
Clinical Trials 2008; 5: 107–115ARTICLE

Profile-specific survival estimates: Making reports
of clinical trials more patient-relevant

Marilyse Juliena and James A Hanleyb

Background When considering treatment options, a physician needs to know the
prognosis corresponding to the risk profile of the patient seeking treatment. Reports
of clinical trials generally address treatment-specific survival probabilities only in the
aggregate, i.e., for the typical patient, and often express the difference in survival as
a hazard ratio. Such summaries do not provide treatment-specific survival
probabilities (and thus the absolute difference in these probabilities) for patient
profiles that are not near the typical of those in the trial. Despite the fact that Cox
intended his hazard regression method to be used to produce such profile-specific
survival estimates, and even showed how to calculate them, authors are either
unaware that this is possible, or else choose not to report them.
Purpose To illustrate how treatment- and profile-specific survival estimates are
obtained from the Cox method, and can be displayed in a compact form.
Methods We derive treatment- and profile-specific survival probabilities from
the estimated survival function for the ‘reference’ profile. Data from the Systolic
Hypertension in the Elderly Program study serve as an illustration.
Results Two different formats, tabular and nomogram-based, allow the entire set
of estimated treatment- and profile-specific survival probabilities to be reported.
Limitations Estimates are limited to the profiles within the covariate-space
spanned by the trial, and depend on the correctness of the model.
Conclusion Treatment- and profile-specific survival estimates are practice-relevant,
almost never reported, estimable from the Cox model, and easy to report in
a compact form. Clinical Trials 2008; 5: 107–115. http://ctj.sagepub.com

Introduction

Physicians rely on reports of both randomized
clinical trials and observational studies for evidence
on the benefits of various treatments. How infor-
mative are the reports of these studies for the
physician faced with an individual patient with a
specific prognostic profile? We examine two
examples.

Case 1. A physician consults the literature to gauge
the probability of a survival benefit if a 58-year old
man, PSA level 9.1, diagnosed with a ‘Gleason 7’
prostate cancer, opts for radical rather than con-
servative treatment. In the only randomized trial of

these two options [1], prostate cancer mortality was
lower with radical treatment (hazard ratio 0.56).
The 10-year ‘cumulative incidence’ of prostate
cancer death was 10% versus 15%. The only
profile-specific information was that ‘the benefit
of radical therapy . . . differed according to age but
not according to the PSA level or the Gleason
score.’ Two reports of nonrandomized studies
contain ‘profile-specific’ prognoses but are either
limited to conservative treatment [2] or have so few
patients who took this option that confidence
intervals are wide [3]. A third [4] was based on
45,000 men aged 65–80. ‘Using propensity scores to
adjust for potential confounders,’ the authors
reported ‘a statistically significant survival
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advantage’ in those who chose radical treatment
(hazard ratio, 0.69)’’. An absolute 10-year survival
difference (in percentage points) was provided for
each ‘quintile of the propensity score’’, but the
physician was unable to translate this information
into a survival difference for men with his patient’s
profile.

Case 2. A physician consults the report of a classic
randomized trial [5] to assess the 5-year risk of
stroke for a 65-year old white woman with a SBP of
160mmHg, and how much it is lowered if she
were to take anti-hypertensive drug treatment. The
reported risk difference was 8.2%!5.2%¼3%,
and the ‘favorable effect’ of treatment was also
found for all age, sex, race, and baseline SBP groups.
Again, however, the report did not provide infor-
mation from which to estimate the risk, and risk
difference, for this specific profile.

Are these isolated cases?

Are survival statistics from clinical trials – and
nonrandomized studies – limited to the ‘average’
patient? [6] Is Cox regression used merely to ensure
‘fairer comparisons’? How often is it used to provide
profile-specific estimates of survival and survival
differences? To get a sense of the survival statistics
presented, we examined the reports of randomized
trials published between January and June 2006 in
three widely read general medical journals (NEJM,
JAMA, The Lancet). We restricted our attention to
the 20 studies in which there was a statistically
significant survival difference between the compared
treatments with respect to the primary endpoint.
We documented how many of these reports pre-
sented profile-specific t-year and treatment-specific
survival, or its complement, the risk of the event
over the t years. Our primary focus was on profile-
specific statistics; however, as a side issue, we were
also interested in how treatment-specific statistics
were reported for the ‘aggregate’ or the ‘typical.’
Thus, we documented how often summary statistics
were presented in the abstract as (or in a way that
allowed the reader to calculate) absolute risk, and
risk differences between treatments [7].

We found that most abstracts contained infor-
mation on the risk and risk difference for the
‘average’ patient. Some articles did provide risk
differences or hazard ratios for ‘univariate’ sub-
groups (e.g., by age or by sex). However, despite
the range of risk profiles in each study, and the
common use of Cox regression, none of the 20
reports presented information that would allow the
reader to assess treatment-specific risk for a specific
profile, e.g., for a specific age-sex combination.

Risk difference: overall and profile-specific

The absence of reported profile-specific risks stems
in part from the widespread use of Cox’s propor-
tional hazards model [8], with its focus on event
rates (i.e., incidence) rather than t-year cumulative
incidence or risk (i.e., the complement of t-year
survival probability). Since survival differences are
expressed primarily as hazard ratios, absolute
measures such as risk and risk difference – the
recommended, more meaningful, metrics [9,10] –
are underused. Similarly, with logistic regression
models – where the time element is nonexistent,
irrelevant or unimportant – the use of odds ratios
has led to a neglect of absolute risk and risk
differences [7].

It is becoming more widely understood that if
the odds ratio or risk ratio is the same across
profiles, then the risk differences can not be the
same, i.e., that, patients with different profiles will
derive different degrees of absolute benefit; see, for
example, Califf et al. [11]. However, despite exten-
sive coverage of it in specialized modeling texts
[12], there does not seem to be the same widespread
appreciation of the implications when a treatment
benefit is reported as a hazard ratio. Part of the
difficulty lies in the fact that the cumulative
incidence, or risk, over the time window (0, t) is a
complicated function of the integral of the inci-
dence function over that window. If the integral,
and thus the cumulative incidence, is small, the
reported hazard ratio can indeed be used as a good
approximation to the risk ratio; otherwise, the
‘translation’ is more complicated. Either way,
however, a hazard ratio that is the same across
patient profiles, implies that the absolute risk
differences can not be the same.

This ambiguity in the interpretation of hazard
ratios, and lack of appreciation of the implications
for risk differences, are exemplified by the
statement, taken from the report of the clinical
trial cited in Case 1, that ‘the benefit of radical
therapy . . . did not differ according to the PSA level
or the Gleason score.’ A reader might well take this
statement to mean that the 10-year risk difference
of 5 percentage points – implying a ‘number
needed to treat’ of 20 – was the same for all
Gleason scores. In fact, the constancy is with
respect to hazard ratios. A ð100! 56 ¼Þ44% reduc-
tion in mortality rates, whatever the Gleason score,
implies a larger treatment benefit (risk difference)
for men with (higher risk) Gleason 7 than with
(lower risk) Gleason 5 cancer. The report would
have been more helpful if, before addressing
subgroup analyses showing no significant treat-
ment-prognostic factor interactions, it focused
first on (i) the range of fitted absolute 10-year
risks, with conservative treatment, for the various
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age-Gleason Score-PSA profiles, and (ii) the
absolute risk reductions, if persons with these
same profiles underwent radical treatment. The
article by Califf et al. [11] takes such a counter-
factual approach. Since the focus was on 30-day
mortality risk, and there were no censored observa-
tions, its authors used the logistic regression model.

The prevailing emphasis on ratio measures, and
neglect of profile-specific risks, are unfortunate,
since Cox’s article [8], went well beyond constant-
over-time (and nonconstant-over-time) hazard
ratios. He entitled his article ‘Regression Models
and Life Tables’, and provided a method to derive
profile-specific survival, or its complement, cumu-
lative incidence (risk), from his model. The Life
Tables portion has been underused.

Besides low awareness, we suspect two other
reasons profile-specific survival estimates are not
reported: a lack of understanding as to how they are
derived, and the difficulty in presenting them in a
compact form.

Thus, our objectives are two-fold, to (i) re-iterate
that profile-specific risk estimates are possible, and
(ii) show how they can be reported in a compact
form. To address (i), we refer to a recent expository
article [13]. For (ii), we take advantage of the long-
established culture of using scoring systems, to
enable end-users, using either a table look-up or
a nomogram, to derive profile-specific estimates
to quickly and easily from complex regression
equations. Probability look-up tables have had a
long history in medicine: one of the best known is
the one for estimating coronary heart disease risk
based on data from the Framingham Heart Study
[14]; they are also becoming common in clinical
medicine [15,16]. Thanks to publicly available
software [17] to create them, nomograms[18] are
sometimes used instead of tables [19,20].

Materials and Methods

Data for illustration

The Systolic Hypertension in the Elderly Program
(SHEP) study [5] addressed the effectiveness of

antihypertensive drug treatment in reducing the
risk of stroke in persons with isolated systolic
hypertension. We obtained the data, without
subject identifications, under an NHLBI program
[21]. We analysed 4701 records with complete
data on age, sex, race, systolic blood pressure and
assigned treatment {active, placebo} (Table 1).
In the 20894 person-years of follow-up, incident
stroke was diagnosed in 263 persons.

Risk differences via Cox regression

We took as the ‘reference’ profile 60 year old
white females with a systolic blood pressure of
140mmHg. We fitted Cox’s semi-parametric log-
hazard model with the five linear predictors: age
(in yrs) minus 60, indicator of male gender and
black race, systolic blood pressure minus 140, and
an indicator of active treatment. Effect modifica-
tion was investigated using products of the indi-
cator of active treatment and each of the other four
terms. Estimated t-year stroke-free survival propor-
tions for persons with the reference profile were
obtained using the Breslow estimator [22]; profile-
specific risk estimates were then calculated as
described in Appendix 1. Risk estimates for two
selected profiles, as well as the ‘average’ cumulative
incidence curves in the original article, are shown
graphically.

Compact presentation of treatment- and
profile-specific estimates

In order to present estimates of the treatment- and
profile-specific risk and risk difference for any given
profile, we use two different approaches. In the
first, we form a scoring system, and couple it
with a look-up-table that yields the risk for that
profile (i) if untreated and (ii) if treated. The second
uses a nomogram: points for each risk factor are
read from ‘rulers’, and the total number of points
is converted into risk estimates and a risk differ-
ence. Detailed methods and calculations, along

Table 1 For each of the two intervention groups (Tx¼1 for Active, Tx¼0 for Placebo) in SHEP study,
distributions of prognostic indicators; also shown are the respective numbers of subjects and strokes

Age:
Sex: Race:

SBP:
No. of No. of

Tx Q10 Q50 Q90 % male % Black Q10 Q50 Q90 subjects strokes

0 64 72 81 43 14 161 168 183 2351 158
1 64 72 81 44 14 161 168 185 2350 105

Note: Q10, Q50, and Q90 are the 10th, 50th, and 90th centiles. SBP: Systolic Blood Pressure.
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with a link to computer code, are presented in
Appendices 1 and 2.

Results/Illustration

The estimated 1-, 2-, . . . , 5-year risk of stroke for
persons with the reference profile were 0.5, 1, 1.3,
1.8, and 2.2%, respectively. The estimated 5-year
risk of stroke for a 65 year old white female with
a SBP of 160mmHg was 3.8% if untreated, and
2.5% if treated. While these imply the risk reduc-
tion estimate of 1.3%, the corresponding estimate
for an 80 year old black male with a SBP of
180mmHg (calculations shown in Table A2) was
16:0! 10:7 ¼ 5:3%, both appreciably different
from the overall estimate of 7.6!4.9¼2.7%. For
these low and high-risk profiles, the respective
numbers needed to treat (NNT) are 100/1.3¼77
and 100/5.3¼19, both very different from the
NNT estimate of 100/2.7¼37 obtained using
the risk difference corresponding to the ‘typical’
or ‘average’ patient in this trial. This increasing
risk difference with increasing risk is also evident
in Figure 1.

The scoring system and the look-up table
are shown in Table 2. Alternatively, as shown in
Figure 2, the points for each risk factor in the profile
can be read from ‘rulers.’ The scale for each ruler
highlights the relative importance of the risk factor.

The ‘increasing risk difference with increasing
risk’ is again evident in Table 2 and Figure 2. Since
even the highest risk is below 20%, the (across the
spectrum) 35% reduction in incidence translates
into approximately an (across the spectrum) 35%
reduction in cumulative incidence.

Discussion

Our aim was to highlight four points about profile-
specific risk (survival) estimates: they are (i) prac-
tice-relevant (ii) almost never reported (iii) directly
estimable from the Cox model and (iv) easy to
report in a compact form. We end by anticipating
some of the issues that our proposal may raise.

Fitted (predicted) values vs. results from subgroup
analyses

We first wish to dispel any suggestion that we are
advocating post-hoc subgroup analyses – with their
risk of false positive findings. Our call for the
reporting of profile-specific estimates is not a call
for subgroup analysis; it is a call to use Cox
regression –- used primarily up to now to redress
treatment imbalances – to describe the variation in
predicted risk if untreated, and risk difference if
treated, across all profiles. Subgroup analyses
divide up the data; the profile-specific estimates
we describe are ‘predicted’ values from a propor-
tional hazards model fitted to all of the data, but
‘translated’ into different risk differences depend-
ing on the baseline risk.

Fitted values from statistical models vs. actual data:
‘borrowing strength’

Since trials are forced to include patients with a
spectrum of prognoses, the result for the treatment
comparison within each separate profile has a
sizable margin of error. The margin of error for
the estimate of profile-specific treatment benefit
can be reduced by statistical aggregating/averaging
of the estimates across profiles, using (as in meta-
analyses) the scale on which the benefits are (or are
assumed to be) the most homogeneous. Because of
the small sample sizes per profile, we often
‘aggregate’ using regression models.
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Figure 1 Cumulative incidence (risk) of stroke for patients
with higher- and lower-risk profiles, if untreated (solid line) and
if treated (dotted line); estimates from Cox regression; data
from SHEP study (see text). The middle two curves, extracted
from the original report, are the cumulative incidence curves
for the ‘average’ patient, if untreated (solid line) and if treated
(dotted line)
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Whereas regression models are often used to
‘adjust’ imbalanced comparisons, the fitted values
from these models can also be used as more reliable
estimates for profiles with few subjects. These
estimates ‘borrow’ from the remainder of the data.

To convince colleagues that they ‘smooth/borrow’
instinctively, we asked them to estimate, from
Table 1 in [3,23], the prognosis for a man diagnosed
at age 58, with a Gleason 5 prostate cancer
(there were only eight such men in the data set)

Table 2 Risk estimates (%) for stroke in the next 1, . . . , 5 years, if the SBP will not be treated (Tx¼0) and if it will (Tx¼1), as a
function of the four prognostic indicators incorporated in the Total Score [ points are proportional to coefficients in Cox model
shown in Table 3]

Total
Year

Score Tx 1 2 3 4 5

200 0 3.4 7.0 9.3 12.3 15.4
1 2.2 4.6 6.1 8.2 10.3

(No. years beyond 60)% 4 _____ 150 0 2.1 4.3 5.7 7.7 9.7
1 1.4 2.8 3.8 5.0 6.4

Male . . . 25 _____ 100 0 1.3 2.6 3.5 4.7 6.0
1 0.8 1.7 2.3 3.1 3.9

Black . . . 30 _____ 50 0 0.8 1.6 2.2 2.9 3.7
1 0.5 1.0 1.4 1.9 2.4

(Every 10 mm SBP above 140) % 17 _____ 0 0 0.5 1.0 1.3 1.8 2.2
1 0.3 0.6 0.8 1.1 1.5

Total score _____

Example calculation for 80 year old black male with a SBP of 180mmHg. Score¼20%4þ25þ30þ4%17¼203. Risk estimate for
stroke in the next 5 years, if the SBP will not be treated is ' 16%, and if it will be treated is ' 10%.

Points
0 1 2 3 4 5 6 7 8 9 10

Total
Points 0 5 10 15 20

5-Year Risk

2.2% 3 4 5 6 7 8 9 10 12 15 18%

1.5% 2
3

4
5

6
7 8

10
12%

1%
2%
3%
4%
5%
6% 

RD

IF UNTREATED

IF TREATED

SBP
140 150 160 170 180 190

Black
No Yes

Male
No Yes

Age
60 65 70 75 80 85

Figure 2 Nomogram to calculate estimated 5-year risk of stroke if untreated, or if treated. Points – proportional to fitted Cox
regression coefficients – for the four factors (Age to SBP) are summed and transferred to ‘Total Points’ scale. The corresponding risks
and Risk Difference (RD) are read from the bottom two scales. Data from SHEP study (see text)
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or – worse – a similarly aged man with a Gleason 8
cancer (there were only two such men in this cell).
We observed them as they examined the experience
in adjacent cells, and based their estimate for the
cell of interest on an informal weighted average of
the data in it and in the adjacent cells. The
metaphor of ‘borrowing strength’, which was used
to justify the regression models in [23], was a
favourite of the eminent statisticians Frederick
Mosteller and his colleague, John Tukey, who
used it several decades ago when making USA
election-night projections from partial returns. The
advice of statistician George Box is also relevant
here: ‘all models are wrong, but some are more
useful than others.’ Forced to estimate the prog-
nosis for men in a ‘statistical cell’ for which we have
little data, we prefer a more precise but possibly
slightly off-target ‘synthetic’ estimate, i.e. one
based on an ‘interpolation’ model and substantial
surrounding data, than a less precise ‘standalone’
one. We do not advocate extrapolation.

More complex, and ‘time-irrelevant’, risk models

The data in our worked example were adequately
fitted by hazard ratios for treatment that were
constant over time and over covariate-patterns.
However, our call for the production of profile-
specific estimates does not preclude pre-planned
subgroup analyses (with varying hazard ratios), or
more complex hazard models. Moreover, although
we focused on the Cox model and cumulative
incidence, our plea for ‘individualization’ is also
relevant for data-analyses carried out under other
statistical models, such as logistic regression, where
the time element is nonexistent, irrelevant, or
unimportant.

Alternative presentations of profile-specific
estimates

When – as in the 45000 patient study cited earlier –
we have a large amount of information concerning
the profile of a particular patient, we depend less on
data from adjacent profiles and statistical models:
the data in that cell are sufficient. Since a printed
article cannot include estimates for each of the
profiles, they would need to be provided as
supplementary information on the journal website.
Alternatively, since the pattern of the profile-
specific statistics can usually be adequately sum-
marized (and ‘held together’) by a statistical model,
the fitted values for each profile might be com-
pactly presented within the printed report, using a
scoring system and a table/nomogram.

One other way to present information on
treatment benefit is via a ‘prognostic stratification’
system[24,25], in which several prognostic vari-
ables are mapped into discrete categories within
which risks are more homogeneous. An example is
the use of the TNM items to define cancer stages I,
II, III, and IV. These systems are used to guide
treatment choices, to achieve better balance of
prognostic factors in clinical trials, and to come
closer to ‘comparing like with like’ in nonrandom-
ized comparisons of treatments, especially over
time or between institutions.

If such a sufficiently fine prognostic stratifica-
tion system already exists, it can be used to add
specificity in the presentation of treatment results.
For example, one might, as in[3], use D’Amico’s
risk groupings for clinically localized prostate
cancer to report the statistics with different treat-
ment choices, separately for men with high, inter-
mediate and low-risk prostate cancers.

The ‘prognostic stratification’ alternative will
appeal to those who are concerned about the
number and nature of the mathematical assump-
tions inherent in the regression-based scoring
systems, with numbers of points (coefficients)
derived from statistical models fitted to the entire
dataset. Such end-users may prefer to rely on
estimates based on the ‘strictly local’ (but more
limited) data and a much simpler – or no –
statistical model, rather than on estimates derived
from the global data tied together by a model.
However, this local approach will produce wide
confidence intervals. A more sensible approach [26]
is to ‘derive a continuous risk score from a model
in which all relevant covariates are kept contin-
uous, and then to apply categorization at the final
step, so that profiles are divided into several groups
for clinical application by applying cutpoints to the
risk score.’

Beyond the one-number summary of
treatment benefit

Before presenting the illustration, we asked clin-
icians to recall the treatment benefit reported in the
SHEP study. They remembered ‘a 30% reduction’ –
but not the average risk difference of 3% at five
years. Relying on a one-number estimate of percen-
tage risk reduction, rather than a one-number
average risk difference, may not be entirely inap-
propriate: indeed a case could be made that if one
could only remember one ‘treatment benefit’
number, it should be the ratio measure. The
absolute risk difference observed in a trial is a
function both of the follow-up time, and the
average risk profile of those enrolled – possibly
different from that of the clinician’s own patients.
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For a specific profile, the clinician informally
estimates the level of absolute risk (if untreated)
[27] and applies the percentage reduction to it,
knowing instinctively that the risk difference will
likely be larger if the patient is higher risk.
However, without a good sense of the absolute
risk to which this percentage reduction applies, it is
not possible to accurately weigh the probability of
benefit against the costs and the probability of
harm.

As clinicians increasingly go online or use
mobile devices for decision support in the course
of patient care, their ability to use risk functions to
estimate profile-specific risks also increases. No
longer constrained by how many treatment-benefit
numbers they can store in their memory, they can
now have electronic ‘access’ to the two relevant
risks, for whichever risk profile. Indeed, they
already use support systems to compute risks for
myocardial infarction [28], and diagnostic prob-
abilities [29]. In order to provide doctors with
more patient– and practice-relevant information,
reports of clinical trials should routinely provide
the predicted (i.e., fitted) survival function for the
reference profile, together with the regression
coefficients (or hazard ratios) required to convert
it into profile-specific survival functions. Or, they
can present the risk estimates using risk scores,
which are then converted into risks via either a
nomogram or a table. Moreover, if a sufficiently
fine prognostic stratification system already exists,
reports should also provide the t-year risk, and risk
difference, specific to each stage or risk group.
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Appendix 1: Obtaining profile-specific
risks from Cox model

As with any regression equation, the point of
departure is the estimate for a ‘reference’ or
‘starting’ point, or category, before proceeding in
increments from there. A useful example is sex- and
height-specific estimates of ideal weight (the health
risks of being below this weight balance those of
being above it). A convenient starting point is the
one for women, five feet tall. Before recent research
revised the estimates upwards, the equation used to
be 100 lbs (reference value), plus 5 lbs for every inch
above the reference height, plus ‘10 additional lbs
and 1 additional lb/inch’ if male.

Similarly, the point of departure for profile-
specific survival curves is to fit a ‘reference’ survival
curve SreferenceðtÞ – the curve corresponding to the
profile in which the value of each prognostic
variable is in/at the reference category/value (we
will explain in the next paragraph how this curve is
estimated). Then, since the log hazard functions in
Cox’s regression model are held together by a linear
relationship, each profile-specific logfSðtÞg curve is
obtained from the reference logfSðtÞg curve using
the relationship

logfSprofileðtÞg ¼ logfSreferenceðtÞgþ LPprofile

where the ‘linear predictor’ LPprofile for a profile is
the score formed by multiplying each fitted regres-
sion coefficient by the amount the variable exceeds
the reference point, and summing these products.

When transformed to the survival scale, this
relationship becomes

SprofileðtÞ ¼ fSreferenceðtÞgexpðLPprofileÞ:

There are a number of estimators of the ‘refer-
ence’ curve SreferenceðtÞ, including the one suggested
by Cox. Breslow’s estimator [22] has an intuitive
form: it is the Kaplan–Meier curve obtained if, based on
the fitted regression coefficients, each actual subject in
the study was converted into a number of hypothetical
‘reference-profile’ subjects who collectively carry the
same short-term risk as the actual one. [13] For
example, a subject whose profile implies a short-
term risk 2.5 times that of subjects with the
‘reference’ profile contributes 2.5 ‘reference-equiva-
lent’ observations to each denominator (number at
risk). The curve SreferenceðtÞ is then estimated by
applying the Kaplan–Meier estimator to this ‘effec-
tive number’ of ‘reference-equivalent’ observations.
Since it is estimated using all of the observations
(with each given a weight), the reference curve is a
step-function containing as many jumps as there
are events in the entire data set (e.g., each curve
shown in Figure 1 is based on 263 strokes). The use
of all observations, ‘homogenized’ by a statistical
model, makes the estimated reference curve a more
stable starting point (or ‘intercept’) for the esti-
mated survival curves for other profiles. The fitted
SprofileðtÞ is, of course, invariant to the choice of
reference profile.

Each of the mainstream software packages for
survival analysis under the Cox model includes
the option of obtaining survival curves for specified
profiles. The steps are listed in Table A1. The
complements of these (descending) survival
curves represent cumulative incidence. Clinical
trial authorities[30] consider these ascending risk
functions more informative.

Appendix 2: Application to SHEP data

We fitted Cox’s semi-parametric log-hazard model
with ‘linear predictor’ !!kXk, where
X1 ¼ Age ðin yrsÞ ! 60, X2 ¼ Indicator of male
gender, X3 ¼ Indicator of Black race,
X4 ¼ Systolic BP ðin mmHgÞ ! 140 and X5 ¼
Indicator of active treatment. The fitted values for
the parameters are given in Table A2. The estimated
1-, 2-, . . . , 5-year stroke-free survival proportions for
persons with the reference profile are
Sref:½1) ¼ 0:995, Sref:½2) ¼ 0:990, Sref:½3) ¼ 0:987,
Sref:½4) ¼ 0:982, and Sref:½5) ¼ 0:978, respectively.

Although, one would normally use the software
to perform it, we illustrate the arithmetic
involved by calculating the estimated 5-year risk
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of stroke for a 65 year old white female with a SBP
of 160 mmHg. Relative to persons in the reference
profile, the hazard for white females like her,
5 years and 20mmHg above the reference values,
is expð0:041% 5þ 0:259% 0þ 0:303% 0þ 0:017%
20! 0:435% 0Þ ¼ expð0:545Þ ¼ 1:72 if untreated,
and expð0:545! 0:435Þ ¼ 1:12 if treated. Thus,
the estimates of stroke-free survival at 5 years
are 0:9781:72 ¼ 0:962, and 0:9781:12 ¼ 0:975;
respectively, so that the cumulative incidence
(CI) estimates are 1! 0:962 ¼ 0:038 and
1! 0:975 ¼ 0:025 respectively.

The quantity 0.545 in the worked example was
obtained – from what statisticians call the ‘linear
predictor’ – by summing ‘points’: 0.041 for every
year of age above the reference age, 0.017 for every
mmHg above the reference SBP, etc. The resulting
‘score’ is exponentiated and the profile-specific
survival estimate obtained as fSref:½t)gexpðscoreÞ. We
can generalize this approach, as has been done with
Framingham data, to form a scoring system, and
couple it with a look-up-table that yields the
cumulative incidence (risk) for any given profile.
To avoid decimals, the regression coefficients (i.e.,
the ‘points per unit value above the reference
value’) used in the scoring are scaled up, and then
rounded to integers. The scoring system and the
look-up table are shown in Table 2. If required,
a confidence interval for the estimated risk, or

risk difference, can be derived from the variance-
covariance matrix of the estimated regression
coefficients by the parametric bootstrap.

Alternatively, as shown in Figure 2, the points
for each risk factor in the profile can be read from
‘rulers.’ Figures such as this can be formed using
the nomogram function in the ‘Design’ package
[17] in R. Computer code is provided in http://
www.epi.mcgill.ca/hanley/software.

Since even the highest risk in Figure 2 is below
20%, the (across the spectrum) 35% reduction
in incidence translates into approximately an
(across the spectrum) 35% reduction in cumulative
incidence. If cumulative incidence (CI) is low,
say less than 20%, the exact relationship between
CI½t) and the hazard function h½u), namely
CI0 to t ¼ 1! exp½!

R t
0 h½u)du), can be approximated

by CI0 to t '
R t
0 h½u)du. In such cases, where the

event rate ratio in the treated versus untreated
is HR : 1, then for any specific profile,
CI0 to t; if treated ' HR% CI0 to t; if not treated.

Table A1 How to obtain profile-specific survival curves under the Cox model in each of the major statistical packages

Package Procedure Statement Steps

SAS PHREG BASELINE 1. Form separate dataset containing profiles of interest.
2. In BASELINE statement, point to this dataset.

Stataa stcox basesurv( ) 1. Use basesurv( ) to store estimated curve for baseline profile.
2. For each profile of interest, calculate corresponding hazard ratio
HR from regression coefficients.
3. Insert HR in ‘Sreference(t) to Sprofile(t)’ relationship.

R/S-Plus/survival coxph survfit Specify profiles via newdata option
R/S-Plus/Design cph survest See also survplot and nomogram
SPSS COXREG /PATTERN Specify profiles in /PATTERN statement.

Note: aSee http://www.ats.ucla.edu/STAT/stata/seminars/stata_survival/default.htm.

Table A2 Fitted values for the coefficients of Cox regression
model: data from SHEP study

Age-60 IMale IBlack SBP!140 IActiveTreatment

0.041 0.259 0.303 0.017 !0.435a

Note: aHazard ratio¼ exp(!0.435)¼0.65 (35% reduction).
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