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pressure measurements will not help estimate true blood 
pressure.

While the impact of systematic error is generally well 
appreciated by researchers and addressed in epide‑
miological and clinical studies, the impact of random 
measurement error is often less well appreciated. Since 
the total error in a variable with random measurement 
error averages out to zero, many people assume that the 
effects of random measurement error on the estimate of 
the association between an exposure (risk factor) and an 
outcome (disease) obtained from a regression model will 
also cancel out (that is, have no effect on the estimate). 
Others have observed that random measurement error can 
bias the regression slope coefficient downwards towards 
the null, a phenomenon known as attenuation or regres‑
sion dilution bias.5‑7

In reality, the estimate of the association between an 
exposure and an outcome is attenuated by random meas‑
urement error in some situations but remain unchanged 

Random measurement error can introduce 
bias to an estimate of the association 
between a risk factor and a disease or 
make a true association statistically non-
significant. hutcheon and colleagues 
explain when, why, and how this error 
introduces bias and provides strategies for 
researchers to minimise the problem
introduction
Random measurement error is a pervasive problem in 
medical research and clinical practice.1 It occurs when 
measurements fluctuate unpredictably around their true 
values and is caused by imprecise measurement tools or 
true biological variability, or both. For instance, when 
blood pressure is assessed with a sphygmomanometer, 
random error may arise from imprecise measurement 
due to rounding error or from true diurnal or day to day 
variation in pressure.2 3 Hence, a blood pressure reading 
obtained at a single occasion may differ by an unpredict‑
able (random) amount from an individual’s usual blood 
pressure.3

Random measurement error differs from systematic 
measurement error.4 Systematic error occurs when the 
measurement error, after multiple measurements, does 
not average out to zero. The measurements are consist‑
ently wrong in a particular direction—for example, they  
tend to be  higher than the true values. In the case of 
blood pressure measurement, systematic error may be 
due to improper calibration of the sphygmomanometer 
or improper arm cuff size, and averaging multiple blood 
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summary points
The bias introduced by random measurement error will be 
different depending on whether the error is in an exposure 
variable (risk factor) or outcome variable (disease)
Random measurement error in an exposure variable will 
bias the estimates of regression slope coefficients towards 
the null
Random measurement error in an outcome variable will 
instead increase the standard error of the estimates and 
widen the corresponding confidence intervals, making 
results less likely to be statistically significant
Increasing sample size will help minimise the impact of 
measurement error in an outcome variable but will only 
make estimates more precisely wrong when the error is in 
an exposure variable

Glossary of terms

Random measurement error—This occurs when the •	
recorded values of a study variable fluctuate randomly 
around the true values, such that some recorded values 
will be higher than the true values and other recorded 
values will be lower
Linear regression model—Statistical model used to •	
evaluate the relation between one or more exposure 
variables and an outcome that is measured on a 
continuous scale (such as weight, blood glucose 
concentration, or bone mineral density). The linear 
relation between an exposure (X) and outcome (Y) is 
described by the regression equation E(Y) = β0 + β1X, 
where E(Y) is the expected (average) value of the variable 
Y, β0 is the intercept (the average value of the outcome 
Y when the exposure X has a value of zero), and β1 is the 
slope of the line
Regression slope—The slope of the line between an •	
exposure and outcome variable in a linear regression 
model. It provides an estimate of the association between 
an exposure and outcome variable. For instance, a slope 
estimate of 2 would mean that for every 1 unit difference 
in the exposure (X) variable, the outcome (Y) variable 
would be, on average, higher by 2 units. The estimate 
of the regression slope is also referred to as the “beta 
coefficient estimate” or “slope coefficient estimate”
Regression dilution bias—A statistical phenomenon •	
whereby random measurement error in the values 
of an exposure variable (X) causes an attenuation or 
“flattening” of the slope of the line describing the relation 
between the exposure (X) and an outcome (Y) of interest
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in others. In this article we use a simple example to show 
when, to what extent, and why random measurement 
error affects the estimates produced by regression mo dels 
to assess the association between two variables. In partic‑
ular, we describe how the effect of random measurement 
differs depending on whether the measurement error is in 
the exposure or outcome variable. We also make recom‑
mendations for dealing with random measurement error 
in the design and analysis of studies. 

example
For illustrative purposes, we consider the simplistic case 
of a study conducted in four hypothetical individuals. The 
aim of this study is to assess the association between the 
exposure variable systolic blood pressure and the outcome 
variable left ventricular mass index (LVMI).8 It is well 
known that elevated blood pressure is associated with a 
large LVMI.8 Imagine that both variables are measured 
without measurement error and are perfectly correlated, so 
that all four observations fall along the  regression line. The 
regression slope, or coefficient (β), is 1.00 g/m2/mm Hg (see 
appendix on bmj.com for the detailed calculation). In other 
words, for every 1 mm Hg difference in systolic blood pres‑
sure, LVMI is an average of 1 g/m2 higher. The table shows 
the systolic blood pressure and LVMI values measured for 
each individual, with no errors (section a) and with random 
errors in the exposure and outcome variables (sections b 
and c). Figure 1 shows the relation between exposure and 
outcome variable in diagrammatic form.

Random measurement error in the exposure (X) variable
Suppose that systolic blood pressure was measured with 
random errors of ±10 or ±20 mm Hg (see values in section 
b of table). The regression slopes estimating the associa‑

tion between systolic blood pressure and LVMI flatten with 
increasing measurement error (fig 1, panel b). As meas‑
urement error in systolic blood pressure increases, the 
observations become spread further apart on the X axis. 
While the systolic blood pressure values without measure‑
ment error range from 120 to 160 mm Hg, the horizontal 
range (along the X axis) increases to 100‑170 mm Hg with 
±20 mm Hg error. The vertical range of the observations 
(along the Y axis), however, remains constant. Since the 
regression line is fitted by minimising the vertical distance 
between observations and their predicted values, the best 
fit line becomes increasingly flattened (“stretched out”) in 
order to accommodate the increased horizontal spread of 
the observations. The slope β decreases from 1.00 to 0.71 
g/m2/mm Hg with ±10 mm Hg random error, and to 0.38 
g/m2/mm Hg with ±20 mm Hg random error.

In an extreme case, the spread of observations along 
the X axis could become so large that the estimate of the 
best‑fit regression line would be virtually flat, resulting in 
a complete attenuation of the association between systolic 
blood pressure and LVMI.

The extent of the bias in the estimate of the error‑prone 
regression slope (β*) for a variable measured with random 
error (X*) is quantified in fig 2.

The ratio of variation in error‑free (true) X values to the 
variation in the observed error‑prone (observed) values is 
known as the reliability coefficient, attenuation factor, or 
intra‑class correlation. Because the variation in observed 
values is greater than the variation in error‑free values due 
to random error, the ratio variation(X)/variation(X*) will 
be lower than 1, and the new estimate of the coefficient β* 
will be reduced in proportion, a typical case of regression 
dilution bias.

In practice, the use of an exposure variable (X) meas‑
ured with random error results in underestimating (or even 
missing altogether) an association. A well known example 
is the underestimation of the association between usual 
blood pressure and the risk of cardiovascular disease.6 
Blood pressure is most often estimated based on a limited 
number of readings (for example, office measurements), 
which leads to an imperfect approximation of usual blood 
pressure. The presence of random measurement error in 
estimates of usual blood pressure may underestimate the 
relative risk of cardiovascular disease due to elevated blood 
pressure by up to 60%.6 It explains, at least in part, why 
risk of cardiovascular disease is more strongly associated 
with blood pressure estimates using 24 hour, ambulatory 
blood pressure measurements (based on numerous read‑
ings, hence with less random error) than office blood pres‑
sure (based on fewer readings).3

Measurement error in the outcome (Y) variable
What if the exposure variable, systolic blood pressure, 
was measured without error, but the outcome variable, 
LVMI, had random measurement error? Would a similar 
attenuation of the estimated regression coefficient be 
seen?

Suppose that LVMI (Y) was measured with a ran‑
dom error of ±10 g/m2 or ±20 g/m2 (values in section c 
of the table). When these error‑prone LVMI values are 
regressed on systolic blood pressure, we see that the ver‑

Values of exposure variable systolic blood pressure and 
outcome variable left ventricular mass index (LVMI) with 
different degrees of random measurement error

Random measurement error
Systolic blood 
pressure (mm Hg) LVMI (g/m2)

a) No error in exposure or outcome variable
120 80
130 90
150 110
160 120

b) Random error in exposure variable (X)
Error of ±10 mm Hg 110 80

140 90
160 110
150 120

Error of ±20 mm Hg 100 80
150 90
170 110
140 120

c) Random error in outcome variable (Y)
Error of ±10 g/m2 120 70

130 100
150 120
160 110

Error of ±20 g/m2 120 60
130 110
150 130
160 100
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Why does the slope not flatten in this situation?
The equation for a regression model with no error can be 
expressed as Y = β0 + βX + ε (equation 1), where the error 
term ε represents the variability in Y that is not explained 
by the model’s exposure variable (X).

When Y is measured with error, Y is replaced in equa‑
tion 1 with the observed (error‑prone) variable Y*, 
which is equal to Y + random error. It can be shown that 
re arranging terms yields Y* = β0 + βX + ε + random error 
(equation 2). The random measurement error is sim‑
ply added to the existing error term (ε) and, as a result, 
increases the total amount of unexplained variance in 
the regression model. The standard error for the estimate 

tical d istance (along the Y axis) between each observa‑
tion and the regression line increases (panel c of fig 1). 
However, although the total vertical distance between 
each  observation and the regression line is increased, the 
slope of the line that is able to minimise these distances 
is identical. As a result, no attenuation of the estimate 
of the regression coefficient occurs, and it remains con‑
stant at β=1.00 g/m2/mm Hg. The increased vertical dis‑
tance between observed and predicted values is reflected 
instead in the increased standard errors around the esti‑
mate for β, which increase from 0 with no measurement 
error to 0.45 with ±10 g/m2 error and to 0.89 with ±20 g/
m2 error.
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±10 g/m2

b) Random error on X

c) Random error on Y
±20 g/m2

β 1.00 (SE 0.00)

β 0.71 (SE 0.31) β 0.38 (SE 0.34)

β 1.00 (SE 0.45) β 1.00 (SE 0.89)

No error
Error on X or Y
Amount of error

Fig 1 | effect of random 
measurement error on 
relation between systolic 
blood pressure (exposure) 
and left ventricular mass 
index (lVmI) (outcome). With 
no random measurement 
error (panel a), the slope 
(β) of the line describes 
the error-free association 
between blood pressure (X) 
and lVmI (y); when blood 
pressure is measured with 
a random error of ±10 or 
±20 mm Hg (panel b), there 
is attenuation of the slope; 
when lVmI is measured with 
a random error of ±10 or 
±20 g/m2 (panel c), there is 
increase in variability but no 
change in slope

variance (X)
b*  =  b  x =  b  x

variance (X*)

Observed slope

True slope Variance you actually measure

Variance you would like to measure

variance (true X values)

variance (true X values) + variance (random error)
=  b  x

variance in true X values

variance in observed values

Fig 2 | Degree of bias in a regression slope in the presence of random measurement error in the exposure variable (X)
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of β is therefore increased, with a correspondingly wider 
confidence interval. If a confidence interval is widened 
enough to include zero (for example, an estimate of the 
slope of 0.4, but with a 95% confidence interval from −0.1 
to 0.9), the exposure would no longer be considered a 
statistically significant risk factor for the outcome of inter‑
est. The estimate of the regression coefficient β, however, 
is not affected.

In practice, although the regression coefficient itself 
will be unbiased when there is random measurement 
error in the outcome variable, the increased standard 
error could result in an association being overlooked 
because of lack of statistical significance. In essence, 
random measurement error in the outcome variable (Y) 
makes a study underpowered to detect a true effect of an 
exposure.

For example, ultrasound estimates of fetal weight are 
prone to a large degree of random measurement error 
(±10‑15%).9 This error reduces the value of the estimated 
fetal weight in making appropriate clinical decisions, such 
as the timing of delivery for macrosomia. It could also 
influence conclusions of studies aimed at understanding 
determinants of fetal growth. If a researcher assesses the 
effects of maternal stress on fetal growth by estimating 
the relation between maternal cortisol levels (X) and fetal 
weight (Y),10 the 95% confidence intervals associated 
with the estimate of the slope β of the relation between 
the two variables will be widened due to the measurement 
error in estimated fetal weight. If the confidence interval 
is widened enough to include zero, the researcher would 
conclude that the association between maternal cortisol 
and fetal weight is not statistically significant, irrespective 
of the value of the slope itself. 

Spirometry readings are another type of measurement 
prone to substantial random error, which is introduced 
by imprecise equipment, variability in technician skill, 
and participant behaviour.11 Consequently, confidence 
in tervals around the estimated slope would also be 
w idened in studies assessing determinants of respiratory 
status if the outcome is measured using spirometry.

In summary, the impact of random measurement error 
will be different depending on whether the error is in the 
exposure (X) or the outcome (Y) variable:

• Random measurement error in the exposure 
variable (X) will bias the regression coefficient 
(slope) towards the null (regression dilution 
bias, attenuation)

• Random measurement error in the outcome 
variable (Y) will have minimal effect on the 
regression coefficient, but will decrease the 
precision of the estimate (that is, increase the 
standard error).

The impact of random measurement error on measures 
of association is not restricted to cases where the outcome 
of interest is a continuous variable; it also occurs when 
the outcome of interest is a binary variable (such as dis‑
ease versus no disease) or a survival time. For example, 
using home blood pressure measurements as the expo‑
sure (X), the hazard ratio for cardiovascular diseases (the 
outcome Y) was 1.020/unit of mm Hg based one measure‑
ment versus 1.035/unit of mm Hg based on the average 

of eight measurements.12 Of note, if correlation is used 
to assess an association between two variables, the cor‑
relation coefficient will be reduced if random error occurs 
either in X or in Y.

Additional bias beyond the effects of random measure‑
ment error can be introduced if the degree of random error 
differs according to case or control status (or exposed v 
unexposed status). The impact of this “differential” meas‑
urement error, and strategies to minimise it, are described 
elsewhere.13 For a comprehensive treatment of measure‑
ment error, including what to do if there is measurement 
error in confounder variables, we recommend the text‑
book of Carroll et al.14

recommendations for researchers
The best strategy for dealing with random measurement 
error is to minimise it in the first place at the study design 
stage, either by investing in instruments capable of more 
precise measurements or obtaining repeated measure‑
ments from an individual to better estimate the true 
v alues.

With random measurement error in the exposure (X) 
variable, increasing the sample size will not minimise the 
bias from random error. Increasing the sample size will 
only make the estimates more precisely wrong.

If estimates of the extent of measurement error can be 
obtained from internal validation studies or the litera‑
ture15 (using the reliability coefficient R), the regression 
coefficients can be corrected for the expected downward 
bias. Several authors have reviewed different statistical 
approaches to correct biased regression coefficients.16‑18 
However, these approaches rely on assumptions that may 
often not be met and are difficult to verify.19 The heated 
debate over the validity of “de‑attenuated” estimates of 
the association between 24 hour sodium excretion in 
urine and blood pressure in the Intersalt study in the 
BMJ,20‑24 for example, serves to underline the limitations 
of addressing measurement error in the analysis stage of 
a study. Correction for regression dilution bias requires a 
clear understanding of not only the extent of the random 
error but also the degree to which the error may be cor‑
related with error in other variables. Any correlation in 
the errors, as was argued might occur between 24 hour 
sodium excretion and blood pressure, would produce 
highly inflated estimates of the association between 
sodium and blood pressure. These corrections for regres‑
sion dilution bias may be better used for exploratory or 
sensitivity analyses.

If the outcome (Y) variable is prone to random measure‑
ment error, researchers should increase either the sample 
size or the number of measurements taken per subject to 
account for the increased standard error of the coefficient 
estimate. This increase will compensate for the precision 
lost as a result of random error.

The increase in number of subjects required can be 
estimated by the formula n/R, where n is the sample size 
required if no measurement error exists and R is the reli‑
ability coefficient. For example, if a sample size of 100 
patients is required with error‑free measurements, the 
use of error‑prone measurements with a reliability coef‑
ficient of R = 0.6 would increase the number of patients 
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required to detect the same effect to n/R = 100/0.6 = 
167 patients.25 For cases where increasing the number 
of measurements per patient is preferable to increasing 
the number of patients, the Spearman‑Brown formula for 
stepped up reliability can be used to estimate the number 
of repeated measurements per subject required to achieve 
a desired level of precision.26‑28
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fig 1 Computed tomography image showing 
a cross sectional view of the stomach in the 
posterior mediastinum (arrows)

fig 2 Computed tomography image showing 
a coronal view of the stomach in the posterior 
mediastinum (arrows)

ON ExAMINATION QUIz
Paediatric trauma
Answer B is correct.
more questions on this topic are available from  
www.onexamination.com/endgames until midnight on Wednesday.

answers to endgames, p 1423. For long answers go to the Education channel on bmj.com

STATISTICAL QUESTION
sample size calculations II
Answers a, c, and d are true;  
b is false.

PICTURE QUIz Nausea with a twist
1  The differential diagnoses include proximal upper gastrointestinal 

obstruction secondary to oesophageal motility disorders, reflux 
oesophagitis, peptic ulcer disease, oesophageal or gastric cancer, and 
complicated hiatus hernia.

2  The cross sectional (fig 1) and coronal computed tomography 
(fig 2) images show a large air-containing organ in the posterior 
mediastinum that has two chambers separated by a septum.

3  The most likely diagnosis is a gastric volvulus.

4  Gastric volvulus should initially be treated conservatively with 
fluids and electrolyte correction, but the mainstay of treatment is 
decompression, reduction, and prevention of recurrence, which can 
be accomplished with surgery in the form of a laparoscopic reduction 
with excision of the hernial sac, hiatal defect repair, and gastropexy.

http://www.onexamination.com/endgames


Appendix. Calculations of the effect of random measurement on regression coefficients 

 

No random error 

With no random measurement error on X or Y, the slope of the least-squares regression slope, β, is 

calculated as: 
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where x is the average of xi and y is the average of yi. 

 

Inserting the values from Table, section a: 

= [(-20)*(-20) + (-10)*(-10) + 10*10 + 20*20]  / [(-20)
2
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= 1000 / 1000 

= 1.00 g/m
2
/mmHg 

 

Random measurement error on the exposure variable X: 

a) Error on X : +/- 10 mmHg 
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Inserting the values from Table, section b: 

= [(-30)*(-20) + (0)*(-10) + 20*10 + 10*20] / [(-30)2 + (-0)2 + (20)2 + (10)2] 

= 1000 / 1400 

= 0.71 g/m2/mmHg  

 

b) Error on X : +/- 20 mmHg 
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Inserting the values from Table, section b: 

= [(-40)*(-20) + 10*(-10) + 30*10 + 0*20] / [(-40)
2
 + (10)

2
 + (30)

2
 + (0)

2
] 

= 1000 / 2600 

= 0.38 g/m
2
/mmHg 

 

While the numerator stays constant, the denominator is increased from 1000 to 1400 (with +/- 10 

mmHg error on X) or 2600 (with +/- 20 mmHg error on X), reducing the estimate of the slope from 1.00 

to 0.71 and 0.38 g/m
2
/mmHg, respectively. 

 

 

 

 



Random measurement error on the outcome variable Y: 

 

c) Error on Y: +/- 10 g/m
2
 

Inserting the values from Table, section c: 

 

β*  = 
∑

∑

−

−−

i

i

i

ii

xx

yyxx

2
)(

*)*)((

 

= [(-20)*(-20) + (-10)*(-10) + 10*10 + 20*20] / [(-20)
2
 + (-10)

2
 + (10)

2
 + (20)

2
] 

= 1000 / 1000 

= 1.00 g/m
2
/mmHg (which is equal to the estimate with no measurement error) 

 

d) Error on Y: +/- 20 g/m
2
 

Inserting the values from Table, section c: 

 

β*  = 
∑

∑

−

−−

i

i

i

ii

xx

yyxx

2
)(

*)*)((

 

= [(-20)*(-30) + (-10)*(0) + 10*20 + 20*10] / [(-20)
2
 + (-10)

2
 + (10)

2
 + (20)

2
] 

= 1000 / 1000 

= 1.00 g/m
2
/mmHg 

 

Whatever the random error on Y, the numerator and denominator both remain constant at 1000, 

maintaining the slope’s value of 1.00 g/m
2
/mmHg. 

 


