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WHY PROFILE-SPECIFIC RISK FUNCTIONS?
• 5-year Cumulative Incidence or 5-year Risk, of stroke for

78 yr. white female with isolated hypertension (Systolic
Pressure=180) if treat / do not treat hypertension ???

• Most reports of RCTs are for “average" profile, and use
hazard/incidence ratios (HRs) rather than risk differences

• For an individual patient, ĤR = ÎDR = 0.65 not helpful.

• R̂isk0−5 = ĈI0−5 = 8.2% if Tx = 0 (don’t treat);

R̂isk0−5 = ĈI0−5 = 5.2% if Tx = 1 (treat),

more helpful
• but need risks specific to the profile (unless profile is near

the centre of profiles included in trial).
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• For an individual patient, ĤR = ÎDR = 0.65 not helpful.
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5-year Cumulative Incidence / Risk of Stroke:
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(a.0): 80 year old black male, SBP=180
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(b.1): 65 year old white female, SBP=160
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WHAT WE WISHED TO DO

• Model the hazard (h), or incidence density (ID), as a
smooth function of

• set of prognostic indicators
• choice of intervention
• prospective time.

• Estimate the parameters of this function.

• Calculate profile-specific risk/cumulative incidence, ĈIx (t)
from this function:

ĈIx (t) = 1− exp{−Ĥx (t)} = 1− exp{−
∫ t

0 ĥx (u)du}.
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SMOOTH-IN-TIME HAZARD FUNCTIONS

• Hjort, 1992, International Statistical Review

• Reid N. A Conversation with Sir David Cox.
1994, Statistical Science.

• Royston and Parmar, 2002, Statistics in Medicine
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FULLY-PARAMETRIC MODEL: FORM

log{h(x , t)} = g(x , t , β) ⇐⇒ h(x , t) = eg(x ,t ,β)

• x is a realization of the covariate vector X , representing
the patient profile P, and possible intervention I.

• β : a vector of parameters with unknown values,
• g() includes constant 1, variates for P, I and t ;
• g() can have product terms involving P, I, and t .
• g() must be ‘linear’ in parameters, in ‘linear model’ sense.

————–
• ‘proportional hazards’ if no product terms involving t & I
• If t is represented by a linear term (so that ‘time to event’
∼ Gompertz), then ĈIp, i(t) has a closed smooth form.

• If t is replaced by log t , then ‘time to event’ ∼Weibull .
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∼ Gompertz), then ĈIp, i(t) has a closed smooth form.

• If t is replaced by log t , then ‘time to event’ ∼Weibull .



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

FULLY-PARAMETRIC MODEL: FORM

log{h(x , t)} = g(x , t , β) ⇐⇒ h(x , t) = eg(x ,t ,β)

• x is a realization of the covariate vector X , representing
the patient profile P, and possible intervention I.

• β : a vector of parameters with unknown values,
• g() includes constant 1, variates for P, I and t ;
• g() can have product terms involving P, I, and t .
• g() must be ‘linear’ in parameters, in ‘linear model’ sense.

————–
• ‘proportional hazards’ if no product terms involving t & I
• If t is represented by a linear term (so that ‘time to event’
∼ Gompertz), then ĈIp, i(t) has a closed smooth form.

• If t is replaced by log t , then ‘time to event’ ∼Weibull .



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

FULLY-PARAMETRIC MODEL: FORM

log{h(x , t)} = g(x , t , β) ⇐⇒ h(x , t) = eg(x ,t ,β)

• x is a realization of the covariate vector X , representing
the patient profile P, and possible intervention I.

• β : a vector of parameters with unknown values,
• g() includes constant 1, variates for P, I and t ;
• g() can have product terms involving P, I, and t .
• g() must be ‘linear’ in parameters, in ‘linear model’ sense.

————–
• ‘proportional hazards’ if no product terms involving t & I
• If t is represented by a linear term (so that ‘time to event’
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FULLY-PARAMETRIC MODEL: FITTING

• Unable to find a ready-to-use ML procedure within the
common statistical packages.

• Likelihood becomes quite involved even if no censored
observations.

• Albertsen & Hanley(’98); Efron(’88, ’02); Carstensen(’00):

- divide ‘survival time’ of each subject into time-slices;

- treat # of events in each ∼ Binomial / Poisson.
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FITTING: OUR APPROACH

• An extension of the method of Mantel (1973) to binary
outcomes that deals with time dimension.

• Mantel’s problem:

• (c =)165 ‘cases’ of Y = 1,

• 4000 instances of Y = 0.

• Associated regressor vector X for each of the 4165

• A logistic model for Prob(Y = 1 | X )

• A computer with limited capacity.
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MANTEL’S SOLUTION

• Form a reduced dataset containing...

• All c instances (cases) of Y = 1
• Random sample of the Y = 0 observations

• Fit the same logistic model to this reduced dataset.

“Such sampling will tend to leave the dependence of
the log odds on the variables unaffected except for an
additive constant.”

Anderson (Biometrika, 1972) had noted this too.

• Outcome(Choice)-based sampling common in Epi, Marketing, etc...
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DATA TO EXPLAIN OUR APPROACH

Systolic Hypertension in Elderly Program (SHEP)
.......................... SHEP Cooperative Research Group (1991).

.......................... Journal of American Medical Association 265, 3255-3264.

• 4,701 persons with complete data on P = {age, sex, race,
and systolic blood pressure} and I = {active/placebo}.

• Study base of B = 20,894 person-years of follow-up;
c = 263 events ("cases") of stroke identified.
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STUDY BASE, and the 263 cases
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No. of Persons
Being Followed

STUDY BASE
− 20,894 person−years [B=20,894 PY]
− 10,982,000,000 person−minutes (approx)
− infinite number of person−moments

● ↑↑  c = 263 events (Y=1)
in this infinite number
of person−moments
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OUR APPROACH

• Base series: representative (unstratified) sample of base.
• b: size of base series
• B: amount of population-time constituting study base.
• B(x , t): population-time element in study base

Pr(Y = 1|x , t)
Pr(Y = 0|x , t)

=
h(x , t)× B(x , t)
b × [B(x , t)/B]

= h(x , t)× (B/b),

• log(B/b) is an offset [a regression term with known coefficient of 1].

→ logistic model, with t having same status as x , and offset,

directly yields ĥ(x , t) = ̂IDx ,t = exp{ĝ(x , t)}.
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How large should b be on relation to c?

b: no. of instances of Y = 0 ;
c: no. of instances of Y = 1

• Mantel (1973)...

little to be gained by letting the size of one series, b,
become arbitrarily large if the size of the other series,
c, must remain fixed.

•With 2008 computing, we can use a b/c ratio as high as 100,
and thereby extract virtually all of the information in the base.
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OUR HAZARD MODEL FOR SHEP DATA

log[h] = ΣβkXk , where

X1 = Age (in yrs) - 60
X2 = Indicator of male gender
X3 = Indicator of Black race
X4 = Systolic BP (in mmHg) - 140
......................................................................
X5 = Indicator of active treatment
......................................................................
X6 = T
......................................................................
X7 = X5 × X6. (non-proportional hazards)
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PARAMETER ESTIMATION

• Formed person-moments dataset pertaining to:
• case series of size c = 263 (Y = 1)

and
• (randomly-selected) base series of size b = 26,300

(Y = 0).
• Each of 26,563 rows contained realizations of

• X1, . . . ,X7
• Y
• offset = log(20,894/26,300).

• Logistic model fitted to data in the two series.
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DATASET: c = 263; b = 10× 263
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Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

FITTED VALUES

Proposed Cox
logistic regression regression

βage−60 0.041 0.041 0.041
βImale 0.257 0.258 0.259
βIblack 0.302 0.301 0.303
βSBP−140 0.017 0.017 0.017
....................
βIActive treatment -0.200 -0.435 -0.435
....................
β0 -5.390 -5.295
βt -0.014 -0.057
βt×IActive treatment -0.107

• Fitted logistic function represents log[hx (t)]

• → cumulative hazard HX (t), and, thus, X -specific risk.
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Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

ESTIMATED 5-YEAR RISK OF STROKE

Risk I h(t) H(5) CI(5) ∆

[ ID(t) ] [
∫ 5

0 hx (t)dt ] [ 1− e−H(5) ]

Low 0 e−4.86−0.014t 0.037 0.036
1 e−5.06−0.124t 0.024 0.024 1.2%

High 0 0.16
1 0.10 6%

Overall 0 0.076
1 0.049 2.7%

Low: 65 year old white female with a SBP of 160 mmHg.
High: 80 year old black male with a SBP of 180 mmHg
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Points
 0  1  2  3  4  5  6  7  8  9 10

Age
60 65 70 75 80 85 90 95 100

Male
0

1

Black
0

1

SBP
155 165 175 185 195 205 215

I
1

0

t
6 0

I.t
6 5 4 3 2 1 0

Total Points
 0  2  4  6  8 10 12 14 16 18 20 22

Linear Predictor
−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5

5−year Risk (%)  if not treated
3 4 5 6 7 8 9 12 15 18

5−year Risk (%) if treated
2 3 4 5 6 7 8 9 12 15 18
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1. FEATURES

• Smooth-in-t h(t)—and CI’s– not new; fitting procedure is.

• Keys: 1. representative sampling of the base; 2. offset.

• b/c =100 feasible and adequate.
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2. MODELLING POSSIBILITIES

Log-linear modelling for hx (t) via logistic regression ...

• Standard methods to assess model fit.

• Wide range of functional forms for the t-dimension of hx (t).

• Effortless handling of censored data.

• Flexibility in modeling non-proportionality over t .

• Splines for h(t) rather than hr(t).
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3. CLINICAL POSSIBILITIES / DESIDERATA

• PDAs (personal digital assistants)→ online information.

• Profile-specific risk estimates for various interventions.

• Already, online calculators: risk of MI, Breast/Lung Cancer;
probability of extra-organ spread of cancer.

• RCT reports should contain: suitably designed risk
function, fitted parameters of hx (t), and risk function.

• (Offline:) risk scores→ risks via nomogram/table.
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4. SUMMARY

• Profile-specific risk (CI) functions are important.

• Two paths to CI, via...

• Steps-in-time S0(t)

• Smooth-in-time IDx (t).

• New simple estimation method for broad class of
smooth-in-time ID / hazard functions.

• Biostatistics & Epidemiology methods: a little more unified?
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FUNDING / CO-ORDINATES / SOFTWARE

Natural Sciences and Engineering Research Council of Canada

James.Hanley@McGill.CA
http://www.biostat.mcgill.ca/hanley

BIOSTATISTICS

http:/p: /wwwwwww.mw.mw.mmcgill.ca/ca/a epiepiepiepi-bibbiostosts at-at-aa occh/g/ggrad/bib ostatistit cs/
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THE ETIOLOGIC STUDY IN EPIDEMIOLOGY

• Aggregate of population-time: ‘study base.’
• All instances of event in study base identified→ study’s

‘case series’ of person-moments, characterized by Y = 1.
• Study base – infinite number of person-moments – sampled
→ corresponding ‘base series,’ characterized by Y = 0.

• Document potentially etiologic antecedent, modifiers of
incidence-density ratio, & confounders.

• Fit Logistic model
.............................................................................................

• With our approach . . .
• → Incidence density, hx (u) in study base.
• → CIx (t) = 1− exp{−Hx (t)} = 1− exp{−

∫ t
0 hx (u)du}.
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DATASET FOR LOGISTIC REGRESSION (SCHEMATIC)

1    69  1  0  166  1  0.57

1    69  0  1  161  0  1.79

1    85  0  1  184  0  3.39

0    69  0  0  182  0  1.70
0    73  0  1  167  1  2.02

0    73  1  0  199  0  0.62

0    81  1  0  161  0  1.16

0    70  0  1  185  0  1.11

0    72  0  0  172  1  3.56

Y   Age  B  M  SBP  I   t  

1000

2000

3000

4000

5000

0 1 2 3 4 5 6
Prognostic time (years)

Persons
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DATA ANALYZED BY EFRON, 1988

Arm A [ time-to-recurrence of head & neck cancer ]

Cum. Inc. estimates – K-M, Efron & Proposed
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WHY THIS CULTURE?

Predominant use of the semi-parametric ‘Cox model.’

• Time is considered as a non-essential element.

• Primary focus is on hazard ratios.

• Form of hazard per se as function of time left unspecified.

• Attention deflected from estimates of profile-specific CI.

• Many unaware that software provides profile-specific CI.
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DIFFERENT CULTURE

Practice of reporting estimates of profile-specific probability
more common when no variable element of time of outcome.

• Estimates can be based on logistic regression.

• Examples

• (“Framingham-based”) estimated 6-year risk for Myocardial
Infarction as function of set of prognostic indicators;

• estimated probability that prostate cancer is
organ-confined, as a function of diagnostic indicators.
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COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

COX MODEL

Hazard modelled, semi-parametrically, as

hx (t) = [exp(βx)]λ0(t),

• T = t : a point in prognostic time,
• β : vector of parameters with unknown values;
• X = x : vector of realizations for variates based on

prognostic indicators and interventions;
• λ0(t) : hazard as a function – unspecified – of t

corresponding to x = 0.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

FROM β̂ TO PROFILE-SPECIFIC CI’s

• Obtain Ŝ0(t) { the complement of ĈI0(t) }.
• Estimate risk (cum. incidence) CIx (t) for a particular

determinant pattern X = x as ĈIx (t) = 1− Ŝ0(t)
exp(β̂x)

.

• Breslow suggested an estimator of λ0(t) that gives a
smooth estimate of CIx (t). However, step function
estimators of Sx (t), with as many steps as there are
distinct failure times in the dataset, are more easily
derived, and the only ones available in most packages.

• Step-function S0(t) estimators: “Kaplan-Meier” type
(“Breslow”) and Nelson-Aalen. heuristics: jh, Epidemiology 2008

• Clinical Trials article (Julien & Hanley, 2008) encourages
investigators to make more use of these for ‘profiling’.
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• Step-function S0(t) estimators: “Kaplan-Meier” type
(“Breslow”) and Nelson-Aalen. heuristics: jh, Epidemiology 2008

• Clinical Trials article (Julien & Hanley, 2008) encourages
investigators to make more use of these for ‘profiling’.
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THESE ARE NOT ISOLATED CASES

Survey of RCT’s : Jan - June 2006 : NEJM, JAMA, The Lancet:

• Survival statistics from clinical trials – and non-randomised
studies – limited to the “average” patient

• Cox regression used merely to ensure ‘fairer comparisons’

• Seldom used to provide profile-specific estimates of
survival and survival differences

• Despite range of risk profiles in each study, and common
use of Cox regression, none presented info. that would
allow reader to assess Tx-specific risk for a specific profile,
e.g., for a specific age-sex combination.
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WHY STUDY PROFILE-SPECIFIC RISK FUNCTIONS

• I. Prob[surv. benefit] if man, aged 58, PSA 9.1, ‘Gleason 7’
prostate cancer, selects radical over conservative Tx?

• Cannot turn info. into surv. ∆ for men with pt’s profile.

• II. Report of classic RCT: ?? 5-year risk of stroke for a
65-year old white woman with a SBP of 160 mmHg and
how much it is lowered if she were to take
anti-hypertensive drug treatment.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

WHY STUDY PROFILE-SPECIFIC RISK FUNCTIONS

• I. Prob[surv. benefit] if man, aged 58, PSA 9.1, ‘Gleason 7’
prostate cancer, selects radical over conservative Tx?

• Cannot turn info. into surv. ∆ for men with pt’s profile.

• II. Report of classic RCT: ?? 5-year risk of stroke for a
65-year old white woman with a SBP of 160 mmHg and
how much it is lowered if she were to take
anti-hypertensive drug treatment.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

WHY STUDY PROFILE-SPECIFIC RISK FUNCTIONS

• I. Prob[surv. benefit] if man, aged 58, PSA 9.1, ‘Gleason 7’
prostate cancer, selects radical over conservative Tx?

• Cannot turn info. into surv. ∆ for men with pt’s profile.

• II. Report of classic RCT: ?? 5-year risk of stroke for a
65-year old white woman with a SBP of 160 mmHg and
how much it is lowered if she were to take
anti-hypertensive drug treatment.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

WHY STUDY PROFILE-SPECIFIC RISK FUNCTIONS

• I. Prob[surv. benefit] if man, aged 58, PSA 9.1, ‘Gleason 7’
prostate cancer, selects radical over conservative Tx?

• Cannot turn info. into surv. ∆ for men with pt’s profile.

• II. Report of classic RCT: ?? 5-year risk of stroke for a
65-year old white woman with a SBP of 160 mmHg and
how much it is lowered if she were to take
anti-hypertensive drug treatment.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

WHY STUDY PROFILE-SPECIFIC RISK FUNCTIONS

• I. Prob[surv. benefit] if man, aged 58, PSA 9.1, ‘Gleason 7’
prostate cancer, selects radical over conservative Tx?

• Cannot turn info. into surv. ∆ for men with pt’s profile.

• II. Report of classic RCT: ?? 5-year risk of stroke for a
65-year old white woman with a SBP of 160 mmHg and
how much it is lowered if she were to take
anti-hypertensive drug treatment.

• Report did not provide information from which to estimate
the risk, and risk difference, for this specific profile.



Introduction Smooth-in-time hazard functions How we fit fully-parametric hazard model Illustration Comments/Summary

STATISTICS AND THE AVERAGE PATIENT

• For a patient, ĤR = ÎDR = 0.6 not very helpful.

• Cumulative Incidence:

ĈI0−10 = 15% if Tx = 0; 10% if Tx = 1, more helpful.

• Not specific to this particular type of patient, if grade &
stage {of Pr Ca} or age/race/sex/SPB {SHEP Study} not
near the typical of those in trial.

• EXAMPLES I. and II. ARE NOT ISOLATED /MADE-UP...
cf. Julien & Hanley ’07
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How large should b be on relation to c?

Mantel (1973)... [our notation, and slight change of wording]

By the reasoning that cb/(c + b) [= (1/c + 1/b)−1] measures the
relative information in a comparison of two averages based on
sample sizes of c and b respectively, we might expect by analogy,
which would of course not be exact in the present case, that this
approach would result in only a moderate loss of information. (The
practicing statistician is generally aware of this kind of thing. There
is little to be gained by letting the size of one series, b, become
arbitrarily large if the size of the other series, c, must remain fixed.)

•With 2008 computing, we can use a b/c ratio as high as 100.

• b/c = 100→ Var [β̂]b/c=100 = 1.01× Var [β̂]b/c=∞, i.e. 1% ↑

• Var [β̂] ∝ 1/c + 1/100c rather than 1/c + 1/∞.
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