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Epidemiologists commonly use an adjusted hazard ratio or incidence density ratio, or a standardized mortality
ratio, to measure a difference in all-cause mortality rates.They seldom translate it into an age-, time-, or probability-
based measure that would be easier to communicate and to relate to. Several articles have shown how to translate
from a standardized mortality ratio or hazard ratio to a longevity difference, a difference in actuarial ages, or a
probability of being outlived. In this paper, we describe the settings where these translations are and are not
appropriate and provide some of the heuristics behind the formulae. The tools that yield differences in “effective
age” and in longevity are applicable when both 1) the mortality rate ratio (hazard ratio) is constant over age and
2) the rates themselves are log-linear in age. The “probability/odds of being outlived” metric is applicable whenever
the first condition holds, and thus it provides no direct information on the magnitude of the effective age/longevity
difference.

Gompertz’ law; life expectancy; proportional hazards; standardized mortality ratio

Abbreviations: HR, hazard ratio; MLB, Major League Baseball; NFL, National Football League; RLE, remaining life expectancy;
SMR, standardized mortality ratio.

Major League Baseball players tend to live about 24%
longer than the average American man, according to a
new study led by researchers from Harvard T.H. Chan
School of Public Health (1).

This statement recently appeared in an article in the Har-
vard Gazette (1). Suppose we were to take it literally and
start the longevity contest at, say, age 45 years, so that the
American man would live an average of a further 35 years,
to about 80 years. According to the Harvard headline, the
Major League Baseball (MLB) players would live to an
average age of about 100, some 20 years longer than the
average American man. But does this make sense, or is there
a “translation error” somewhere?

When one goes back to the source publication (2), it does
not take long to see where the numbers got lost in translation.
The main result was that “compared with US males, the
MLB players had significantly lower mortality rates from all
causes (SMR, 0.76; 95% CI, 0.73–0.78)” (2, p. 1298). So the

standardized mortality ratio (SMR)—or hazard ratio (HR)—
of 0.76 was converted to a 24% lower mortality rate, and
then, in the public relations item, to a 24% longer duration
of life.

The reporting of another finding from this work—
involving a direct comparison between the death rates of
National Football League (NFL) players and MLB players—
by a different news agency (3) was more accurate. Under the
title “Former NFL Players Die at a Faster Rate Than Other
Professional Athletes, Study Finds,” we read that it found
that NFL players “died at a rate that was almost 1.3 times
higher” (3) than MLB players.

Three tools have been developed to translate these types of
ratios. The first focuses on an age difference. To arrive at it,
Spiegelhalter (4), influenced by Brenner et al. (5), used a law
created by the actuary Benjamin Gompertz (6) to translate
an HR into an “effective age”: the age of a “healthy” person
who has the same risk profile as the individual in question.
He gave several examples, involving lifestyle, of this “useful
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and attractive metaphor” for “vividly communicat[ing] risks
to individuals” (4). One example was an HR of 2.20 associ-
ated with smoking 20 cigarettes per day, a behavior which
“adds” 8 years to one’s chronological age—that is, it puts a
50-year-old smoker in the same risk category as a 58-year-
old nonsmoker.

The second tool, yielding a life-expectancy difference,
was developed by Haybittle (7). Based on earlier work (8),
he used Gompertz’ law to go from an SMR or HR of 0.76 or
1.30 to a longevity difference measured in years. His exam-
ples focused on translating changes in population mortality
rates over calendar time. Era comparisons involving entire
populations were also featured in the work of others (9, 10)
who have refined Haybittle’s formula.

The third tool translates the HR to a probability, which we
term the “probability of being outlived.” It exploits a rela-
tionship that was explicitly addressed in the 1950s (11, 12)
and again immediately following Cox’s 1972 article (13).
The probability, which has been given various names in the
subsequent decades (14), makes fewer assumptions about
the mortality rates than the other two do. So far, examples of
this probability have come from clinical medicine and have
involved recovery times or undesired clinical events.

Unfortunately, none of these 3 tools appears to have had
much traction in the reporting of results of chronic disease
epidemiology studies. University media offices need help in
translating SMRs and HRs into quantities that journalists,
and the public at large, can more readily relate to; but to do
so correctly, there first needs to be a broader awareness in the
chronic disease epidemiology community of the available
tools and when they are applicable. In this article, we aim to
raise this awareness; it directly addresses readers of a jour-
nal that has for many decades emphasized chronic disease
epidemiology and its associated statistical methods but has
usually confined its effect measures to differences or ratios
of risks and rates.

The remainder of this paper is structured as follows. We
begin by specifying the age/time dimension over which 2
compared hazard functions are assumed to bear a constant
ratio to each other (to be proportional) and consider when
this constancy can be expected to apply. We then show
historical and modern instances where each of the 2 hazard
functions exhibits an additional feature, first noticed by
Gompertz (6), and consider the contexts in which this addi-
tional feature can be expected to apply. We then 1) provide a
brief heuristic explanation of the Gompertz-based age shift
involved in Spiegelhalter’s “effective age” formula; 2) derive
a rough shrinkage factor that further translates the age shift
in the mortality rate scale to a difference in remaining life
expectancy (RLE) beyond a specified age—the quantity
addressed by Haybittle; and 3) provide a less specific prob-
ability metric that, unlike the age-shift and life-expectancy
metrics, does not depend on Gompertz’ law. For didactic
purposes, we show calculations to 2 decimal places through-
out; in practice, any age shift or longevity difference or
probability should be coarsened considerably.

Our primary target audience is epidemiologists and sci-
ence writers who do not have access to the raw data but need
to be aware of their options when translating the SMRs and
HRs reported in a published article for a broader audience.

PROPORTIONAL HAZARDS AND PROPORTIONAL
GOMPERTZ HAZARDS MODELS

All 3 rough-and-ready translation tools assume that from
some starting age/time onwards, the ratios of the age-
specific mortality rates in the index and reference groups
are approximately constant over this time span—or that the
rate functions are separated by an approximately constant
vertical distance when they are plotted on a log scale (as
in the male:female and international contrasts shown in
Web Figure 1, available online at https://doi.org/10.1093/
aje/kwab178). Since statistical tests of this proportional
hazards assumption miss/detect large/small deviations if
the numbers of events are small/large, we are reluctant to
be guided solely by such tests. We also look for biological
analogies, such as the circumstances that lead to the “HR
constancy over age/time” seen in male:female HRs: One
might attribute this constancy to constitutional or life-history
differences or other host differences that predate cohort
entry and that can be expected to continue throughout the
follow-up time. Although our main focus is on longevity
and follow-up spanning 30–50 years, the short-term (daily)
mortality rates in persons who become infected by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
also exbibit a close-to-constant male:female ratio in the first
60 days postdiagnosis (15).

Two of the 3 translation tools also assume proportional
Gompertz hazards. In this model, from the starting age
onwards, the logarithms of the age-specific all-cause mortal-
ity rates within the index and reference groups are—in
addition to being parallel to each other (the proportional
hazards model)—each approximately linear in age. This
log-linear-in-age pattern in mortality rates was first noticed
by Gompertz (6), but it was Thomas Edmonds who, with
“great(er) ingenuity, neatness, and effect” (16, p. 8), pro-
moted the same law in his book (17) and introduced the term
“force of mortality” (18). Both regarded it as a continuous
function of age and expressed it as number of deaths per
person-year. As Edmonds put it, “the continuous change
in the force of mortality is subject to three simple laws of
geometric progression, corresponding to three remarkable
periods of life” (17, p. v). The third of these—the one of
interest here—Edmonds took to begin with the cessation
of procreativity. For convenience, we will, somewhat arbi-
trarily, take it to start at the age of 45 years (a0). And we will
stay with the actuarial notation m for mortality rate, rather
than the more biostatistical h or λ (introduced by Cox) for
hazard rate. Gompertz and Edmonds found the force of
mortality (m) during this third period of life, at all its ages
(a), to be “expressible by a logarithmic curve” (17, p. v);
that is, log(m[a]) was linear in a. Thus, they expressed the
mortality rate at age a, which we write as m[a], as

m [a] = m [a0] × eb×(a−a0),

where m[a0] is the mortality rate at age a0 and b is the slope
when log(m) is plotted against a.

From the empirical relationship between the log mortality
rate and age (the intercept and slope are the estimates for
m[a0] and b) in the regional mortality tables of the time,

Am J Epidemiol. 2021;00(00):1–7

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab178/6306908 by M
cG

ill U
niversity Library user on 22 N

ovem
ber 2021

https://doi.org/10.1093/aje/kwab178
https://doi.org/10.1093/aje/kwab178


From Hazard Ratios to Longevity Differences 3

both Gompertz and Edmonds derived slopes of approx-
imately 0.08. Thus, the fitted rate in the small interval
centered on people’s 46th birthday was e0.08×1 = 1.083
times (i.e., 8.3%) higher than that at their 45th birthday, and
so on. As we see from more recent period mortality rates
in 12 selected countries in the Human Mortality Database
(19)—plotted in Web Figure 1—not only do the log rates
continue to be linear but the ones for males and females
are sufficiently parallel to justify the proportional hazards
assumption, which is widely used in epidemiologic studies
to produce a single (age-independent) HR. However, today’s
Gompertz’ and Edmonds’ “slopes” are closer to 0.10 or even
0.11. For the convenience of dealing with rounder numbers,
just as Spiegelhalter does (4), we will adopt a modern-day
“Gompertz slope” of 0.10.

The male:female all-cause mortality data in Web Figure
1 represent 1 example where—for our purposes here—the
“same age slope” for the log rates in each of 2 compared
cohorts provides an adequate measure. Spiegelhalter has
described what we call the “proportional Gompertz hazards
model” this way:

This means that the average chance of dying before a
next birthday increases by around 10% for each year
of aging, whether a man or a woman and regardless of
age, if over 30. Equivalently, the average risk of dying
before a next birthday doubles roughly every 7 years.
Demographers have concluded that this ratio, 1.1, seems
to be remarkably constant across populations and over
time (4, p. 3).

In support of his statement, Spiegelhalter cited a review pa-
per by the eminent demographer Vaupel (20). In addition to
the already mentioned constitutional, life-history, and sex dif-
ferences, this “HR constancy over follow-up ages and sexes”
may also reflect 1) the inclusion of all causes of mortality,
so that 1 specific cause does not dominate; 2) the absence of
identifiable vulnerable subgroups; and 3) the absence of any
specific or immediate life-threatening conditions. Before
employing the proportional-hazards–based or proportional-
Gompertz-hazards–based tools, end users are urged to care-
fully consider whether these same types of conditions apply
to the contrast in question.

We now consider each tool in turn.

PROPORTIONAL-GOMPERTZ-HAZARDS–BASED
AGE/RATE SHIFTING

The logarithm of 2 is approximately 0.7. Thus, if—as
Spiegelhalter does—we use a Gompertz slope of 0.10, so
that e(7×0.10) is approximately 2, then in the third stage of
life, today’s all-cause mortality rates at age a + 7 years are
approximately “double” those at age a (a common shortcut
for calculating the doubling time of invested money is to
divide 70 by the compound interest rate). This geometric
progression gives us a way to reexpress the HR or SMR of
1.3 (contrasting the mortality rates in the NFL (index) with
the MLB (reference) category of players), as an “age shift”
or a “rate shift.”

The mortality rate for MLB players is

m [a|MLB] = m [45|MLB] × eb×(a−45),

and the mortality rate for NFL players is

m[a|NFL] = m [a|MLB] × 1.3

= m[45|MLB] × eb×[(a−45)+log(1.3)/b].

Substituting log(1.3)/0.10 = 0.262 × 10 = 2.62, we obtain

m [a|NFL] = m [a + 2.62|MLB] .

The mortality rates of NFL players are comparable to the
mortality rates of MLB players who are 2.62 years older:
NFL players are 2.62 years “older,” actuarially speaking,
than MLB players. In Spiegelhalter’s terminology,

Age shift = log(HR)/0.1 = 10 × log(HR)

(2.62 years in this example) represents the difference in
effective age.

However, this does not mean that if players in the 2
categories begin follow-up at a common age but are subject
to differing (shifted) mortality rates (as in Figure 1A), the
difference in RLE will also equal 2.62 years.

FROM AGE SHIFT TO LONGEVITY DIFFERENCE

In fact, as other authors have pointed out (5, 8, 9), the
difference in RLE must be less than the 2.62-year age shift.
How much less depends on the starting age, a0:

Difference in RLE = 10 × log (HR)

× shrinkage factor,

which depends on a0—a little less if the starting age is 45
years (approximately 99% of those alive at age 45 will still
be alive at age 47.62) but a lot less if it is 85 years (only about
75% of those alive at age 85 will be alive at age 87.62).

A concrete example illustrates the amount (the shrinkage
factor) by which the effective age has to be multiplied to
reduce it to the RLE. In the complete life table based on
mortality rates in US males in 2017 (21), we can study the
patterns in the RLEs at successive ages.

Table 1 shows that an x-year age shift in rates does not
translate to an x-year difference in remaining life expectancy.
For example, the RLE at a man’s 45th birthday is 34.2 years,
while the RLEs at his 46th, 47th, and 48th birthdays are
33.3, 32.4, and 31.5 years, respectively—that is, the RLE
differences are 34.2 − 33.3 = 0.9 years, 34.2 − 32.4 = 1.8
years, and 34.2 − 31.5 = 2.7 years, or approximately 90%
of the 1-, 2-, and 3-year age shifts. Thus, the 2.62-year wait
(�a = 2.62) until the mortality ratio shifts from 1.0 to 1.3 is
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Figure 1. Relationship between age shift and the difference in remaining life expectancy in a hypothetical example where the hazard ratio
is 1.3 and Gompertz’ law applies. A) The mortality rate (m) in the reference category is shown in the lower curve (dotted line), starting at the
value m45 at age 45 years. If the Gompertz slope is 0.10, then for persons in the reference category the mortality rates at age a + 7 years are
approximately double those at age a, and those at age a + 2.62 years are 1.3 times’ those at age a. The upper curve (solid line) represents an
index category where the age-specific mortality rates are 1.3 times’ those in the reference category. B) A longevity comparison of the reference
category (dotted line) versus the index category (solid line), beginning at a common age (age 45 years here). The remaining life expectancies
(RLEs) of the contrasted categories (the areas under the respective survival curves) differ by 2.4 years. The median remaining duration of life
(length of the horizontal hatched line) differs by a slightly different amount.

more appropriately converted to an RLE difference of 90%
of 2.62—that is, to about 2.4 years (Figure 1B).

Therefore, even if Gompertz’ law is a good fit, converting
this 2.62-year shift in mortality rates to the difference in RLE
requires further specificity. Some sense of the magnitude
of the shrinkage can be found in Haybittle’s article (7). He
arrived at the log(HR)/(Gompertz slope) formula by starting
from a previously established approximation (7) of the RLE.
That approximation included a term that involved the force
of mortality at the starting age divided by the Gompertz
slope. By omitting this term from that formula, Haybittle
found that when one starts from age 25 years, where the
omitted term is small, this computed age shift provides a
close approximation of the difference in RLE. Above that
age, it increasingly overestimates the difference (5, 7, 8).

Web Figure 2 shows how the difference in RLE (a dif-
ference of mean values), expressed as the shrinkage factor
(i.e., as a percentage of the age shift �a), is a function of
the starting age, a0. The pattern is similar to what Haybittle
found. For example, if we measure from age 45 years, the
difference in RLE is approximately 90% of the 2.62-year
age shift—that is, approximately 2.4 years. Differences in
the percentiles of the contrasted longevity distributions (22–
24) are addressed in the Web Appendix.

PROPORTIONAL-HAZARDS–BASED “PROBABILITY OF
BEING OUTLIVED” METRIC

Some people may have difficulty imagining a remaining
longevity contest between themselves and a sibling 2.62
years younger. They might prefer a contest between them-
selves and a lower–risk-profile twin and wish to know the
probability/odds that they will die before that counterfactual
twin. It has long been (but is not widely) known that this
probability/odds is an even simpler function of the HR and
that the conversion applies to any 2 distributions whose
hazard functions are proportional (13). A proof is given in
the Web Appendix.

Probability that the higher-risk person dies first =
HR/(HR + 1); odds = HR:1.

This simpler conversion does not force the translator to
choose between the mean and some quantile. However, as
Spruance remarked (when dealing with a desired clinical
outcome), its greater generality (its nonreliance on equal-
slope Gompertz distributions) comes at a cost: “When the
hazard ratio is thought of as the odds that a patient will heal
faster with treatment, a unitless term not directly reflective
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From Hazard Ratios to Longevity Differences 5

Table 1. Life Table Entries for Males at Certain Ages, United States, 2017a

Age Group, years

25–28 45–48 65–68

ab a + 1 qb, %c RLEa
d a a + 1 q, % RLEa a a + 1 q, % RLEa

25 26 0.161 52.4 45 46 0.328 34.2 65 66 1.594 18.0

26 27 0.166 51.4 46 47 0.352 33.3 66 67 1.703 17.3

27 28 0.171 50.5 47 48 0.380 32.4 67 68 1.819 16.6

28 29 0.176 49.6 48 49 0.415 31.5 68 69 1.948 15.9

Abbreviation: RLE, remaining life expectancy.
a Data were obtained from the Centers for Disease Control and Prevention’s 2017 life table for males (21).
b a, age; q, conditional probability of dying.
c Conditional probability of dying between ages a and a + 1.
d Expectation of remaining life at age a.

of the fundamental time units of the study, it also becomes
more evident that the hazard ratio cannot convey information
about how much faster this event may occur. The difference
between hazard-based and time-based measures is analo-
gous to the odds of winning a race and the margin of victory”
(25, p. 2787).

“GOMPERTZ TRANSLATE” IN PRACTICE

Our first example was to translate the SMR or HR of 1.3.
If one is content with a very rough translation and wishes to
emphasize age, one can use Spiegelhalter’s age shift:

�a = log(1.3)/0.10 = 10 × log(1.3) = 2.62 years.

It has an easily remembered form when using a Gompertz
slope of 0.1, and it provides an upper bound on the RLE dif-
ference. If one is uncomfortable providing an overestimate
of the longevity difference, one can correct it downwards
using factors derived from the broad RLE patterns observed
in life tables and in Web Figure 3: For example, one might
reduce �a by, say, 10%, 20%, and 30% if the remaining life
years begin at a0 = 45, 55, and 65 years, respectively.

Provided that the proportional hazards assumption holds,
we can forego the assumption of common-slope Gompertz
distributions and simply calculate that the probability that
an NFL player will be outlived by (will die before) an MLB
player is 1.3/(1.3 + 1) = 0.57 or 57%, or that the odds of this
are 1.3:1.

Our second example was the headline that prompted us
to take up this issue, namely the SMR of 0.76 contrasting
the all-cause mortality rates of baseball players with those
of average American men. If, again, we use the “Gompertz”
slope of 0.10, then the 0.76 yields an age shift of

�a = 10 × log(0.76) = −2.7 years.

This suggests that these baseball players were “actuarially
younger,” by 2.7 years, than average American men. The

SMR of 0.76 is based on the mortality rates among 10,451
MLB players during the years 1979–2013 inclusive. From
the database from which these players were identified, we
estimate that their average age when their follow-up began
was approximately 40 years. Thus, using the broad pat-
terns in Table 1 and Web Figure 3, we might consider the
MLB players to live an average of 2.4 years longer (2.7 ×
0.9 = 2.4) than average American men.

THE SMALL PRINT—ENLARGED

We hesitate to emphasize exact correction factors, since
the uncorrected �a is already based on a “conveniently
round number” slope of 0.10 (4). If we were to use a slope
of 0.11, so that 1/0.11 ≈ 9, then the uncorrected �a would
be approximately 9 × log(0.76) = 2.5 years.

We are also aware that any reported HR or SMR of 1.30
(such as in the NFL vs. MLB comparison) is just an average
over the ages studied. It might be that if one could examine
the raw data, one might find that it was 1.50 at age 45 years
and 1.10 at age 75 years. One might also find that the slope in
the experience in the reference category differed somewhat
from the 0.10 or 0.11 considered here, or that the elevated
HR is due to a specific cause of death or is time-limited.
Since few publications report comparisons at this level of
detail, all translations are at best approximate.

If the HR exceeds 1 by just a small amount—that is, if
HR = 1.1 or 1.2, for example—then one does not need to
reach for a calculator: log(HR) ≈ HR − 1. Likewise, if HR
lies below 1 by just a small amount—if, say, HR = 0.9 or
0.8—then log(HR) ≈ 1 − HR. Thus, HR = 1.1 and HR =
0.9 correspond to (uncorrected) life-shortenings and life-
extensions of approximately 1 year. One needs to calculate
(rather than approximate) log(HR) if the HR is further from
the null.

While Gompertz’ law is a reasonable model for all-cause
mortality in a general population, it cannot be expected to
fit cause-specific mortality rates or subpopulations (patients)
with newly diagnosed or known life-threatening conditions;
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6 Pang and Hanley

nor can the constant HR assumption be expected to apply
throughout the entire life span. And even if it did, we would
need 3 slopes—for the 3 different life phases that Edmonds
described.

In those applications where 2 equal-slope Gompertz distri-
butions are reasonable, the age shift allows us to accompany
the probability of being outlived with a longevity difference.

CONCLUSION

In closing, converting HRs to time ratios is consider-
ably more complex than inverting currency exchange rates.
Had the press office correctly inverted the 0.76 HR, the
1/0.76 = 1.32 time ratio (implying that MLB players live
32% longer than US males (100 × (1.32 − 1) = 32%)) would
have applied only if lifetimes followed exponential distri-
butions. However, the only lifetimes that follow such dis-
tributions are those of inanimate objects (such as electronic
components, or glassware) that are ended by external events
(such as electrical surges, or being accidentally dropped)
unrelated to the ages of the objects. This review promotes
2 conversion efforts better suited to human longevity stud-
ies.

An early and successful use of the concept of “effective
age” was a dramatized 1973 television public service an-
nouncement “showing a 60-year-old Swede jogging effort-
lessly beside a puffing 30-year-old Canadian” (26). It is
still considered a “major breakthrough in the conscience of
Canadians” (26–28). However, uptake of the “metaphor” has
been slow, as has the use of RLE differences developed by
demographers. In linking these 2 concepts, our aim was to
encourage the translation of HRs and SMRs derived from
epidemiologic studies that focus on all-cause mortality. The
“effective age” emphasizes years already “lost or gained
off chronological age” (4, p. 1), while the RLE difference
focuses directly on the remaining life years. Either way,
we hope that our call to “Gompertz translate” improves the
statistical reporting of mortality rate ratios or HRs and helps
readers understand what they mean—even if the translation
is approximate and postpublication. If one is unwilling to
trust the equal-slopes assumption implicit in “Gompertz
translation,” one can fall back on the less informative “prob-
ability of being outlived” metric, which requires only the
proportional hazards assumption.

In contrast to demographic studies of entire populations,
epidemiologic studies of individuals have to deal with con-
siderable selection, confounding, and measurement errors
that preclude the much more refined calculations and sta-
tistical precision used in demography. These several sources
of noise, along with the fact that neither Gompertz’ law nor
the proportional hazards assumption applies exactly in any
application, mean that “translators” should not be overly
precise. We suggest, as Spiegelhalter does in his Table 1
(4), that they round all age shifts or longevity differences to
the nearest integer. It would also be appropriate to convert a
(say) 57% probability of being outlived to (say) 55% or 60%
so as to avoid false precision.
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