.g.,
Aalen, Borgan, and Gjessing, 2008, p. 43), where Ni(t) is a
counting process for the incident adverse events, Zi(t) is the
exposure status at time t (say, a vaccination within 1 week
before t), and xi is a vector of potential confounders other
than age, for example, gender, socioeconomic status, and
other demographic factors. Henceforth, such a history at a
“person-coordinate” i and “time-coordinate” t is referred to
as a person-moment (cf. Miettinen and Karp, 2012, 94–95).
Aggregation of person-moments over time t and individuals
i will be referred to as population-time. The study base
comprises the aggregate population-time contributed by
all individuals in the study population of size N over the
study period (0, τ], that is,

⋃N

i=1 Fiτ . The case series is the
discrete set of person-moments where dNi(t) = 1. To enable
comparisons, a random sample of base series person-moments
is drawn randomly from the study base.

Drawing the base series independently of the case series
preserves the connection between the study and its base, en-
abling a wider variety of possible analysis methods. One such
alternative is pooling the information from the base series to
estimate the population exposure prevalence as a parametric
or non-parametric function of time, and possibly other factors,
as noted in Section 1.1. This function in turn may be used as a
plug-in estimate to control for confounding in the subsequent
estimation of rate ratios. To define the parameter of inter-
est, for children t days of age, we denote the adverse event
incidence rates in the index and reference categories of expo-
sure by λ1(t, xi) and λ0(t, xi), given by λj(t, xi) ≡ P(dNi(t) =
1 | Ni(t−), Zi(t) = j, xi)/dt, j ∈ {0, 1}. The object of inference,
the rate ratio θ ≡ λ1(t, xi)/λ0(t, xi), is assumed proportional
across the values of t and xi. For notational simplicity, we as-
sume censoring to be of type I, due to the end of the follow-up
period at time τ. Age is used as the time scale of the analysis
throughout.

The study reported in Patel et al. (2011) employed both
case-control and self-matched approaches and found the re-
sults to be in agreement. However, the self-matched meth-
ods have the advantage of model-free controlling for time-
invariant confounders, and although less suitable for studies of
chronic disease outcomes, they are often preferred in vaccina-
tion studies, where the exposures are transient and outcomes
often recurrent (Farrington, 1995; Whitaker, Hocine, and Far-
rington, 2009). For this reason, we also outline a self-matched
case-base sampling approach, where the base series is drawn
as a sample of person-moments from the follow-up time con-
tributed by the individuals with an adverse outcome event.

In Section 2.1, we describe the estimation of θ in the situ-
ation where the vaccination histories are readily available on
the whole study population; in Section 2.2, we address the sit-
uation where the population exposure prevalence is unknown
and needs to be estimated using a base series sample. In Sec-
tions 2.3 and 2.4 we outline an estimation procedure that aims
to extract more information from the base series, and in Sec-
tion 2.5 we extend this to deal with matching factors other
than time. In Section 3, we propose a self-matched version
of the case-base sampling method of Hanley and Miettinen
(2009). This is followed by a simulation study on the efficiency
gains in Section 4 and a discussion in Section 5.

2. Rate Ratio Estimation

2.1. When Vaccination Histories Are Readily Available
on the Whole Study Population

Some countries such as Finland (e.g., Nohynek et al., 2012)
maintain computerized records that allow researchers to read-
ily assemble the vaccination histories of all children in the
study population, and consequently, the population expo-
sure prevalence at any given age t. The population expo-
sure prevalence at age t for children with the covariate profile
xi is defined as π(t, xi) ≡ P(Zi(t) = 1 | Xi = xi). Suppose that
the observed information on n incident cases of disease ob-
served during the study period consists of the ordered event
times t1, . . . , tn and the corresponding exposure status Zi(ti),
i = 1, . . . , n. Further, assume that the events are generated
by a non-homogeneous Poisson process with rate λZi(t)(t, xi),
so that the rate is not modified by the past history of the
process. Conditioning on an event having occurred at time ti
and the covariate profile xi results in conditional likelihood
contributions of the form

P(Zi(ti) = 1 | dNi(ti) = 1, xi) = λ1(t, xi)P(Zi(ti) = 1 | xi)∑1

j=0 λj(t, xi)P(Zi(ti) = j | xi)

= θπ(ti, xi)

1 − π(ti, xi) + θπ(ti, xi)

≡ µ(t, xi),

so that Zi(t) | (dNi(t) = 1, xi) ∼ Bernoulli(µ(t, xi)). If the
events are not generated by a Poisson process, for instance
when the follow-up is terminated by the first incident event,
this likelihood still applies under the null θ = 1, and approxi-
mately when the outcome event is rare, or when the exposure
is transient, so that it does not substantially alter the event-
free survival probability. If the exposure prevalences π(t, xi),
i = 1, . . . , n, are known, an estimate for θ may be obtained
through maximization of the conditional likelihood expression

L(θ;π)
θ∝

n∏

i=1

[θπ(ti, xi)]Zi(ti)

1 − π(ti, xi) + θπ(ti, xi)
. (1)

Likelihood expressions such as (1) have been called
“case-pseudocontrol” or “case-distribution” likelihoods by
Greenland (1999), but are conditional likelihoods in the gen-
eral meaning of the term (as defined by Cox and Hinkley,
1974, pp. 16–17). Another connection worth pointing out is
that π(t, xi) is a continuous time analogue of the propensity
score (Rosenbaum and Rubin, 1983), and appears naturally
in conditional likelihoods of the type (1) without the need for
special propensity score adjustment methods, for example,
through regression adjustment, matching or stratification (cf.
Månsson et al., 2007).

The maximization of (1) can be carried out using standard
conditional logistic regression software that can accommodate
weights or offset terms. Alternatively, since logit{µ(t, xi)} =
logit{π(t, xi)} + log(θ), the parameter θ can be fitted using
unconditional logistic regression with only an intercept term,
with Zi(t) as the outcome variable and logit{π(t, xi)} as the off-
set term. The fitted intercept, when exponentiated, serves as
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the conditional ML estimate of θ, and the precision of this can
be measured as usual by inverting the observed information at
the maximum likelihood point. Yet another alternative would
be the continuous-time counterpart of the familiar Mantel and
Haenszel (1959) estimator with known denominators, of the
form

θ̂MH =
∑n

i=1 Zi(ti)[1 − π(ti, xi)]∑n

i=1[1 − Zi(ti)]π(ti, xi)
. (2)

We note that the conditional likelihood (1) and the esti-
mator (2) feature contributions only from the children with
at least one adverse event during the study period, and thus,
taking π(t, xi) to be known, these approaches may be charac-
terized as “case-only” or “case series.” In the next subsection
we will address the situation where π(t, xi) is unknown and
needs to be estimated using data on a base series sample. (In-
deed, this can be seen as the very purpose for which the base
series is required to complement the case series.) Before this,
to see how much information is lost compared to the setting
with π(t, xi) known, we note (see Supplementary Appendix A)
that the observed information on the log-rate ratio η = log(θ)
based on the conditional likelihood (1) is given by

Iηη =
n∑

i=1

exp(η)π(ti, xi)[1 − π(ti, xi)]

[1 + (exp(η) − 1)π(ti, xi)]2
.

As an example, we use the vaccination pattern shown in
Figure 1, given by a gamma distribution with shape = 5 and
scale = 0.5, with the eventual proportion of vaccinated be-
ing 75%, and exposure defined as a vaccination within the
previous week. We use a rescaled gamma distribution with
shape = 20 and scale = 4.5 as the baseline hazard function
to mimic a temporal distribution of 300 background cases
in a population of N = 10,000 individuals followed up for 20
weeks, a distribution with a slightly longer right tail and a
mean located at roughly 90 days. Taking the log rate ratio
to be η = 1.5, we simulate 374 cases in all, giving Iη = 54.4,

V̂ (η̂) = 1/54.4, and a 95% multiplicative margin of error for θ̂

of

MME ≡ exp

{
zα/2

√
V̂ (η̂)

}
− 1 = exp{1.96

√
1/54.4} − 1,

or 30%.
Figure 1 shows how the full information on both the study

base and the case series can be presented graphically in a
population-time plot. The 100% × 20 weeks rectangle in the
upper panel represents the total population-time comprising
the study base, which is further split into exposed and un-
exposed population-time. Comparison of the daily exposure
prevalence in the middle panel and the daily incident cases in
the bottom panel represents the conventional visual presen-
tation for the temporal association between the exposure and
the incidence, whereas the proposed population-time presen-
tation in the top panel enables direct comparison of incidence
density in the exposed and unexposed population-time, free
of confounding by age.

2.2. When it Requires Substantial Effort to Assemble the
Vaccination Histories

2.2.1. Traditional nested case-control study. The case se-
ries remains unchanged, but the unknown exposure preva-
lences π(ti, xi) at the event times ti, i = 1, . . . , n, must now
be estimated based on information provided by a base se-
ries of person-moments drawn from the (possibly stratified
by xi) risk sets at the event times. A sample of size m is
drawn independently at each event time t1, . . . , tn, and irre-
spective of the eventual event status of the at-risk individu-
als, from the stratified risk set, and classified into H1(ti) ex-
posed and H0(ti) unexposed person-moments. The exposure
prevalence function at each event time may now be estimated
by π̂(t, xi) = H1(ti)/m, or equivalently, by logit{π̂(t, xi)} =
log{H1(ti)/H0(ti)}. The M–H estimate for the rate ratio may
now be computed by substituting in (2) H1(ti) and H0(ti) for
π(t, xi) and 1 − π(t, xi), respectively, combined with either the
test-based (Miettinen, 1976) or Robins–Breslow–Greenland
(RBG) variance estimator (Robins, Breslow, and Greenland,
1986; see also Silcocks, 2005). Alternatively, conditional max-
imum likelihood estimates may be obtained through condi-
tional logistic regression. In either case, the standard matched
analysis does not use optimally the available information on
the base series, since using only the individually matched
person-moments (say, m = 4 of them at each event time) for
the estimation of the exposure prevalences makes these in-
puts, and as a result, the rate ratio estimator, highly variable,
as will be demonstrated in Section 4.

2.2.2. Extracting more information from the base series.
As implied above, substantial efficiency gains are possible if
the vaccination time data on the whole base series can be
pooled in the estimation of the exposure prevalence func-
tion π(t, xi). This is especially the case in the present context,
where the childhood vaccinations may be expected to follow
a smooth pattern over age; soon after the birth of the infant,
maternal and child health personnel, using the recommended
vaccinations schedules, set up appointments for parents to
have their infants vaccinated. Thus, even if individual com-
pliance deviates slightly from this because of sickness and
other unexpected events, the generally smooth distribution
of the children’s ages at the time of vaccination generates a
generally smooth exposure pattern, which enables efficiency
gains when pooling the base series information. Smoothness
is not a required assumption in the semi-parametric two-step
approach introduced in Section 2.4, but the efficiency gain
naturally depends on the degree of smoothness.

Let V stand for the observed vaccination time of an in-
dividual in the study population, with an indicator vari-
able A recording whether the individual was eventually vac-
cinated or not. For simplicity we assume that the end of
the study period is after the scheduled vaccination period,
so that {A = 1} ≡ {V ∈ [0, τ)}. Finally, let R be the inclu-
sion indicator for this individual contributing at least one
person-moment to the sampled base series. Since only part
of the population will eventually be vaccinated, we opt to
model the vaccination time through the conditional dis-
tribution P(V ∈ dv | A = 1, x) and the marginal probability
P(A = 1). Another alternative, which we do not pursue here,
would be to model directly the improper vaccination time
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Figure 1. Inset: conditional Maximum Likelihood (cML) and Mantel–Haenszel (M–H) rate ratio estimates and their as-
sociated multiplicative margins of error. Top panel: Population-time plot showing the unexposed (unshaded) and exposed
(shaded) population-time comprising the study base. The bars represent the proportion of the population vaccinated on each
day, and thus remaining exposed for the following week. In addition, shown are exposed (filled circles) and unexposed (unfilled
circles) cases that occurred in each day, ordered on the y-axis by their vaccination times relative to the population vaccination
distribution. (The eventually unvaccinated cases are spread uniformly over the y-axis from 75% to 100%.) Middle panel:
The bars show the proportion of the population exposed at the midpoint of each day (vaccinated within the previous week).
Bottom panel: The counts of exposed and unexposed cases collapsed over the population dimension to the time dimension.
This figure appears in color in the electronic version of this article.

distribution P(V ∈ dv | x), the connection between the two
approaches being P(V ∈ dv | A = 1, x) = P(V ∈ dv | x)/P(V ∈
[0, τ) | x).

Pooling of the vaccination data is valid irrespective of the
specific sampling mechanism used in the sampling of the base
series, as long as the mechanism is such that R ⊥⊥ (V, A) | x. To
see this, we note that the conditional likelihood to be used for
estimation of the vaccination time distribution, which deter-
mines the exposure prevalence function, is then P(V ∈ dv, A |
R = 1, x) = P(V ∈ dv, A | x), the population vaccination dis-
tribution. This conditional independence also implies that
the selection mechanism must be independent of the history
σ{N(t) : 0 ≤ t ≤ τ} of the outcome process whenever the out-

come is not independent of the exposure. This is true un-
der unstratified and stratified (by x) case-cohort sampling
schemes, and under nested case-control sampling schemes,
whenever the outcome event does not terminate the follow-up
(which is the case under the Poisson process).

In contrast, in a case-control study the controls would be
chosen from the event-free individuals (with N(τ) = 0). If it
can be assumed that the adverse event is rare in the sense that
P(V ∈ dv, A | N(τ) = 0, x) ≈ P(V ∈ dv, A | x), pooling of the
controls is still valid approximately, if the selection mechanism
is such that R ⊥⊥ (V, A) | (N(τ) = 0, x). This follows because
now P(V ∈ dv, A | R = 1, N(τ) = 0, x) = P(V ∈ dv, A | N(τ) =
0, x) ≈ P(V ∈ dv, A | x).
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With these assumptions on the sampling mechanism, the
exposure prevalence functions in (2) may now be replaced
with the plug-in estimates π̂(t, xi) drawn from the pooled base
series data. However, the usual variance estimators based on
the inverse of the observed information will no longer be valid,
since they do not account for the estimation cost of the plug-in
estimates. Thus, in the following we describe a valid method
to approximate the variance of the resulting rate ratio esti-
mator, and compare the efficiency of the alternative methods
in a simulated setting.

2.3. Parametric Two-Step Estimation

Consider the nested case-control setting where j = 1, . . . , mi

controls are time-matched to case i at time ti (usually mi = m

is constant). The observed vaccination times for the matched
controls are (Vi1, . . . , Vimi

), with (Ai1, . . . , Aimi
) indicating the

eventual vaccination status. For the time being, we assume
that there are no further matching factors in addition to age,
the generalizations allowing this to be considered separately
in Section 2.5.

The population exposure prevalence, the proportion of chil-
dren of age t who have been vaccinated during the past week,
is now given by π(t) = P(A = 1)

∫
v∈(t−7,t]

P(V ∈ dv | A = 1) =
αF(t) − αF(t − 7). Thus, the exposure prevalence is a deter-
ministic function of the distribution function F for vaccination
time and the eventual vaccination prevalence α. For the sake
of discussion we can parametrize the vaccination time distri-
bution as P(V ∈ dv | A = 1; γ)P(A = 1;α), in which case the
exposure prevalence π(t; γ, α) is also a (deterministic) function
of γ and α. Denoting

L(γ) ≡
n∏

i=1

mi∏

j=1

P(Vij ∈ dvij | Aij = 1; γ)Aij

and

L(α) ≡
n∏

i=1

mi∏

j=1

P(Aij;α),

these parameters may be estimated by maximum likelihood
as γ̂ ≡ arg maxγ L(γ) and α̂ ≡ arg maxα L(α). Using these as
plug-in estimates, the log-rate ratio parameter can then be
estimated using the conditional likelihood (1) as η̂(γ̂, α̂) ≡
arg maxη L(η; γ̂, α̂), with π(t) = π(t; γ̂, α̂). In the following, we
assume that the overlap of individuals between the sampled
risksets is negligible, so that they can be assumed indepen-
dent. (This is reasonable in the vaccination safety context
where the size of the study population N is usually much
larger than the number of cases n). In the Supplementary
Appendix A we show that through an M-estimator Taylor
expansion (e.g., Stefanski and Boos, 2002) around the true
values (η0, γ0, α0), with the number of cases n → ∞ we have
that

√
n(η̂(γ̂, α̂) − η0)

d→ N(0, E[−I
ηη
i (η0; γ0, α0)]

−1

×V [Bi(η0, γ0, α0)]E[−I
ηη
i (η0; γ0, α0)]

−1),

where

V [Bi(η0, γ0, α0)]

= E[−I
ηη
i (η0; γ0, α0)]

+E[Iηγ
i (η0; γ0, α0)]E[−I

γγ
i (γ0)]

−1E[Iηγ
i (η0; γ0, α0)

′]

+E[Iηα
i (η0; γ0, α0)]E[−Iαα

i (α0)]
−1E[Iηα

i (η0; γ0, α0)
′]

and the notations are

Iηη(η; γ, α) ≡ ∂2 log L(η; γ, α)/∂η2,

Iηγ(η; γ, α) ≡ ∂2 log L(η; γ, α)/∂η∂γ,

Iηα(η; γ, α) ≡ ∂2 log L(η; γ, α)/∂η∂α,

Iγγ(γ) ≡ ∂2 log L(γ)/∂γ2

Iαα(α) ≡ ∂2 log L(α)/∂α2.

This motivates the variance estimator

V̂ [η̂] = −Iηη(η̂; γ̂, α̂)−1

+ Iηη(η̂; γ̂, α̂)−1Iηγ(η̂; γ̂, α̂)[−Iγγ(γ̂)]−1Iηγ(η̂; γ̂, α̂)′

× Iηη(η̂; γ̂, α̂)−1

+ Iηη(η̂; γ̂, α̂)−1Iηα(η̂; γ̂, α̂)[−Iαα(α̂)]−1Iηα(η̂; γ̂, α̂)′

× Iηη(η̂; γ̂, α̂)−1, (3)

where the first term is the unadjusted variance, and the last
two terms penalize for the estimation of the nuisance param-
eters γ and α.

2.4. Semi-Parametric Two-Step Estimation

Since we do not actually wish to assume a parametric distri-
bution for the vaccination time distribution F , this may be
estimated by the empirical cumulative distribution function
(ECDF) F̂(t) ≡ 1

α̂M

∑n

i=1

∑mi

j=1 Aij1{Vij<t}, where M =
∑n

i=1 mi

is the total number of sampled controls. In the presence of
censored vaccination times, the Kaplan–Meier estimator may
be used instead. Furthermore, the eventual proportion of vac-
cinated may be estimated by α̂ = 1

M

∑n

i=1

∑mi

j=1 Aij. The es-
timate for η is again obtained by using the estimated ex-
posure prevalences π(t; F̂ , α̂) as plug-in estimates in (1). We

know that here
√

α̂M(F̂(t) − F(t))
d→ N(0, F(t)(1 − F(t))) at

any given point t (van der Vaart, 1998, p. 265). The function
F is now an infinite dimensional nuisance parameter, but since
the conditional likelihood needs to be evaluated only at finite
number of timepoints, we can treat the nuisance function as if
it was finite dimensional (cf. Farrington and Whitaker, 2006,
p. 564), and proceed with a Taylor expansion analogous to
the previous section. Using the notations

Uη(η;F, α) ≡ ∂ log L(η;F, α)/∂η,

Iηη(η;F, α) ≡ ∂2 log L(η;F, α)/∂η2,

IηF (η;F, α) ≡ ∂2 log L(η;F, α)/∂η∂F,
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Figure 2. Inset: conditional Maximum Likelihood (cML), Mantel–Haenszel (M–H), and parametric (Par.) and semi-
parametric (Semi-p.) two-step estimates for the rate ratio and their associated multiplicative margins of error. Top panel:
Population-time plot showing the unexposed (unshaded) and exposed (shaded) population-time comprising the study base.
The bars represent the proportion of the population estimated to be vaccinated on each day based on a base series sample
of size 374. In addition, shown are exposed (filled circles) and unexposed (unfilled circles) cases that occurred in each day,
ordered on the y-axis by their vaccination times relative to the estimated population vaccination distribution. The eventually
unvaccinated cases are spread uniformly over the y-axis from 75%, the estimated eventual proportion of vaccinated, to 100%.
See Figure 1 for explanation of the middle and bottom panels. This figure appears in color in the electronic version of this
article.

where the last derivative is to be understood as pointwise
differentiation of Uη(η;F, α) with respect to F(t) at finitely
many points t, we arrive at the variance estimator

V̂ [η̂] = −Iηη(η̂; F̂ , α̂)−1

+ Iηη(η̂; F̂ , α̂)−1IηF (η̂; F̂ , α̂)V [F̂ ]IηF (η̂; F̂ , α̂)′

× Iηη(η̂; F̂ , α̂)−1

+ Iηη(η̂; F̂ , α̂)−1Iηα(η̂; F̂ , α̂)V [α̂]Iηα(η̂; F̂ , α̂)′

× Iηη(η̂; F̂ , α̂)−1

(see Supplementary Appendix A). Here the covariance terms
in the variance–covariance matrix V [F̂ ] are given by 1

α̂M
[F(ti ∧

tj) − F(ti)F(tj)] (van der Vaart, 1998, p. 266), and would in
practice be estimated by substituting in the estimated F̂ val-
ues. In addition, V [α̂] ≈ α̂(1 − α̂)/M. We note that the vari-
ance estimator obtained in the semi-parametric case is the
direct analogue of (3). The partial derivatives required for
evaluation of this are found analytically and are given in Sup-
plementary Appendix A. Importantly, we note also that the
use of this variance expression does not require inverting an
information matrix involving partial derivatives with respect
to the high-dimensional nuisance parameter.

Figure 2 shows the same case series as Figure 1, but re-
places the full vaccination information on the study base by
the vaccination information on a base series of size 374. The
inset shows the traditional conditional Maximum Likelihood
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(cML) and Mantel–Haenszel (M–H) point estimates, derived
solely from the time-matched comparisons. The large multi-
plicative margins of errors, relative to those in Figure 1, are
a result of the small size of the sampled risk sets, several of
which are concordant (non-informative). The parametric and
non-parametric fits to the aggregated base series sample pro-
vide exposure prevalence estimates that are much more stable,
and, thus, a much more precise estimate of the rate ratio. The
adjusted MME is only slightly larger than the one based on
the variance in Section 2.1, where exposure prevalence was
taken to be known.

2.5. Considerations Due to Further Matching Factors

When further potential confounders x need to be taken into
account, we are still breaking the individual level matching,
but may now poststratify with respect to the x-covariates,
creating the strata k = 1, . . . , p. Letting s(xi) ∈ {1, . . . , p} in-
dicate the covariate stratum of individual i, the conditional
likelihood is now of the form

L(θ;π)
θ∝

n∏

i=1

[θπ̂s(xi)(ti)]
Zi(ti)

1 − π̂s(xi)(ti) + θπ̂s(xi)(ti)
, (4)

where π̂k(t) is the non-parametric estimator of the exposure
prevalence function in stratum k. The corresponding M–H
estimator is obtained accordingly from (2). However, it is ap-
parent from the form of the resulting estimator that making
the stratification very fine eventually cancels the efficiency
gain from pooling of the base series data due to the need
to estimate k separate vaccination time distributions F̂k and
eventual vaccination prevalences αk. This illustrates the bias-
variance tradeoff inherent to statistical modeling; establishing
what this tradeoff is in the present setting is a topic for further
research. We note that a variance estimator corresponding to
the estimator maximizing expression (4) can be obtained as

V̂ [η̂] = −Iηη(η̂; F̂1, . . . F̂p, α̂1, . . . , α̂p)
−1

+
p∑

k=1

Iηη(η̂; F̂k, α̂k)
−1IηFk (η̂; F̂k, α̂k)V [F̂k]

× IηFk (η̂; F̂k, α̂k)
′Iηη(η̂; F̂k, α̂k)

−1

+
p∑

k=1

Iηη(η̂; F̂k, α̂k)
−1Iηαk (η̂; F̂k, α̂k)V [α̂k]

× Iηαk (η̂; F̂k, α̂k)
′Iηη(η̂; F̂k, α̂k)

−1.

Compared to poststratification, a more sensible approach
might be to use a semi-parametric modeling approach for
the vaccination times themselves; parsimonious parametriza-
tions can then be applied to obtain model-based esti-
mates for the exposure prevalences π(t, xi). For instance,
we might take π(t, xi) = P(Ai = 1 | xi;α, β)[F(t | xi, φ, S0) −
F(t − 7 | xi, φ, S0)], where logit{P(Ai = 1 | xi;α, β)} = α + β′xi

and F(t | xi, φ, S0) = 1 − S0(t)exp(φ′xi), and S0 is a non-
parametrically specified baseline survival function for vaccina-
tion time, in practice estimated through the Breslow estima-
tor for cumulative baseline hazard (e.g., Kalbfleisch and Pren-
tice, 2002, p. 117). In practice both of these models would be
estimated by fitting them to the pooled base series vaccination
time and covariate data, with the resulting exposure preva-

lences π(ti, xi; α̂, β̂, φ̂, Ŝ0) plugged in to (1). We note that when
β → 0 and φ → 0, the model reduces to the semi-parametric
special case of Section 2.4, though using the Breslow/Nelson–
Aalen estimator, rather than Kaplan–Meier, for the vaccina-
tion time distribution.

3. Self-Matched Case-Base Sampling

Controlling for confounding as described in Section 2.5 would
require modeling of the exposure prevalence conditional on
relevant confounders. However, some of these may be unmea-
sured, or difficult to model, such as neighborhood (which was
used as a matching factor by Patel et al., 2011). In contrast,
self-matching automatically controls for time-invariant indi-
vidual level confounders. In a vaccination context it might
again be reasonable to assume that the outcome events are
generated by a Poisson process, so that the first event does
not terminate the follow-up, nor alter the subsequent event
rate, and that the events also do not modify the subsequent
vaccination rate (Whitaker, Hocine, and Farrington, 2009, p.
11–12). The self-controlled case series method of Farrington
(1995) is based on modeling the age effect on outcome inci-
dence using only the cases. Here, we show how self-matching
can be carried out through case-base sampling of person-
moments as in Hanley and Miettinen (2009), but drawing the
base series person-moments only from the population-time
contributed by the individuals with an outcome event.

Again, we select the case series to comprise the person-
moments corresponding to outcome events at times ti1, i =
1, . . . , n. Supposing that each of the n individuals with an out-
come event is followed up through the interval (0, ci], where
ci may not depend on the outcome, the base series is ascer-
tained by randomly sampling mi person-moments at times
ti2, . . . , ti(mi+1), tij ∈ (0, ci] for each i = 1, . . . , n. (In our running
example, ci = τ is constant.) These times are generated by
a “sampler” counting process Ri(t) ∼ Poisson(,∗(t)), so that

mi ∼ Poisson(,∗(ci)). ,∗(t) ≡
∫ t

0
λ∗(t) dt is a user-specified cu-

mulative hazard function chosen to obtain the desired E[mi] =
,∗(ci) and age distribution of the sampled person-moments.
In the special case of Hanley and Miettinen (2009), λ∗(t) =
λ∗ = M/

∑n

i=1 ci, where M is the total expected base series size
(e.g., M = 100n), in which case mi ∼ Poisson(Mci/

∑n

i=1 ci)
and tij ∼ U(0, ci), j = 2, . . . , mi + 1. This sampling mechanism
is illustrated in the schematic of Figure a in the Supplemen-
tary Appendix B.

In the Supplementary Appendix B we show that,
with the assumptions usually made in the self-matched
context, by sampling of the base series with uni-
form probabilities and assuming the proportional haz-
ards model P(dNi(t) = 1 | Ni(t−), Zi(t))/dt = λZi(t)(t, αi) =
exp{αi + f (t, β) + ηZi(t)}, the conditional likelihood contribu-
tion for the mi + 1 person-moments contributed by an indi-
vidual i with a single outcome event is

exp{f (ti1, β) + ηZi(ti1)}∑mi+1

j=1 exp{f (tij, β) + ηZi(tij)}
. (5)

The individual level intercept terms αi canceled out, illus-
trating the effect of self-matching. This expression is read-
ily interpretable as the probability of the event occurring at
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Figure 3. Variation and covariation in 1000 estimates of a rate ratio when the daily exposure prevalences were known
(x-axis) or estimated (y-axis) from base-series that were m = 1 (left), 4 (middle), and 10 (right) times the size of the case
series, using m separate controls for each case (upper panels) or pooling of the controls (lower panels). The true rate ratio
was set at exp{1.5}, and the expected (null) number of cases was set at 300. The timing and uptake of vaccination were the
same as in Figure 1.

time ti1, given that we know that one of the mi + 1 sampled
person-moments involves an event. Also, since (5) is a condi-
tional likelihood in the usual sense (of Cox and Hinkley, 1974,
pp. 16–17), variance estimates may be obtained by inverting
the observed information matrix at the maximum likelihood
point. It should be noted that the person-moment sampling
approach of Hanley and Miettinen (2009) operates in continu-
ous time without the need to discretize or split the time axis,
and thus (5) can be seen as a continuous, smooth version of the
piecewise constant formulation of Farrington (1995,p. 230).
However, simple parametric functions of age, such as the lin-
ear (f (t, β) ≡ βt) or quadratic (f (t, β) ≡ β1t + β2t

2) functions,
are unlikely to adequately control for confounding due to age.
Because of this, Ghebremichael-Weldeselassie, Whitaker, and
Farrington (2014) suggested using a smooth flexible function
to capture the age effect. We also propose using a spline to
estimate the function f , but note that, unlike the continuous-
time likelihood expression of Ghebremichael-Weldeselassie et
al. (2014), the sampling-based likelihood expression (5) does
not feature an integral in the denominator, and thus can be
easily fitted using standard conditional logistic regression soft-
ware and any appropriate regression spline.

4. Simulation Study on the Efficiency Gains

4.1. Time-Matched and Two-Step Estimation

To demonstrate the efficiency gains of the proposed approach
compared to standard time-matched analysis, we simulated

outcome and exposure realizations from the data generating
mechanism illustrated in Figure 1, using either 1, 4, or 10
controls per case, or 50 controls overall independently of the
number of cases. In the latter setting we are interested in how
the proposed adjusted variance estimators for the paramet-
ric and semi-parametric two-step estimators perform when
the overall number of controls is very small. The events were
generated from a non-homogeneous Poisson process, but to
check the sensitivity to this assumption, only the first event
of each individual was used in fitting of the models. For the
parametric estimator we fit the gamma distribution for vacci-
nation time to serve as a benchmark for the semi-parametric
estimator that uses the ECDF. The null number of cases was
set to 300 in a population of 10,000 individuals followed up
for 20 weeks from birth, with rate ratios θ = 0, exp{0.5} and
exp{1.5}. The potential maximal efficiency gain to be obtained
from pooling of the controls can be illustrated by considering
the correlation of the M–H estimator (2), in which the true
exposure prevalences are assumed to be known, to the coun-
terpart with the unknown π(t, xi)s replaced by H1(t)/m. This
comparison is presented in the top row of Figure 3; when only
one control is selected per case, the correlation is only 0.53,
while selecting 10 controls per case increases this to 0.90. This
can be contrasted to comparing the M–H estimator with true
exposure prevalences to the semi-parametric two-step estima-
tor that uses data from all controls (bottom row). Now select-
ing only one control per case and using the vaccination data
from all controls realizes already almost all of the potential
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Table 1
Results for point estimators of η = log(θ) and estimated standard errors of η̂ = log(θ̂). The numbers are means (standard

deviations) over 1000 replications. M is the total base series size.

Estimator

π Known π Unknown

η M M–H (2) cML (1) M–H SE (RBG) Cond. logistic SE

0.0 10n −0.021 (0.242) −0.021 (0.242) −0.021 (0.253) 0.251 (0.022) −0.022 (0.252) 0.251 (0.022)
4n −0.021 (0.242) −0.021 (0.242) −0.016 (0.268) 0.268 (0.023) −0.016 (0.266) 0.268 (0.022)
n −0.021 (0.242) −0.021 (0.242) −0.013 (0.352) 0.342 (0.032) −0.013 (0.352) 0.342 (0.032)

0.5 10n 0.492 (0.194) 0.492 (0.194) 0.495 (0.207) 0.209 (0.013) 0.494 (0.206) 0.208 (0.013)
4n 0.492 (0.194) 0.492 (0.194) 0.501 (0.223) 0.227 (0.014) 0.500 (0.222) 0.226 (0.014)
n 0.492 (0.194) 0.492 (0.194) 0.516 (0.304) 0.306 (0.028) 0.516 (0.304) 0.306 (0.028)

1.5 10n 1.496 (0.141) 1.495 (0.139) 1.498 (0.160) 0.159 (0.007) 1.496 (0.157) 0.155 (0.006)
4n 1.496 (0.141) 1.495 (0.139) 1.502 (0.177) 0.181 (0.009) 1.501 (0.173) 0.176 (0.008)
n 1.496 (0.141) 1.495 (0.139) 1.523 (0.265) 0.267 (0.028) 1.523 (0.265) 0.267 (0.028)

Estimator

Parametric Naive Adjusted Semi-par. Naive Adjusted
η M Two-step SE SE two-step SE SE

0.0 10n −0.021 (0.242) 0.239 (0.022) 0.240 (0.022) −0.022 (0.242) 0.239 (0.022) 0.240 (0.022)
4n −0.021 (0.242) 0.239 (0.022) 0.241 (0.022) −0.021 (0.242) 0.239 (0.022) 0.241 (0.022)
n −0.018 (0.246) 0.239 (0.022) 0.244 (0.022) −0.019 (0.246) 0.240 (0.022) 0.245 (0.022)
50 −0.013 (0.274) 0.240 (0.023) 0.268 (0.022) −0.026 (0.272) 0.243 (0.023) 0.272 (0.022)

0.5 10n 0.492 (0.194) 0.195 (0.013) 0.196 (0.013) 0.492 (0.194) 0.195 (0.013) 0.196 (0.013)
4n 0.492 (0.195) 0.195 (0.013) 0.197 (0.013) 0.492 (0.195) 0.195 (0.013) 0.197 (0.013)
n 0.495 (0.197) 0.195 (0.013) 0.201 (0.013) 0.495 (0.198) 0.196 (0.013) 0.202 (0.013)
50 0.506 (0.229) 0.197 (0.013) 0.231 (0.015) 0.497 (0.233) 0.199 (0.014) 0.235 (0.015)

1.5 10n 1.494 (0.140) 0.140 (0.005) 0.141 (0.005) 1.495 (0.140) 0.140 (0.005) 0.141 (0.005)
4n 1.495 (0.141) 0.140 (0.005) 0.142 (0.005) 1.495 (0.142) 0.140 (0.005) 0.143 (0.005)
n 1.498 (0.148) 0.141 (0.005) 0.148 (0.006) 1.498 (0.149) 0.141 (0.005) 0.149 (0.006)
50 1.516 (0.190) 0.142 (0.008) 0.194 (0.018) 1.529 (0.197) 0.144 (0.008) 0.198 (0.018)

improvement, with a correlation of 0.93; in other words, the
two-step estimator with one control per case gives improved
efficiency over standard matched analysis with 10 controls per
case.

Numerical results for various point estimators and selected
variance estimators are presented in Table 1. The estimated
standard errors should be compared with the Monte Carlo
(MC) standard deviations of the corresponding point estima-
tors. The M–H and conditional logistic estimator with the ex-
posure prevalences unknown correspond to standard matched
analyses of case-control data. The MC standard deviations
in Table 1 again indicate that with one or four controls per
case, the semi-parametric estimator gives a clear efficiency
gain compared to matched analysis, and comes close in ef-
ficiency to knowing the true exposure prevalences. It is also
notable that using the parametric two-step approach by fit-
ting the correctly specified vaccination time density gives only
very minor improvements compared to the semi-parametric
approach. For two-step estimation, Table 1 presents both the
naive variance estimators, which ignore the estimation of nui-
sance parameters, and the adjusted versions. With one or four
controls selected per case the adjustment has a rather negli-
gible effect on the estimated standard errors, indicating that

in these scenarios adjusting the variance is hardly necessary.
However, when only 50 controls are selected overall, the naive
standard errors are clearly too low, while the adjusted ones
match to the MC standard deviations.

4.2. Self-Matched Estimation

We fitted the self-matched conditional likelihood (5) by sam-
pling uniformly (in expectation) 10, 40, or 100 base series
person-moments per case from the follow-up time contributed
by the individuals with an outcome event. A quadratic func-
tion of age, as well as a cubic spline basis (the default option
in R bs function), were fitted to account for confounding by
age. The results are shown in Table 2. The self-matched case-
base sampling resulted in very good efficiency even with only
40 base series person-moments per case, but the quadratic
function of age was clearly not sufficient for controlling for
the age effect. This demonstrates the need for more flexible
semi-parametric modeling in controlling for the age effect; in
contrast, the low-dimensional regression spline does much bet-
ter in terms of bias, without inflating the standard errors too
much.



10 Biometrics

Table 2
Results for the self-matched point-estimators of η = log(θ) and the corresponding standard errors. M is the expected total

number of self-matched base series person-moments.

Estimator

Self-matched Self-matched
η M (quadratic) SE (spline) SE

0.0 100n 0.097 (0.242) 0.238 (0.022) −0.012 (0.245) 0.242 (0.022)
40n 0.098 (0.246) 0.242 (0.022) −0.012 (0.250) 0.246 (0.022)
10n 0.113 (0.271) 0.264 (0.021) −0.005 (0.275) 0.268 (0.021)

0.5 100n 0.612 (0.191) 0.194 (0.013) 0.504 (0.194) 0.199 (0.012)
40n 0.612 (0.198) 0.199 (0.012) 0.503 (0.201) 0.203 (0.012)
10n 0.617 (0.222) 0.223 (0.012) 0.498 (0.225) 0.228 (0.012)

1.5 100n 1.621 (0.140) 0.141 (0.005) 1.513 (0.146) 0.147 (0.005)
40n 1.620 (0.146) 0.146 (0.005) 1.511 (0.154) 0.152 (0.005)
10n 1.639 (0.170) 0.174 (0.007) 1.521 (0.176) 0.180 (0.007)

5. Discussion

Compared to standard time-matched analysis through the
Mantel–Haenszel method or conditional logistic regression,
where the riskset at each event time involves only the sampled
controls as well as the case itself, pooling of the controls does
result in improved efficiency; this is evident also in the setting
of the present article (Section 4). The efficiency gain is most
strikingly illustrated in Figure 3, where the Mantel–Haenszel
estimates from matched case-control sets are correlated with
those using the time-specific exposure prevalence estimated
from the pooled control data. However, compared to the pool-
ing approach discussed by Samuelsen (1997), instead of using
sampling weights, our outlined approach is based on estimat-
ing the population exposure prevalence, which does not re-
quire an enumerable study population, or determination of
the inclusion probabilities in the sampling scheme.

The self-matched case-base sampling approach using a ho-
mogeneous Poisson process to sample the base series person-
moments resulted in a likelihood expression that can be easily
fitted using standard conditional logistic regression. Drawing
the self-matched base series with informative probabilities is
a topic for further work; we aim to investigate two-step es-
timation approaches that would use the non-parametrically
estimated exposure prevalence function (Section 2.4) in the
specification of the function λ∗(t) (Section 3). Using this addi-
tional information in sampling of the self-matched base series
through a non-homogeneous Poisson process could potentially
improve the efficiency of the sampling and also remove most
or all of the multiplicative age effect in the process. However,
in the simulation study of Section 4 we only appled the self-
matching with a uniformly sampled base series to establish a
proof of concept.

We proposed also a way to illustrate the pooled exposure
data, available on either the whole study population or a con-
trol/base series, in a two-dimensional (population-time) plot
(Figures 1 and 2). A conventional graphical display for tempo-
ral association of the vaccination time/exposure and incident
cases is obtained when the two-dimensional presentation is
collapsed over the population dimension into the time dimen-

sion. The population-time plot allows for direct visual com-
parison of incidence density in the exposed versus unexposed
population time, which is lost in the temporal association pre-
sentation.

6. Supplementary Materials

Supplementary Web Appendices, referenced in Sections 2.1
2.3, 2.4 and 3, as well as the R code for producing Figures
1–3 and the simulation results, are available with this paper
at the Biometrics website on Wiley Online Library.
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