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INTRODUCTION 

Comparison of the articles in today's biomedical literature with those of 
twenty years ago reveals many changes. In particular, there seem to have 
been large increases over time in three indices: the number of authors per 
article, the number of data-items considered, and the use of multivariate 
statistical methods. While cause and effect among these three indices is 
unclear, there is little doubt that the growth in a fourth factor, namely, 
computing power and resources, has made it much easier to assemble larger 
and larger amounts of data. Packaged collections of computer programs, 
driven by simple keywords and mUltiple options, allow investigators to 
manage, edit, transform, and summarize these data and fit them to a wide 
array of complicated multivariate statistical "models." In addition to mak­
ing it easy for the investigator to include a larger number of variables in 
otherwise traditional methods of statistical analysis, the increased speed and 
capacity of computers have also been partly responsible for the new meth­
ods being developed by contemporary statisticians. For example, some of 
the survival analysis techniques discussed below can involve several million 
computations. 

How do these trends in the availability and use of multivariate statistical 
methods affect the health researcher who must decide what data to collect 
and how to analyze and present them? How does the reader of the research 
report get some feeling for what the writer is attempting to do when he uses 
some of these complex-sounding statistical techniques? Are these methods 
helping or are they possibly confusing the issue? 

Unfortunately one cannot look to one central source for guidance about 
these newer methods. Descriptions of many of them are still largely scat-
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156 HANLEY 

tered in the (often highly technical) statistical literature or else presented 
in monographs in which the connections to other related techniques may 
not be very evident. Moreover, the reader is often not interested in refer­
ences to the technical intricacies of maximum likelihood equations, to the 
methods of solving them, or to the computer program or package used to 
perform the calculations; rather he is worried about what the technique is 
attempting to do, what the parameters mean, and whether the assumptions 
and conclusions are appropriate. 

The plan of this chapter then is not so much to review all of the recent 
developments in statistical methodology, but rather to use examples from 
the literature (a) to give an overview of what multivariate analysis is all 
about, (b) to describe, in general terms, what it can and cannot be expected 
to do, and (c) to discuss in a little more detail some newer techniques, as 
well as some that were developed some time ago but are only now becoming 
popular, namely (i) logistic regression, (ii) log-linear models for multiway 
contingency tables, (iii) proportional hazards models for survival data, and 
(iv) discriminant analysis. 

MULTIVARIATE ANALYSIS: AN OVERVIEW 

Scope 
The term multivariate analysis has come to describe a collection of statisti­
cal techniques for dealing with several data-items in a single analysis. Al­
though authors differ about where to draw exact boundaries, for example 
whether multiple regression is a univariate or multivariate technique, it is 
more a matter of semantics than it is of substance. I follow here the conven­
tion of others (10, 28, 33, 43) and define any analysis that involves three or 
more variables simultaneously as "multivariate." As such, the term mul­
tivariate analysis encompasses everything except confidence intervals, chi­
square tests for two-way contingency tables, t-tests (unpaired), one-way 
analysis of variance, and simple correlation and regression. It includes a 
huge variety of techniques, since even with just three variables, there are 
a large number of possibilities (Table 1). The method of analysis depends 
heavily on whether one is interested in interrelationships or in comparisons, 
and on whether variables are qualitative or quantitative. The most I can do 
in this short space is to give a brief roadmap, along with pointers to helpful 
descriptions or examples. In many situations there will not be one single 
best method of analysis. As Bishop et al (10) point out, multivariate analysis 
should be thought of as a "codification of techniques of analysis, regarded 
as attractive paths rather than straightjackets, which offer the scientist 
valuable directions to try." 
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Table 1 A taxonomy of parametric statistical methods 

Response variable(s) 

Univariate 

Stimulus Discrete 

variable(s) [1] 

Univariate 

Discrete Contingency table 

Continuous Logistic regression 

Continuous 

[2] 

t-test 

One-way analysis of 

variance (Anova) 

Correlation 

Discriminant analysis Simple regression 

Multivariate 

Discrete Multi-dimensional 

contingency table 

Continuous Logistic regression 

Multi-way Anova 

Partial correlation 

Discriminant analysis Multiple regression 

Mixed Logistic regression 

Discriminant analysis 

Types of Analyses 

Analysis of 

covariance (Ancova) 

Multivariate 

Discrete Continuous 

[3] [4] 

Multi-dimensional Discriminant analysis 

contingency table 

•• ogistic regression 

Multivariate regression 

Multi-dimensional Multivariate Anova 

contingency table (Manova) 

Multivariate regression 

Canonical analysis 

Multivariate regression 

Canonical analysis 

Multivariate statistical techniques may be conveniently divided into those 
in which the variables involved (a) are all of "equal status" or (b) fall 
naturally (or with some gentle pushing) into two sets, those which are 
influenced (response variables) and those which influence (stimulus vari­
ables)_ 

In the first group of techniques, which includes Principal Components 
Analysis, Factor Analysis, and Cluster Analysis, the emphasis is on the 
internal structure of the data-items in a single sample. 

Principal Components Analysis (PCA) asks whether a large number of 
quantitative data items on each subject can be combined and reduced to a 
single (or at most a few) new variables (principal components) without 
losing much of the original information. In other words, the aim is to 
describe the subjects in terms of their scores (weighted sums of the original 
variables) on a much smaller number of new variables. These new variables 
(components) are built to be uncorrelated with each other, so as to avoid 
any redundancy. Also, they are arranged in decreasing order of "informa­
tion" so that subjects are furthest apart from each other on the first compo­
nent, less far apart on the second, and so on. If the total information in the 
original variables is "compressible," the subjects will not vary very much 
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158 HANLEY 

on the latter components, and these can be discarded as redundant. Theo­
retically, since there are as many principal components as there are original 
variables, retaining them all permits one to reproduce the original data. An 
example in which the first principal component captured 67% of phenoty­
pic variance in a population and was then used as a (univariate) index of 
overall body size in all subsequent analyses can be found in (11).  

Factor Analysis (FA) asks whether subjects' quantitative responses on a 
large number of items and the patterns or correlations among these re­
sponses are "explainable" by thinking of each item or variable as measuring 
or reflecting a different mix of a smaller number of underlying "factors" or 
"traits" or "dimensions." As originally conceived, it differs from peA in 
a number of ways. Whereas PCA "constructs" new variables from already 
observed ones, FA goes in the other direction, "reconstructing" the ob­
served variables from latent ones. This distinction may have been too subtle 
and has largely evaporated; moreover, most computer packages use princi­
pal components as one way of extracting factors. Second, FA usually as­
sumes that although factors are translated into variables by a "mixing 
formula" that is common to all subjects, variables will also contain some 
variation that is unique to each subject. Third, whereas peA is more a 
data-reduction technique, FA seeks actually to understand and label the 
various "factors." Fourth, unlike PCA, FA does not necessarily produce 
unique answers. Indeed, there are many methods of factor analysis. 

FA techniques are used primarily to explore relationships and to reduce 
the dimensionality of a data set. They serve more for instrument building 
and index construction than as direct analytic tools. However, although 
they are closely associated in psychology with establishing construct valid­
ity, at least one author (40) considers them generally inappropriate for 
developing health indices. These techniques have been somewhat more 
useful when the context is of a physical nature, such as in studying air 
pollution patterns (35), but even then, there are difficulties (5). The few 
published examples of FA in epidemiology and public health have either 
concluded the obvious or concluded nothing at all. The same seems to hold 
true for their use in the medical literature (28). 

By far the majority of the applications of multivariate statistical methods 
in the health sciences are of the second kind, where one or more variables 
serve as "outcomes" or "responses" or "target variables" (28), and others 
serve as "predictors" or "explanatory" or "carrier" (48) variables. These 
two sets of terms are gradually replacing the older and quite misleading 
terms, "dependent" and "independent" variables. Some authors subdivide 
the explanatory variables further into those of primary interest ("study 
variables") and those of a "disturbing" or "confounding" or "nuisance" 
nature; I return to this subdivision below. 
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The main types of techniques for dealing with stimulus-response studies 
are presented in Table 1, in the form of a multiway grid, according to 
whether the stimulus and response variable(s) (rows and columns, respec­
tively) are one or many and according to whether they are all recorded on 
continuous measurement scales, or are all categorical (discrete), or a mix­
ture of both. 

It is worth dwelling for a moment on a number of contrasts between 
methods for analyzing a single (univariate) response that is "measured" on 
a continuous scale (column 2) and those for a corresponding response that 
is discrete (column 1). 
1. Methods for analyzing a continuous response have been in existence for 
considerably longer (the principle ofleast squares for fitting a regression line 
dates back at least two centuries; the newest technique, analysis of covari­
ance, is at least 50 years old). 
2. These methods tend to choos� parameters and judge the amount of 
variation explained by various factors using easily understood "distance" 
criteria such as least squares; in other words, they keep the analysis in the 
same scale or "metric" that the actual observations were measured on; by 
contrast, methods for analyzing a discrete response tend to measure "dis­
tance" and "fit" using a probability or "likelihood" scale (likelihood is 
defined as the probability, calculated after the fact, of observing the data 
values one did). Although the method of fitting parameters to maximize the 
likelihood is in no sense inferior (if anything it is generally superior from 
a technical standpoint), it is easier for readers to comprehend changes in 
R-squared than changes in a log-likelihood! 
3. Regression equations for a continuous response are usually linear, in­
volving additive terms, and can be fitted from simple summary statistics, 
whereas those for a discrete response are often nonlinear, and need to be 
fitted iteratively with several passes through the data. 
4. Estimates from these nonlinear regressions tend to have skewed sam­
pling distributions, giving rise to confidence intervals that are not symmet­
ric. The odds ratio used in epidemiologic studies is a case in point. 
Fortunately, it is often possible to work in a scale (e.g. log) in which the 
confidence interval will be of a simpler, symmetric, shape and to change 
back to the desired scale at the finish. 

As can be seen from Table 1, multiway contingency tables, logistic regres­
sion, and discriminant analysis all play dual functions: they can be used to 
analyze either a single response variable and several stimuli or several 
responses and a single stimulus. Indeed, as discussed below, this ability to 
reverse a "multiple response, single stimulus" situation and cast it into a 
more traditional and more workable "one response, multiple stimuli" 
regression framework is key to handling multiple response data. 
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160 HANLEY 

As one proceeds to treat several response variables and several stimulus 
variables simultaneously, the level of complexity increases considerably: all 
but the few with n -dimensional vision are quickly lost. As a result, even 
though computer programs are available for them, the two "doubly-mul­
tivariate" techniques, multivariate regression and multivariate analysis of 
variance (Column 4, Table 1), are seldom used. Instead, investigators try 
first to construct a "univariate" response and then relate this to the several 
stimulus variables. 

MULTIVARIATE ANALYSIS: PURPOSES 

In this section I discuss the Why of multivariate techniques. Although there 
are many different techniques, they share a number of common aims and 
a common underlying philosophy. Of course, they also have many of the 
same pitfalls; I discuss some of these below. 

It is difficult to discuss multivariate techniques without also discussing 
the concept of statistical "models." It sometimes helps to think of these 
models as comprising two parts, one that is deterministic (dealing with the 
expected structure, almost like a "law") and one that is stochastic (dealing 
with random variation). This first part will be of a more global nature, 
describing what should happen. It might describe how two chemical agents 
act together on a host or how a lung grows in volume as it grows in linear 
dimensions; it might be based on or summarize a psychological or sociologi­
cal theory; or it might be a rough straight-line or curvilinear pattern seen 
in the data, and which one wants to follow up. This "structural" part of the 
overall statistical model can be thought of as describing the systematic 
variations or pattern one would expect in a body of data. Although it is 
usually described in explicit mathematical equations with coefficients, pow­
ers, and the like, it does not have to be so precise. For example, the model 
might be: "the dose response relationship has no threshold," or "the under­
lying curve is expected to be concave," or "the risk of cancer will vary with 
age and be different in exposed and nonexposed groups, but the risk of 
cancer among the exposed relative to that among the nonexposed will 
remain the same over all ages." 

The other part of the model, which some would regard as the probabilis­
tic element, deals with the deviation of the observed data from the postu­
lated pattern. It is often difficult, however, to separate the two parts of the 
overall model, since it is not clear where prior knowledge (pattern) ends and 
ignorance (unexplained variation) begins, i.e. whether aberrations are ob­
served because the postulated pattern is a poor one (lack of fit) or because 
of some other reason. Although this separation into systematic and random 
components, i.e. into signal and noise, is often used for responses that are 

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 1

98
3.

4:
15

5-
18

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

64
.2

29
.2

15
.2

25
 o

n 
01

/2
2/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



MULTIVARIATE ANALYSIS 161 

recorded on a continuous scale, it is done much less frequently for binary 
responses. One learns very early in linear regression to think of both the 
systematic (the straight line) and the random (the scatter of the individual 
points from the line). In a binary regression, one still thinks of a systematic 
line (possibly "s-shaped" such as a probit or logit curve) but seldom stops 
to think about the noise about this curve. Part of the reason for not doing 
so is that the curve is fitted using likelihood, rather than distance, as the 
metric and part is that the variation is binary, not continuous. The virtue 
of this "systematic plus random" paradigm has been recently illustrated in 
the Generalised Linear Interactive Modelling (GUM) computer program 
(6): the program "generalizes" to a wide variety of continuous and binary 
response regressions by using different probabilistic models (Gaussian, 
Binomial, Poisson, etc) and different "link functions" for changing the 
systematic portion of the model from straight line to s-shaped and so on. 
GUM points out that in fact there is a "distance" minimization intrinsic 
to the method of Maximum Likelihood. 

With this preamble, I now go on to discuss, via examples where possible, 
the main aims and uses of multivariate statistical techniques and models. 
We see four main purposes: 

1. to summarize, to smooth out, to see patterns 
2. to make comparisons fair, to compare like with like 
3. to make comparisons clear, to remove noise 
4. to study many factors at once, to explain variation. 

Purpose 1: To Smooth Out, to See the Forest From the Trees 

How might one investigate whether and in what way breast cancer inci­
dence rates have changed over time, using the available incidence data from 
1935 to 1980 collected by the Connecticut tumor registry? This is an exam­
ple of a single target variable, binary in nature (cancer or not), and the 
influence of two "stimulus" variables, age and year of birth. Suppose we 
know the numbers of cancers in each of nine five-year periods from 1935 
to 1980 for each of 12 five-year age groups, along with numbers at risk in 
each of these 9 X 12 = 108 "cells." 

As a first step, one could plot the 108 observed age specific incidence rates 
against age and use lines of different colors to connect together the data 
points to form age-specific incidence curves for the different birth cohorts. 
Some of these plots, derived from the data published i� Reference (60), are 
given in Figure 1 (left); they show that although there seem to be cohort 
effects, it is difficult to measure them very precisely from these "raw" data 
points. Most would believe that the jagged pattern of straight-line segments 
has no special meaning, and would think of it only as noise that is obscuring 
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Figure 1 Age and cohort specific breast cancer incidence rates in Connecticut, 1935-1980. 
Left: observed rates in five selected cohorts. Right: smoothed rates obtained from a multiplica­
tive model. 

the "real" underlying pattern. They would prefer instead a series of 
"smoother" incidence plots, one for each birth cohort. These systematic 
"curves" could be produced by smoothing each one by eye, but doing so 
would ignore two considerations: first, the rates are calculated from numer­
ators and denominators of varying stability (something the eye looking at 
a data point cannot see) and, second, if rates vary smoothly across age, they 
probably also do so across cohorts. Thus, one would need to smooth in two 
directions at once. This could be done by postulating a single "parent" plot, 
consisting of 12 points (left unsmoothed to begin with) and specifying that 
the plots for the separate cohorts are to be obtained by mUltiplying the 
parent plots by separate proportionality factors. Admittedly, the task is too 
complicated to perform manually, but that is hardly an obstacle. This 
"model-fitting" serves a number of purposes. 

1. It produces more realistic plots, and uses many fewer numbers or 
"parameters" to do so (for the entire dataset, there would be 20 cohort 
parameters and 12 age parameters). 

2. It draws the eye away from the randomness (which should be binomial 
or Poisson around each fitted point) and toward the pattern, in the same 
way that an image becomes clearer the further away one stands from its 
rough grain. 
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3. The raw plots generated from the earliest and latest cohorts are based 
on fewer data points (age groups) and are the most difficult to judge, 
whereas the corresponding synthetic plots are generated from parame­
ters that were estimated from the entire data set. This concept of borrow­
ing strength from neighboring data points is a central one in multivariate 
analysis. 

To some, the idea that it takes 20 + 12 = 32 numbers to describe 20 plots 
is still unappealing. Surely, they might argue, the parent plot (12 parame­
ters) is not in reality so complicated that it could not be described by a truly 
smooth, two or three parameter curve or possibly by separate curve seg­
ments for pre- and post-menopause. Likewise, they would consider it quite 
likely that the 20 proportionality factors by which this incidence curve 
changes from cohort to cohort themselves form a smoothly changing series 
that could be described by many fewer parameters. Others would argue that 
one should "leave well enough alone" and that any further smoothing or 
modeling might do more harm than good. In this example, with the rela­
tively large amount of data, the additional reduction might indeed be un­
necessary; however, had the data been scarcer, it is likely that the further 
smoothing would have been required. 

There are two more serious objections to the approach just described. 
First, for any one cohort, the entire parent curve is multiplied through by 
the same value. This does not allow for cohort effects that are age-specific, 
e.g. changes in the age at which women in different cohorts completed their 
first full-term pregnancy might affect the risk of premenopausal breast 
cancer differently than they would the risk of postmenopausal cancer. This 
is an example of what statisticians call an interaction: an effect of one factor 
(age) that is not constant across different values or levels of another (year 
of birth). Second, the actual goodness of fit of the smoothed curves to the 
raw data points needs to be evaluated. Before it is, any other expected or 
suspected patterns can be built into the fitted curves (provided that there 
are not so many assumptions and exceptions that one ends up with almost 
as many parameters as data points) and their "fit" tested by examining 
whether in fact the fitted curves come closer to the raw data points than 
before, and whether the discrepancies (residuals) are more or less haphaz­
ard and unexplainable. See (51) for a nice account of the use of regression 
models in studying regional variations in cardiovascular mortality. 

As already mentioned, the assumption of smoothness and of orderly 
patterns of change is a central one in multivariate analysis. It stems from 
the belief (or maybe just the hope) that nature is basically straightforward, 
and that if there are no good biologic or other reasons to the contrary, 
relationships tend to be linear rather than quadratic, quadratic rather than 
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cubic, etc. [For a description of this principle of "Occam's Razor," see Ref. 
(54).] In the breast cancer example just described, however, the changes in 
some possible risk factors have been "man-made" and more sudden, e.g. 
world wars, shifts in childbearing habits, oral contraceptives, etc, and it may 
indeed be some sudden changes in incidence (as it was with liver cancer) 
that alert us to newly introduced causative (or protective) agents. 

Purpose 2: To Make Comparisons Fair 
The majority of analytic studies involving humans are of an observational, 
rather than experimental, nature. As a result, when one compares responses 
of one group with those of another, the fundamental scientific principle of 
holding all other factors constant or equal may be violated. Consequently, 
differences (or nondifferences) in responses may be caused by differences 
(imbalances) in factors that cannot be controlled experimentally, rather 
than by the basic variable (groups) under study. Such variables, referred to 
as "confounding," "disturbing,' or "extraneous" by various authors, can, 
if ignored, have insidious effects. For example, male and female applicants 
had similar acceptance rates in each of the various faculties at Berkeley, yet 
the crude overall (schoolwide) acceptance rate for females was considerably 
lower (9) because females were more likely to apply to those faculties for 
which the acceptance rates were lower. This artifact is referred to as Simp­
son's Paradox, and is always a possibility in observational studies. 

Although standardization for imbalances (e.g. in age or sex), used to put 
comparisons of rates on a fair footing, is one of the oldest epidemiologic 
tools, it is sometimes ignored. A particularly distressing example is the 
recent controversy in the US and Britain regarding possible cancer-causing 
effects of water fluoridation, based on findings that cancer rates had in­
creased more in cities that had been fluoridated than in those that had not. 
As subsequent articles pointed out, these effects disappear if differences in 
the demographic structure of the two groups of cities are taken into ac­
count. [See Refs. ( 19, 20) for some recent British investigations and a guide 
to the earlier US studies.] One of the benefits (didactically speaking) was 
the helpful illustration of two methods of standardization (41). 

Standardization was also used recently in a slightly different context (3 1). 
It showed that, although the crude infant mortality rate is much higher in 
Massachusetts than in Sweden, if infant mortality rates in the two areas 
were standardized for birthweight, Massachusetts would actually have a 
slightly lower one. The point of the analysis was not to explain away or hide 
the differences in mortality rates, but rather to show that it is an advantage 
in birth weight, and not the superiority of Swedish hospital care, that gives 
Swedish infants a survival advantage. Although the country of birth seems 
as if it is the main study variable and birthweight simply a "nuisance 
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factor," in reality, birthweight matters everything and country not at all. 
Luckily, as the accompanying editorial pointed out, of the two variables, 
birthweight (and through it, presumably the infant mortality rate) is the 
modifiable one. 

To many, the term multivariate analysis has come to mean a statistical 
model that uses regression-type equations and distributional assumptions to 
link observed values of a response variable to values of various explanatory 
variables. Up to this point, the discussion in this section has centered 
around yes/no responses and explanatory variables that were either natu­
rally discrete (sex, race, country, faculty) or forced to be discrete (age group, 
birthweight group). These types of data lend themselves to such straightfor­
ward tabulation and computation of standardized rates (a technique known 
as a stratified analysis) that one might rightly ask what is "multivariate" 
about the method other than the fact that it involves three or more vari­
ables. The answer is that by averaging results over a number of cells (strata), 
analysis techniques such as that of Mantel-Haenszel (used to combine data 
from several 2 X 2 tables into a single summary) do, at least implicitly, 
assume that all tables are measuring a common odds ratio. If the underlying 
odds ratios are not the same in each table, then the single odds ratio 
produced by the Mantel-Haenszel technique measures a weighted average 
of these separate ratios, and since the weighting is related to the relative 
sizes of the separate tables, the average will be somewhat arbitrary. The 
same is true of rates that are computed with reference to some standard 
population-they depend on the assumed mix of categories in the model 
population. This emphasizes a central issue in all multivariate analyses: One 
cannot adjust or standardize a comparison without making certain assump­
tions. Probably the best way to view statistical models is as "a series of 
approximations to the truth": one can realize that the assumptions (model) 
used to adjust a comparison may not be entirely correct but proceed as best 
one can, or one can forego any adjustment because one did not realize the 
need or was afraid to make assumptions. It is a choice between the results 
being approximately correct and being precisely wrong! 

To end this section, I discuss briefly situations in which the response 
variable is continuous rather than discrete (I shall discuss more complicated 
methods for standarizing rates, below), and address issues of matching and 
of adjustment by regression. In some experimental studies, it is possible to 
compare responses to two or more maneuvers applied to the same individ­
ual. The advantage of having each subject serve as his own control is 
obvious: the comparison is immediately fair with respect to an infinity of 
variables that could otherwise theoretically bias it. When this is not possi­
ble, the next best thing, using balancing or randomization (or both), to 
equalize the two groups receiving the different maneuvers, is often difficult. 
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This is especially true if the numbers in the two groups are so small that 
it is impossible to balance them adequately, or if the study is an observa­
tional one and the groups have already been formed. For example, in a 
recent study (42) comparing the ventilatory function, as measured by forced 
expiratory volume (FEY), of workers who had worked in a vanadium 
factory for at least four months with that of an unexposed reference group, 
investigators matched the subjects for two variables known to influence lung 
function: age (to within two years) and cigarette smoking (to within five 
cigarettes daily). However, since the two groups differed by an average of 
3.4 cm in height, a variable with a very strong relationship to FEY, some 
standardization or adjustment was required. The authors achieved this 
using the finding of Cole (17) that past age 20, the predicted FEY for a man 
of a certain age and height is approximately of the form 

FEY = height-squared X (a + b X age) 

Both members of each matched pair were already concordant for age and 
smoking; thus, if one simply divided each man's recorded FEY by his 
squared height, the resulting paired values could be taken as FEY's that 
were adjusted for one member being taller or shorter than the other. Since 
the effect was as though the pairs had been also matched for height, the 
comparison was carried out using a straightforward paired t-test on the 
differences in the pairs of adjusted FEY's. Although the task will often be 
more difficult than in this elegant example, the principle generally remains 
the same: one calculates what each subject's response would be expected to 
be if all of the variables that distort or bias the comparison were held equal, 
say at the mean of each covariable. The term analysis of covariance (3, 4) 
has generally been applied to adjustments of a simple additive nature, but 
as we have just seen, if some other relationship more appropriately and 
more accurately describes the way in which the covariate(s) affect the 
response, and if it is easy to derive, it is certainly preferable. Usually this 
relationship between response and confounders is estimated "internally" 
from the data at hand, unless the study is small and some outside norms 
(e.g. weight and height charts, dental maturity curves) are deemed better. 
Researchers generally feel safer using internal standardization; by doing so, 
they avoid problems of different measurement techniques, inappropriate 
reference samples, etc. In the vanadium study just cited, one could actually 
test Cole's FEY internally in the group of nonexposed workers. If the study 
did not have a pure unexposed group, and relied instead on the within­
group variation in the amount of exposure, one would probably treat the 
exposure more as a continuous variable and use a multiple regression ap­
proach. 
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Purpose 3: To Sharpen Comparisons 
With the considerable emphasis on using multivariate techniques such as 
analysis of covariance to control bias, it is often forgotten that these meth­
ods may also be used to eliminate unwanted variability and thereby increase 
the signal to noise ratio. Users and readers alike often have the impression 
that if the subjects in two groups are balanced with respect to some major 
explanatory variable, there is no need to account for that variable in any 
analysis. This misconception is especially likely to arise in a large random­
ized trial in which the balance is expected, and seen, to be good. A recent 
example (50), dealing with a subject that may be more amusing than rele­
vant from a public health viewpoint, illustrates the usefulness of analysis of 
covariance in increasing the precision of various comparisons. 

Figure 2a shows the responses of the 25 subjects in each of the five groups. 
The considerable "within group" variation makes it difficult to judge 
whether, compared with this large source of "noise," any apparent system­
atic differences in longevity among the groups are more random than real. 
Some guidance is given by Figure 2b, which shows that much of the noise 
is due to the fact that larger subjects tend to live for longer and smaller ones 
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Figure 2 Longevity of male fruitflies in relation to amount of sexual activity: (0) observed 
lifetimes in each of five control and experimental groups; (b) observed lifetimes in relation to 
size (three groups shown). 
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for shorter lengths of time. Faced with this, it is clear that the smaller 
subjects should be compared with other smaller subjects and larger ones 
with other larger ones. This way, within each size category the within-group 
variation would be considerably less, thereby allowing systematic between­
group differences to "shine through" more easily. Thus, the strong relation­
ship between longevity and size would become irrelevant. Indeed, the 
experiment could have been planned very tightly by matching on size and 
analyzing the intergroup comparisons by paired t-tests or other techniques 
for matched sUbjects. 

However, this would pose problems if subjects were to be individually 
matched, since it might not be possible to obtain perfect matches. Moreover, 
in human studies, with fewer cooperative subjects to subdivide along a wide 
scale, with many variables to match on, with the difficulty of obtaining all 
matching data before forming study groups or (in the observational study) 
with groups who had formed themselves well before any study was contem­
plated, the difficulties become formidable. To understand how a multivari­
ate analysis can help to overcome these practical problems and allow the 
researcher to still benefit from a more tightly controlled study, imagine for 
the moment that the longevity study had been performed not with 25 but 
10 subjects per group. Figure 3a illustrates one such possibility. At this 
point, any efforts at forming size categories, as in Figure 3b, would lead to 
a certain amount of "trading," i.e. it might be that a slight advantage for 
one group in the "small-size" category could be balanced off against a 
disadvantage for that group in the "next size up" category. However, one 
might not be so lucky, and in any case the within-group responses in the 
now broader size-categories will be larger. Intuitively, one would like to 
"homogenize" the subjects within each category by making them all the 
same size. One way to do this would be to forcibly "slide" the points 
laterally until they coincide on the size scale as in Figure 3c; to compensate 
for this change, one would likewise slide the responses vertically by corre­
sponding increments, using an appropriate "exchange ratio" or slope. The 
slope could be estimated from the data by regression methods. This simple 
concept of equalization, which is the basis for analysis of covariance, is 
largely obscured by the all-in-one computational packages that fit the slope 
and calculate the between and within group variation in a single step. To 
perform an analysis of covariance for two extraneous variables Xl and X 
2, one might imagine responses plotted as vertical bars standing on a 
two-dimensional grid of (XI, X2) points. To homogenize the responses with 
respect to Xl and X2, one would first slide the bars diagonally along the 
grid to a single (Xl, X2) point and adjust each vertical height (response) 
by the sum of B I X shift in Xl and B2 X shift in X2, where B I arid B2 
are regression coefficients describing how the response changes with each 
variable (while holding all other variables constant). 
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Figure 3 Longevity of ten fruitfiies in each of two groups: (0) longevity shows wide within­
group variation; (b) subjects cannot be easily matched on thorax size; (c) "matching" pro­
duced by analysis of covariance; lifetimes are adjusted to what would have been expected had 
each subject's thorax length been 0.82 mm (adjustment process shown for six subjects). 
Analysis (i) corrects imbalance of 0.40 mm in average thorax lengths of two groups and (ii) 
reduces within-group variation. 

Provided that a large fraction of the observations ("degrees of freedom") 
do not need to be expended in estimating what the form of the adjustment 
should be, this analysis of covariance technique can be extended to several 
extraneous variables. 

Purpose 4: To Study Several Factors 
In many health studies, there will be several stimulus variables of primary 
interest. For example, one might investigate what characteristics of school­
children and their environment are associated with their caries experience. 
Even when the stimulus variables are categorical, the classical multi way 
analysis of variance is rarely appropriate for such observational studies, 
since the cells will be of varying sizes (the "design" will be unbalanced). 
Instead, one usually analyzes such survey data by multiple regression meth­
ods, using indicator ("dummy") variables for factors that are categorical 
(e.g. gender). It is this flexibility that makes multiple regression so attrac­
tive. Indeed, if one had to choose between becoming familiar with classical 
analysis of variance or with regression techniques, one should probably 
choose the latter: it can accommodate a mixture of categorical and continu­
ous variables and can evaluate these factors in the presence of other vari­
ables that are of a disturbing nature rather than of any direct interest. The 
key to understanding both its strength and at the same time its synthetic 
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nature is realizing that it produces an estimate of the effect of a factor even 
though there may be no two individuals in the data set for whom all other 
relevant factors are in fact equal. I comment below on the opportunities for 
misinterpretation of multiple regression analyses; however, there are three 
points that are specifically related to "risk-factor" studies. 

The first concerns the situation in which the distributions of the different 
risk factors are not independent of each other in a fairly small data set, that 
is, if risk factor B was present in different proportions in those individuals 
who had risk factor A and in those who did not. Here, even if the two factors 
truly contribute independently in an additive way to the response being 
studied, it is still not possible to obtain independent estimates of these two 
effects from the sample. The two estimates will be correlated, and each 
estimated effect will have to be presented "adjusted for the other." This 
problem, addressed under "collinearity" in statistics textbooks, can become 
quite serious in health studies if one cannot obtain a good spread of one 
factor, such as amount of chronic exposure to loud noise, across each level 
of another factor, such as age. In such situations, one may have to adjust 
the response (hearing loss) through the use of some outside age-specific 
norms for hearing loss in unexposed individuals. 

The second concerns how to deal with the variable "age" in the following 
hypothetical stepwise mUltiple regression analysis of caries experience. 

Factor 
Age of child 
Education of mother 
Intake of fluoride 
Frequency of toothbrushing 
Consumption of soft drinks 

Multiple R-squared 
43% 
50% 
55% 
59% 
62% 

Change 

7% 
5% 
4% 
3% 

It is mistaken to interpret this kind of output as evidence that the last four 
factors account for "only 19%" of the variance, when in fact they account 
for 19 out of the 57 percentage points (100 minus 43) that remain after age 
has already been accounted for. Because the crude or total variation in 
caries in this study could have been arbitrarily widened or narrowed by 
simply studying a wider or narrower age range, and because the real interest 
is in why two individuals, of the same age, have had different caries experi­
ence, the variation introduced by studying children of different ages is quite 
irrelevant. It can be removed either by actually subtracting from each 
response an amount attributable to age and analyzing the residuals or, as 
was indicated above, by a conceptual subtraction in which age is left in the 
analysis of variance table but all further explanations of variance are mea­
sured out of 57 rather than out of 100. A formal statistical test of whether 
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these latter variables are really explaining any variation does in fact judge 
their contribution relative to what is left to explain, rather than to what has 
already been explained. [See Reference (15) for a useful discussion of the 
appropriate terminology for variables such as age and sex.] 

The third point deals with SUbmitting our caries study, with its multitude 
of explanatory variables, some of them demographic, such as language 
group, race and place of residence, and some that are more "basic" (includ­
ing life style characteristics such as diet and quality of dental care) to a 
multiple regression. Because either set of variables, or a combination of 
variables from the two sets, might do well in explaining the observed 
variation in caries, one needs to be careful and be guided by the purpose 
of the analysis. Broad demographic labels, e.g. language spoken at home, 
that are only predictive through their association with more causal vari­
ables, are more relevant for using the results locally to identify those with 
greater dental care needs. However, the results of an analysis that focuses 
on direct or proximal variables, e.g. mother's knowledge of oral hygiene 
practice, are more likely to be transportable to other settings and to uncover 
mechanisms governing caries. If one does not separate these two sets of 
variables, but instead submits them all to a regression analysis, the resulting 
picture may be quite blurred: part of the variance associated with a certain 
factor may be correctly credited to that factor, whereas part of it may be 
credited to some demographic variable that is only a proxy for the factor. 
For the results to make sense, the variables offered to a regression must first 
make sense. 

SELECTED MULTIVARIATE TECHNIQUES 

In this section I discuss a number of multivariate techniques for analyzing 
discrete responses, techniques that have become popular in the last ten 
years. 

Discriminant Analysis 
Discriminant Analysis (4, 47) began as a method of predicting to which of 
several categories an individual belonged, using several pieces of informa­
tion collected about him and similar information collected about past indi­
viduals known to belong to the various categories. It has come to have three 
main uses (see Table 1): (a) as a way of carrying out a multivariate t-test 
comparing two or more samples on several continuous-type responses si­
multaneously and as a means of controlling the false-positive results asso­
ciated with separate analyses (33); (b) more in its original spirit, in 
screening, diagnosis and prognosis (32, 64); (c) as a form of multiple regres­
sion for categorical responses (43). 
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If Discriminant Analysis is used in the second way, to simply construct 
a one-dimensional score from many variables, and if the scores one obtains 
are used as though they were the result of a single test (25), few distribu­
tional assumptions are needed regarding either the discriminating variables 
(indicants) or the resulting scores. Further, if one has sufficient numbers of 
proven cases one can use the empirical distributions of scores to construct 
score-specific predictions (25, 53). With fewer cases, one will need to fit 
some distribution to either the scores or to the discriminating variables. The 
third use, to adjust for disturbing variables before comparing proportions, 
or to study the effects of several variables on the probability of a certain 
yes/no outcome, is best discussed in the context of multiple logistic regres­
sion. 

Multiple Logistic Regression 

Logit and probit curves (21) have been used for several years to study a 
binary response to a single stimulus variable. However, it was only in the 
early 1970s after the publication of three signal articles (2, 62, 65) and a 
comprehensive monograph (2 1) that the "logistic model" began to be used 
for studying multiple stimuli. It was not until the 1980s that the technique 
was integrated into biostatistics textbooks (3) and took its place as the 
primary method for analyzing the relationship between a binary response 
and several discrete or continuous stimulus variables. It now stands in the 
same relation to binary response data as classical regression does to continu­
ous response data. 

To these descriptions of the "logic" oflogistic regression, I add one point 
dealing with its historical evolution. If one works with the odds (rather than 
the probability) of a yes/no event in relation to a series of explanatory 
variables Xl, X2, . . .  , the logistic model implies that the logarithm of this 
odds can be written as 

log (odds of yes/no) = BO + B1.Xl + B2.X2 + ... 

If one thinks of the right-hand side of the equation as a score S, then it will 
have different distributions in the "yes" and "no" groups, just as in a 
discriminant analysis. The first justification for the mUltiple logistic model 
was that if the Xs in the "yes" and "no" populations follow two multivariate 
normal distributions, then the Ss will have univariate normal distributions. 
Then, if these two univariate normal distributions have equal variances, one 
obtains the logistic curve (62). It is still not well recognized that although 
these conditions are indeed sufficient to produce the logistic relationship, 
they are not necessary. First, one does not need multivariate normal Xs in 
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order for the Ss to be approximately normal; if there are sufficiently many 
of them to add together, if they are reasonably uncorrelated, and if they do 
not have highly skewed distributions, the central limit theorem guarantees 
distributions of Ss that are close to normal. Second, one does not even need 
the Ss to have normal distributions: several other pairs of distributions of 
scores will also generate the logistic relationship. The interested reader can 
verify this for himself, using as an example the data in Table 1 of Reference 
(14), which shows two Poisson-like distributions with the score (number of 
symptoms) averaging 0.5 per individual in the "no" group and 2.7 in the 
"yes" group. The important point is that even though logistic regression is 
now regarded as simply a convenient functional form for linking probabili­
ties to explanatory variables, it does have some historical and statistical 
basis. 

Epidemiologic studies, and their use of risk ratios (also called relative 
risks) to report comparisons from prospective (cohort) studies, have done 
much to popularize logistic regression (indeed one could say that the tech­
nique began with the Framingham Study). Studies involving a binary re­
sponse and multiple stimuli do not need to force the stimulus variables into 
discrete categories required for a Mantel-Haenszel analysis but can use all 
the information in every variable: the coefficient for the main exposure of 
interest leads immediately to the odds ratio and the relative risk. In one 
recent study (34), the results were also presented as observed and expected 
numbers of cases, in much the same spirit as is done for comparisons of 
mortality rates. 

Logistic regression has also become quite popular for analyzing case­
control studies, as a result of some very significant insights into the logical 
connections with corresponding methods for cohort studies (12, 13, 56). 
Furthermore, as computing becomes cheaper, it probably will largely re­
place the traditional two-group linear discriminant analysis. It is a little 
more difficult to know how useful logistic regression will become for multi­
category responses ("polychotomous logistic regression"), since there are 
several ways one might contrast the categories (29). Recent work, per­
formed in the context of trying to place patients into one of several diagnos­
tic categories on the basis of a number of binary indicants (symptoms, 
findings, test results etc), suggests that some of these methods are at least 
feasible (A. Wijesinha, unpublished information). 

The arguments of Dawid (23) add further theoretical justification for 
choosing a more robust prospective model, such as logistic regression, over 
a retrospective one, such as discriminant analysis. By "prospective" Dawid 
means predicting responses from the given indicants, and by "retrospec­
tive" he means predicting the distribution of indicants from knowledge of 
the response. 
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In spite of these theoretical advantages, however, some direct compari­
sons of various discrimination techniques have not always shown a defini­
tive advantage for logistic regression (30, 6 1). As Fienberg (29) points out, 
however, there is a difference between using these competing methods for 
discrimination (where it is the overlapping part of the score distribution that 
contributes to misclassification rates) and using them to make accurate 
probability predictions or adjustments across the entire probability scale. 
The fact that discriminant analysis can hold its own in the task for which 
it was first designed is no guarantee that it will be equally good for other 
purposes. Nevertheless, since it is inexpensive, it will probably continue to 
be used to screen for possible influential confounding variables before un­
dertaking a logistic regression. 

A disadvantage of logistic regression is that results are often presented 
as odds or log odds, or worse still, as unitless coefficients rather than using 
the more familiar probabilities. To aid with these nonlinear concepts, it is 
often appropriate to translate to log-odds back into the more familiar proba­
bility scale. Recent articles that used graphical methods (36, 38) or expected 
numbers of events (34) to describe the fitted models have been especially 
helpful in this regard. 

Log-Linear Models for Multi way Tables 
If the stimulus variables can all be considered categorical, binary response 
data can also be assembled into multiway contingency tables and analyzed 
using multiplicative models (the same one used to compute an expected cell 
entry in the simple 2 X 2 table), which become additive when transformed 
to a log scale. The logic behind these models and how they are fitted (almost 
always by computer iteration) is well described in recent textbooks (3, 10, 
29). The attractiveness of log-linear models for multiway tables lies in their 
parallels with classical analysis of variance models, in their use as a way of 
standardizing comparisons of rates in complex data sets, and in the ease 
with which interactions and confounding variables can be identified. They 
agree with logistic models if one fits as many parameters as there are cells. 
The fits to the breast cancer incidence data discussed above are examples 
of a log-linear approach: the simplest curves involved points that were 
products of an average age-specific curve and different proportionality fac­
tors for the different cohorts. The best-fitting parameters (32 in the first 
"model" considered) could be fit by a variety of techniques, such as logistic 
regression of the 108 numerators and denominators on 32 dummy variables 
or a 20 by 12 by 2 contingency table analysis (with a number of cells missing 
because the cohorts were too young or the cancers occurring ,early in life 
to the furthest back cohorts were not in the registry). Some drawbacks to 
analyzing a binary response by a contingency table, rather than general 
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log-linear regression, approach include the fact that it tends to treat the 
response variable the same way as the stimulus variables, that it worries 
about reproducing the interrelationships among the stimulus variables, and 
that variables that are not categorical have to be made so. 

Regression Methods for Life- Table Analysis 
Although the life-table (used in the broad sense for techniques that analyze 
the time until events happen) has long been an essential epidemiologic tool, 
it is only in the last decade that it has been adapted into a multivariate 
method (22, 46). As are most of the other methods described in this section, 
it is log-linear, with the log of the time-specific "mortality" rate (hazard) 
linked to the "average" hazard and to the explanatory variables through a 
linear regression. The main differences from logistic regression are that the 
"average" hazard is not a single quantity but a function of time and that 
it is estimated nonparametrically. In the simplest case, the relationship 
between the hazard and the explanatory variables is assumed to remain 
constant over time. This constancy does not seem to hold always (45, 55) 
and statistical tests based on this "proportional hazards" model (58) can be 
quite misleading. Fortunately, some work has emerged (44, 57) and more 
is under way to produce diagnostic tests for checking the appropriateness 
of the assumed model, and suggesting when effects of variables should be 
allowed to vary over time. 

POSSIBLE PITFALLS IN MULTI V ARIATE ANALYSIS 

This section deals with potential risks in the use of multivariate analyses. 
I do not discuss the risks of specific techniques, details of which will be 
found in the appropriate textbooks, but rather the issues that cut across 
techniques, and that arise simply because data are multivariate. Indeed the 
main message is that the more multivariate the data, the greater the oppor­
tunities for problems. 

Adding Noise 
Although I stress above that including other variables in the analysis of a 
comparative study can sharpen a comparison, it can also dull it, especially 
if the user allows a stepwise regression to decide which of many other 
variables are important. The gain or loss in precision will depend on how 
strongly these other variables influence the response being studied. For 
example, including the last digit of each individual's telephone number in 
a multiple regression will waste one degree of freedom or the equivalent of 
one individual. Worse still, if the average value of this variable is not equal 
in the groups being compared (and in any one study with small groups, it 
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almost certainly will not), any "adjustments" to the responses on the basis 
of this variable will actually add unwanted variation. Although users try to 
guard against such occurrences by first testing whether the slope of the 
observed relationship is real rather than random, they often use a lax 
criterion (e.g. a p-value less than, say, 0.20). This, together with the often 
large numbers of "possibly explanatory" variables "offered" to a regression, 
adds to the chances of decreasing rather than increasing the precision of a 
comparison. One way to avoid this artifact of chance is first to split one's 
data set into two or more smaller sets and retain only those variables that 
are influential in each subset. 

Overoptimism Regarding Future Performance 
The performance of discriminant functions or prediction equations con­
structed from a data-set is often judged by "resimulation" or by seeing how 
well the system "would have done" ifit were used to classify the individuals 
in the data set. The results are generally overoptimistic for two reasons. 
First, because the weights were chosen on the very basis of doing well in 
this data set, they may well have "chased" or been fooled by any data 
patterns that were peculiar to that dataset. The random variation in a new 
dataset is unlikely to match the random peCUliarities of the "training" 
dataset. As a result, knowing only a finite sample, but thinking of it as a 
universe, the system will be surprised a little more (16). Second, if one has 
enough candidate predictors to choose from, one is bound to find some 
coincidences. Similarly, if one builds an equation with enough variables, one 
will also get an irreproducibly good fit. There are a number of techniques 
for obtaining less optimistically biased estimates of future misclassification 
rates without actually doing a prospective test (27). However, they do not 
apply to the second bias mentioned above. In this latter situation, one needs 
to evaluate the system on a separate dataset. A number of studies that 
claimed high prediction accuracy solely on the basis of resimulation have 
"regressed toward the mean" (8, 24, 49, 63). Others have recognized this 
danger and have included the validation as an integral part of the task (53); 
one has even subjected the prediction system, which incidentally was con­
structed by logistic regression, to a comparative trial (52). 

There has been speculation that there is some "natural law" that no 
matter how many variables are available for prediction, only four or five will 
finally remain in any stepwise regression ( 18). This claim would need to be 
examined more carefully, especially with regard to the influence of typical 
sample sizes. It does emphasize one point, namely that prediction of binary 
outcomes is a considerable task, given the considerable nonreducible uncer­
tainty inherent in an all or nothing event. A method of measuring the 
attainable discrimination in a dataset and of deciding whether the search 
for predictors might be worth the effort is given in (32). 
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A recent example points up the serious inadequacy in a common approach 
to statistical predictions. The study asked whether two different types of 
gallstones could be distinguished on the basis of the features seen in a 
radiograph (26). Univariate analyses revealed that regardless of any other 
features, stones that appeared to be buoyant were invariably of one type; 
those that were not buoyant were sometimes of one type, sometimes the 
other. In spite ofthis, buoyancy ranked only third in the linear discriminant 
analysis which tried to predict the variation in types. This is clearly a 
situation in which buoyant cases could have been classified immediately, 
removed from the dataset, and discriminant analysis applied to the remain­
ing cases. The unconditional "one model for all" approach is simplistic and 
possibly even misleading. Technically, the discriminant model could be 
made conditional through the use of interaction terms, provided one could 
anticipate which ones to include. An alternative, and more natural ap­
proach, which first partitions subjects on the most important variable, then 
partitions each of these subgroups separately, and so on in a branching 
fashion, is provided by recursive partitioning (also called Automatic In­
teraction Detection), a recent nonparametric classification system for use 
with larger data sets (25, 37). For smaller ones, the "kernel method" (1) 
seems to hold some promise. 

Explaining Away a Difference 

In the dental caries survey mentioned above, one would probably collect 
information on the frequency of visits to a dentist, and one might be tempted 
to take this variable into account in a multiple regression, when studying 
the effects of other risk factors on caries. If more caries result in more visits, 
then including the number of visits as an "explanatory" variable will lessen 
the observed impact of the other (real) risk factors: it will be one of the first 
variables to enter the regression equation and wiil thus "explain away" 
whatever variance might have been more appropriately accounted for by the 
risk factors being studied. Similar misinterpretations can arise if one in­
cludes as an explanatory variable one which is intermediate in the stimulus­
response chain, as for example if one allowed for the amounts of medication 
given in a study comparing the lengths of stay following an operation 
performed in two different ways. Although it probably draws the correct 
conclusion, a recent study (39) shows just how easy it is to adjust away a 
difference, especially if other factors are not held constant. The authors state 
that the "data are in agreement with the hypothesis" that differences in 
weight, rather than in p02 (Partial Oxygen Pressure), explain most if not 
all of the observed differences in blood pressure between children of the 
same age living at different altitudes. What is alarming is that the data might 
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also be in agreement with a similarly worded hypothesis stated in terms of 
family income, education, or any other variable that may be associated in 
a noncausal way with blood pressure, and on which high altitude children 
score lower than the comparison group. 

CONCLUDING REMARKS 

Investigation in the health sciences will continue to be of a multivariate 
nature. The statistical tools for dealing with the data generated by these 
studies are now largely in place; the challenge and the obligation will be to 
use them prudently (7, 59). Even though a number of lines of enquiry have 
become decidedly more complex in the past few decades (witness for exam­
ple the current thinldng on cholesterol and heart disease), by and large, 
questions still tend to be posed one dimension at a time. The same remains 
true in multivariate analysis, where even though the computations may 
sound high-dimensional, the statistical tests are univariate in spirit. 
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