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Administrative and other population-based databases are widely used in pharmacoepidemiology to study
the unintended effects of medications. They allow investigators to study large case series, and they document
prescription medication exposure without having to contact individuals or medical charts, or rely on human
recall. However, such databases often lack information on potentially important confounding variables.
This review describes some of the sampling approaches and accompanying data-analysis methods that can
be used to assess, and deal efficiently with, such confounding.

1 Introduction

Administrative and other population-based databases are widely used in pharma-
coepidemiology to study, nonexperimentally, the unintended – and sometimes too the
intended – effects of medications. They allow investigators to assemble large case series,
and to document medication exposure (using prescriptions issued or filled). This can
be done without having to contact individuals, or their clinical records, or to rely on
after-the-adverse-event recall by those in the case series and after-some-time recall by
those in the study base, or in a denominator (‘control’) series formed from it.

In the study of intended effects, ‘confounding by indication’ can make the
nonexperimental approach infeasible.1 In the study of unintended effects, contra-
indications pose a lesser threat, since they are less common, and possibly previously
unrecognised.1 Nevertheless, patients who take a specific medication may have other
medical conditions, and take other medications for these, or have behaviours that lead
to or protect against the event of interest. Thus, it may be difficult to disentangle
unintended effects of the medication of interest from those caused by these other
conditions, medications and behaviours. This challenge is all the greater in database
research, where information on these ‘confounding’ factors is either not available
in the databases themselves, or recorded with considerable imprecision. The large
numbers of instances of the event of interest that can be studied via databases may
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well lead to interval estimates of effect that are more precise (narrower) than those
available from traditional etiologic studies, but the failure to control for unmeasured
or poorly measured confounders may well mean that these precise estimates are
‘precisely wrong.’

This review describes some of the approaches that may be used to deal with this
problem when access to the information on these confounding factors is limited.
Section 2 provides some general orientational remarks on confounding and impreci-
sion, and Section 3 discusses how much it ‘costs’ – in sample size and variance terms –
to deal with confounding. Section 4 briefly reviews some strategies which use external
parameter estimates or supplementary individual-level data to quantify, and ‘correct’
for the potential impact of, suspected confounding. Section 5 deals with situations where
supplementary data can be obtained on some of the individuals in the database study.
The presentation is not intended to be a comprehensive and highly technical review of
the considerable recent work in this area; rather it is aimed primarily at statisticians and
epidemiologists who have little familiarity with this topic.

2 Confounding and imprecision – general considerations

2.1 Confounding
The term ‘confounding’ will be used to denote ‘one particular form of the confusion

of two effects: the confusion due to extraneous causes, i.e. other factors that really do
influence disease incidence, e.g. age, sex, habits or living circumstances.’2 As a point
of departure, we consider first the simplest situation: a large study base of population
time, involving a binary exposure E, a binary event indicator Y and a single binary
confounder C. What is the impact of ignoring, or being unable to control for, C? To
quantify the distortion, suppose that the theoretical incidence density (ID) of Y = 1
(i.e. the event rate one would observe in an infinite amount of experience) follows the
multiplicative relationship

ID(Y = 1|C = c, E = e) = ID00 × {ψC}c × {ψE}e. (1)

where ID00 is the ID in the (C = 0, E = 0) category, ψC is the (common) ID ratio
contrasting the ID in the (C = 1, E = 0) versus (C = 0, E = 0) category, and in
the(C = 1, E = 1) versus (C = 0, E = 1) category, and ψE is the (common) ID ratio
contrasting the ID in the (E = 1) versus (E = 0) category, within each level of C. Let
PC=1|E=1 denote the proportion of the exposed (i.e. E = 1) population time for which
C = 1, and PC=1|E=0 the corresponding proportion within the unexposed population
time. The parameter of interest is

ψE = ID(Y = 1|E = 1, C)
ID(Y = 1|E = 0, C)

, (2)

which, as is implied by (1), is assumed to be homogeneous across both levels of C.
In an infinite amount of experience, this is the (theoretical) value we would observe
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if we restricted our attention to a domain where there was no variation in C, or if C
did not independently affect the ID, and we aggregated the experience across the two
levels of C. But what if neither of these two conditions applied?

Suppose one ignores – or is unable to measure – C. In the same infinite amount
of experience, how close would the ‘crude’ ID ratio, ψE−crude, be to the quantity of
interest, ψE? The relationship, given in equation 3.1 in Breslow and Day,3 can be
re-written as

ψE−crude = ψE × 1 + (ψC − 1)PC=1|E=1

1 + (ψC − 1)PC=1|E=0
. (3)

Thus, for example, in what some authors call ‘positive’ confounding, if ψC > 1 and
PC=1|E=1 > PC=1|E=0, then ψE−crude > ψE. The second term on the right hand expres-
sion is often referred to as the confounding ratio.4 In addition to establishing both
ψC #= 1 and PC=1|E=1 #= PC=1|E=0 as the mathematical conditions for confounding, the
ratio shows how the magnitude of the distortion of ψE is determined jointly by the
degree to which ψC deviates from 1 and by which PC=1|E=1 differs from PC=1|E=0.

Breslow and Day3 tabulated values of the confounding ratio for ψC = 2, 5 and 10, and
a broad range of values of PC=1|E=1 and PC=1|E=0. Ratios for less extreme situations,
such as might be expected in database studies, are tabulated here.

ψC 2 → 4 →
Pc = 1|E = 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Pc = 1|E = 1 0.2 0.4 0.3 0.6 0.4 0.6 0.5 0.8 0.2 0.4 0.3 0.6 0.4 0.6 0.5 0.8

Ratio 1.1 1.3 1.1 1.3 1.1 1.2 1.1 1.3 1.2 1.7 1.2 1.8 1.2 1.5 1.1 1.5

One notices that a single binary confounder needs to be strong, present in a sizable
fraction of the base, and highly correlated with the exposure, in order for its omission
to distort the true ID ratio, ψC, by 50% or more.

If, in relationship (3), we consider a ‘null’ situation where ψE = 1 but ψC > 1, and
if we divide the numerator and the denominator of the confounding ratio by (ψC − 1),
we obtain the inequality

PC=1|E=1

PC=0|E=1
>

1/(ψC − 1) + PC=1|E=1

1/(ψC − 1) + PC=1|E=0
= ψE−crude.

This inequality, with E in place of the A in his 1959 article,5 C in place of B, and ψE−crude
in place of r, is a re-statement of Cornfield’s fundamental, but often overlooked, result:
‘If an agent E, with no causal effect upon the risk of a disease, nevertheless, because of
a positive correlation with some causal agent, C, shows an apparent risk, ψE−crude, for
those exposed to E, relative to those not so exposed, then the prevalence of C, among
those exposed to E, relative to the prevalence among those not so exposed, must be
greater than ψE−crude. [italics ours].’ This inequality can also be used to put bounds
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on the distortion in non-null situations, e.g. when ψE > 1. When C is multi-valued, or
multi-dimensional, the magnitude of the distortions created by not being able to account
for it is more difficult to quantify.

Although it may seem like a digression from our topic, Section 2.2 is included
to emphasise that there is another component in the log{ψ̂} derived from most
non-experimental studies:

log{ψ̂} = log{ψ} + log[Confounding Ratio] + Random Error.

Unless this second component is small, the effects of confounding cannot be isolated.

2.2 Imprecision of statistical estimates
Even when we have access to information on C, and can – via the study design, and in

the data-analysis by stratification or statistical modelling – correct for the distortion it
would otherwise produce, the resulting empirical ID ratio, ÎDR, or ψ̂E, derived from any
one study will differ from the theoretical (‘true’) ratio, ψE. Some of the difference between
ψ̂E and ψE has to do with factors such as the imperfections in the statistical model used
to approximate the true biological situation, and imperfections in the recorded data; its
magnitude tends to be unrelated to the size of the case series, and is quite difficult to
quantify. What is more readily quantifiable is the expected amplitude of ψ̂E − ψE, or
of log{ψ̂E/ψE}: it is governed by the statistical laws that generate the observed numbers
of exposed (subscript1) and unexposed (subscript0) cases, c1 and c0, that occur within
the two segments of population-time (PT1 and PT0) comprising the study base. The
c1 and c0 comprise the case series.

Consider the first simplest situation, where we are dealing with, or can restrict
attention to, an otherwise homogeneous study base (i.e. one in which there are no
confounding factors), where we know the relative sizes of PT1 and PT0, and can assume
that c1 and c0 are realisations of two independent Poisson random variables. Thus,
ψ̂E = (c1/PT1) ÷ (c0/PT0). For such studies, the (large-sample) variance of log{ψ̂E}
about log{ψE} is given by

Var[log{ψ̂E}] = 1/µc1 + 1/µc0, (4)

where µc1 and µc0 are the expected numbers of exposed and unexposed cases,
respectively.

In many investigations, the absolute or relative sizes of PT1 and PT0 that generated
these cases are not known. In such situations, a denominator series (traditionally referred
to as a control series), formed from a representative sample, of size d say, of the person-
moments in the base, is used to estimate their relative sizes. This PT1 : PT0 ratio is then
estimated as d1 :d0, where d1 and d0 are the observed numbers of exposed and unexposed
(person) moments in the denominator series. From these quasi-denominators, and from
the numerators c1 and c0, the ID ratio ψE is estimated as

ψ̂E = (c1/P̂T1) ÷ (c0/P̂T0) = (c1/d1) ÷ (c0/d0) = (c1/c1) ÷ (d1/d0).
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The probability distribution of the d1 :d0 ratio is governed by the binomial law, and so
the large-sample variance of log{d1/d0} is 1/µd1 + 1/µd0, where µd1 and µd0 are the
expected numbers of exposed and unexposed persons in the control series. Thus the
variance of log{ψ̂E} about log{ψE} is given by

Var[log{ψ̂E}] = 1/µc1 + 1/µc0 + 1/µd1 + 1/µd0 . (5)

Epidemiological textbooks usually give its empirical version, i.e. the estimated variance,
obtained by substituting the observed frequencies c1, c0, d1, and d0, (or a, b, c and d, as
the entries in the 2 × 2 table are usually called) for the expected quantities. Variations
on this fundamental formula provide the basis for measuring many of the statistical
‘economies’ described in this review. The original variance formula for a single stratum
goes back at least as far as Yule, in connection with the cross-product measure
of association; today it is usually associated with Woolf,6 who used it – without
derivation – in his 1955 article: for illustration, he combined results from three cities
(strata) on the association between blood group and peptic ulcer. Incidentally, his classic
article7 took a remarkably modern approach to rate ratio estimation, using unrelated
numerator (case) and denominator (control) series. He used h and k (our c1 and c0)
for the numerators for (i.e. the numbers of cases in) the index and reference blood
groups, and H and K (our d1 and d0) for the corresponding values from the denomi-
nator series. Sadly, it is still common for textbooks to teach that case-control studies
compare cases and controls with respect to ‘exposure odds’, i.e. to compare the h :k
and H :K ratios. Woolf compared the index and reference categories of the determinant
with respect to incidence rates, i.e. he compared h/H and k/K via their ratios. In so
doing, he recognised the essence of the etiologic study,8−10 where the main conceptual
difference between so-called ‘cohort’ and ‘case-control’ approaches is that the former
uses known population-time denominators, whereas the latter uses an estimated ratio
of these denominators – and pays an extra price, in terms of statistical variance, for
doing so.

Several important design considerations flow from ‘Woolf’s formula.’ If the effort
and study budget is proportional to, or otherwise constrained by the size of the case
series, c = c1 + c0, then the more symmetric the c1 : c0 split, the smaller the variance
component 1/c1 + 1/c0. In some situations, the reduction in variance can be achieved by
manipulating the magnitudes of PT1 and PT0. If the study is constrained by the available
amount of exposed experience, PT1 (and thus by the c1 it generates), but not seriously
by the amount PT0, then continuing to increase PT0 so that c0 >>c1 will continue to
reduce the variance component, but according to a ‘law of diminishing reductions,’ as
is evident by evaluating the series 1/c1 + 1/{1, 2, 3, . . . } × c0.

A similar law of diminishing returns prevails when one needs to estimate the PT1 : PT0
ratio using a denominator series of size d. Again, if – as is commonly the situation – the
study is constrained by the size of the case series, c, then continuing to increase d
so that d >> c will continue to reduce the variance component 1/d1 + 1/d0, but
according to the law of diminishing reductions given by the series (1/c1 + 1/c0) +
(1/d0 + 1/d0)/{1, 2, 3, . . . }. In Volume I,3 and again in the Design Considerations
chapter in Volume II,11 Breslow and Day study the impact of the d :c ratio in various
circumstances.
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When the exposure of concern is uncommon, so that PT1 << PT0 and c1 <<c0,
and the PT1 : PT0 ratio is known, or can be estimated with such a large denominator
series that (1/d1 + 1/d0) adds a negligible variance component, then Var[log{ψ̂E}] is
dominated by 1/c1. We can use this dominant component to derive the minimum margin
of error associated with ψ̂E, as a function of the expected number of exposed cases, µc1,
and thus – by back-calculation – of the expected total number of cases.

Expected number of exposed cases, µc1 : 50 100 200 300 400 500
Min. 95% Margin of Error* for ψ̂E(×/÷) : 1.32 1.22 1.15 1.12 1.10 1.09
Total no. of cases, c, if ψE × Prev(E) = 0.1 : 500 1000 2000 3000 4000 5000

∗Minimum Margin of Error = exp{1.96 × (Var[log{ψ̂E}])1/2} = exp{1.96 × (1/µc1
)1/2}

Thus, if a medication is used by a proportion P(E) = 0.1 = 10% of a population, but has
a null effect on the rate of adverse events, a population base that generated 1000 events
could nevertheless – with a 5% probability – lead to apparent ID ratio estimates
as low as ψ̂E = 1 ÷ 1.22 = 0.82 and as high as ψ̂E = 1 × 1.22 = 1.22. Likewise, if
a medication is used by 5% of a population, but doubles the rate of adverse events, a
population base that generated this same number of events could lead to apparent ID
ratio estimates as low as ψ̂E = 2 ÷ 1.22 = 1.64 and as high as ψ̂E = 2 × 1.22 = 2.44.
Larger numbers of cases (events) than those tabulated above are required for smaller
P(E) × ψE products, for narrower margins of error, for studies where E is more
common (the variance component 1/µc0 was omitted in the above calculations), or
if the PT1 : PT0 ratio has to be estimated using a denominator series (since the variance
component 1/µd1 + 1/µd0 was also omitted in the above table). The larger c and d
numbers can be calculated by replacing the 1/µc1 in the minimum margin of error
formula by (1/µc1 + 1/µc0), or by (1/µc1 + 1/µc0 + 1/µd1 + 1/µd0), if these additional
components are non-negligible.

3 Traditional control of confounding: and how much does it cost?

Before multiple logistic regression and Cox regression methods became readily available,
the classical methods for the control of confounding were restriction and stratification.
The classical methods for the analysis of stratified data from ‘cohort’ and ‘case-control’
studies (i.e. from etiologic studies with known and estimated PT denominators,
respectively) are well described in the early chapters in the two Breslow and Day
volumes.3,11 When the data for each stratum are plentiful, the observed stratum-
specific ID ratio (or difference) estimates can be combined to form an estimate
of the (presumed common) summary measure, using the inverses of the estimated
variances of the stratum-specific estimates as weights. In the worked example in
Woolf’s article,6 the data were stratified by city. The stratum-specific numerators
(c: numbers of cases of peptic ulcer) and estimated relative sizes of the underlying
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population-time ‘denominators’ (d: numbers of persons in the sample of the base) in
the index (Group O, subscript1) and reference (Group A, subscript0) blood groups were
in the hundreds and thousands, respectively:

City: London Manchester Newcastle

c’s & d’s: c1 d1 c0 d0 c1 d1 c0 d0 c1 d1 c0 d0
number: 911 4578 579 4219 361 4532 246 3775 396 6598 219 5261

Thus the calculation of a weighted average of the logs of the stratum-specific
ψ̂ ’s, i.e. of [log({911/4578} ÷ {579/4219}) =]0.3716, 0.2008 and 0.3659, all three
of which are statistically stable, and using stratum-specific information weights
Istratum = 1/ ˆVar(log{ψ̂E−stratum}) = [1/(1/911 + 1/4578 + 1/579 + 1/4219 =]304.9,
136.6 and 134.5, that are also stable, poses no particular problems.

When, however, the data for each stratum are sparse, then – even if there are many such
strata – a more careful approach is required in order to avoid unstable effect estimates.
The ratio estimator devised by Mantel and Haenszel12 does not calculate a separate ψ̂E
for each stratum. Instead it calculates a single ratio: the numerator, numMH, of this ratio
is the sum,

∑
, over the strata, of carefully scaled, i.e. downweighted stratum-specific

products, i.e.
∑

(c1 × d0) × w, while the denominator denMH, is the corresponding sum∑
(c0 × d1) × w. In the worked example in their classic article, the 12 strata consisted

of the combinations of 3 occupations and 4 age groups of women. The 12 stratum-
specific numerators (numbers of cases of epidermoid and undifferentiated pulmonary
carcinoma) for the index category (+1 pack a day smokers) – denoted by A’s by Mantel
and Haenszel – ranged from 0 to 4, and amounted to 18 in total. The 12 stratum-
specific denominators (numbers in the denominator sample of the base) for the index
category – denoted by C’s by Mantel and Haenszel – ranged from 0 to 3, and amounted
to just 13 in total. The size of the entire case series was

∑
c = 31, while the entire

denominator (‘control’) series was nine times larger, i.e.
∑

d = 282. Clearly, Woolf’s
approach is not suitable for such sparse data: in 6 of the 12 strata, log{ψ̂E} = ±∞, its
estimated variance is infinite, and thus the associated weight in the weighted average
is zero. The Mantel-Haensel summary measure, ψ̂E = numMH ÷ denMH = 12.825 ÷
1.201 = 10.68 is more stable, and uses information from the 11 informative strata.
Estimators for the variance of the summary measure log{ψ̂E} for the situations where
the stratum-specific population-time denominators PT1 and PT0 (i) are known (ii) have
to be estimated by stratum-specific ‘denominators’ (control series) have been developed
by Breslow,13 and Robins, Greenland and Breslow,14 respectively.

A more detailed analysis of the estimator of the variance of Woolf’s weighted average
of log ratios provides considerable insight into the price, in terms of variance, of adjust-
ing for confounding by combining stratum-specific estimates. Even though in practice,
with finite experience, one would not know the true value of ψC, we can also examine the
price of taking a weighted average when in fact its true value was unity, so that there was
no need to control for C. Denote the variance of the stratum-specific log ratio, i.e. the



“SMM096046” 2008/9/23 page 8!
!

!
!

!
!

!
!

8 JA Hanley and N Dendukuri

sum of the reciprocals of the four expected frequencies, by Vstratum, and the correspond-
ing inverse variance, the Information, by Istratum = 1/Vstratum. The summary estimate is
the information-weighed average

∑
(Istratum × log{ψ̂Estratum})/ ∑

Istratum, and its vari-
ance is 1/

∑
Istratum. As a comparison, one can consider the situation where, because

of restriction, or otherwise, there was no confounding to be concerned with, and an
unstratified analysis was performed, but where the number of cases was the same as
the overall number of cases in the stratified study (if denominators are known) or both
the numbers of cases and of ‘controls’ were the same (if the population-time denomina-
tors need to be estimated). Generally, but not invariably, the variance for the summary
(weighted average) estimator is higher than the variance in the unstratified study of the
same size. The additional variance cost, or conversely, the additional sample size needed
to maintain the same variance, typically increases with the degree of confounding, i.e.
with how far ψC departs from 1, and how far apart PC=1|E=1 and PC=0|E=1 are. One
can get a sense of this from a classic confounding example,15 where the strata are based
on the women’s ages at the time of the initial survey, the subscripts 1 and 0 denote
smokers and non-smokers, and c’s and d’s are the respective numbers who died in, and
survived, the ensuing 20 years.

Age: 18–44 45–64 65+ Unstratified
c1 d1 c0 d0 c1 d1 c0 d0 c1 d1 c0 d0 c1 d1 c0 d0

no.: 19 269 13 327 78 167 52 147 42 7 165 28 139 443 230 502

Because smokers tended to be from the younger generations, the crude odds
ratio (OR) contrasting the odds of death in smokers and non-smokers is (139 ×
502) ÷ (230 × 443) = 0.68, suggesting that death rates are lower in smokers than
non-smokers. The variance of the crude log OR is (1/139 + 1/443 + 1/230 +
1/502) = 0.016. In contrast, the Mantel–Haenszel summary OR of 1.36 suggests
the opposite effect, an example of ‘Simpson’s paradox.’ The variance of this log
OR is 1/{(1/19 + 1/269 + 1/13 + 1/327)−1 + (1/78 + 1/167 + 1/52 + 1/147)−1 +
(1/42 + 1/7 + 1/165 + 1/28)−1} = 0.029, more than 80% higher than the 0.016 for
the log of the crude ratio. The factors that increase the variance have been examined in
detail;16,17 we will return to them in Section 5.

Nowadays, multiple logistic regression and Cox regression methods are often used
instead of the classical stratified-data methods for the control of confounding. These
regression methods can also be used for ‘cohort’ and ‘case-control’ studies that match at
the design stage on some of the dimensions of C. Again, these methods for data from such
studies are well described in the later chapters in the two Breslow and Day volumes.
When the data for each stratum are plentiful, an ID ratio estimate can be obtained
by unconditional regression models – Poisson if PT values are known, and logistic if
they have been estimated – by representing the information in C as a set of regressor
variates. When the stratum-specific data are sparse, and arise from a case-control design,
Breslow and Day3 (p. 250) show that using a separate ‘intercept’ for each stratum in
an unconditional logistic regression model leads to biased estimates of ψE, and one
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must instead resort to conditional logistic regression, where by using stratum-specific
likelihood contributions, the effect of the matching factor is not estimated.

The ‘Woolf-like’ structure of the variance estimator for the ψ̂E derived from an
unconditional regression model is not widely appreciated. Since it is relevant to the
methods described in Section 5, a brief example is given here, using as an illustration
the data used by Woolf.6

Stratum-specific, & overall, Information (I) Var[log ψ̂E]
London Manchester Newcastle IOverall ψ̂E (1/IOverall)

Crude: – – – 589.4610 1.3482 0.001696465
Woolf: 304.8530 136.5994 134.5333 575.9857 1.3906 0.001736154
Logistic: 306.8512 133.2757 135.7605 575.8874 1.3913 0.001736450

In each instance, the information (I) was calculated as the sum of the reciprocals of
four frequencies – the overall ones in the crude analysis, the observed stratum-specific
ones in the Woolf approach, and the fitted stratum-specific ones obtained from the four
parameter logistic regression model that contained an intercept for the reference city,
two indicator variables for the other two cities, and an indicator for the index blood
group. In this example, there was minimal confounding, and thus the variances for
the adjusted ID ratios are only slightly higher than the one accompanying the crude
estimate. Unless there is considerable confounding, the expected overall frequencies can
often be used as a rough guide to project, at the design stage, the expected variance for
the logistic-regression adjusted estimates.

When there is extreme confounding, such as the Simpson’s paradox example,15 the
variance of the adjusted log OR can be substantially higher than that for the crude
one (recall that the the variance of the crude log OR was 0.016). A four parameter
logistic regression model that contained an intercept for the reference age-group, two
indicator variables for the other age-groups, and an indicator for smoking, yielded an
OR of 1.36; the variance of its log was 0.029, identical to three decimal places to that
obtained for Woolf’s weighted average of log OR. Thus, the cost of adjustment in this
extreme example amounts to a variance – or sample size – inflation of ∼ 80%.

3.1 Confounding, matched sets, and unused information
Some studies use matching, rather than regression, as the primary control for key

confounders. In such studies, it is important that investigators not spend resources on
the acquisition, cleaning and computerisation of data that ultimately make no contri-
bution to the adjusted – or unadjusted – estimate of the ID ratio. This issue arises in
both ‘matched cohort’, and ‘case-crossover’ studies. Two examples will illustrate. The
first of these18 is a matched cohort study which included 48,857 persons with food-
borne infections, each one matched with 10 non-infected persons, matched for age,
sex, and county of residence. The authors compared the mortality of the infected and
non-infected, ‘using conditional proportional hazard regression,’ effectively conditional
logistic regression. A comorbidity index was included as an important, but unmatched,
confounding variable. The authors reported their comparisons using relative mortality
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ratios (effectively hazard, or ID ratios), over the entire 12 month follow-up window,
and – because of the sharp decline in this ratio over the follow-up period – in several
sub-windows. ‘Elevens’ (i.e. matched sets) in which there was no event (death) during
the time window do not contribute to the (partial) likelihood, and so could have been
omitted from the analysis. If each of the deaths (4707 in all) occurred in a different
matched set (and probably most did), then 48, 857 − 4707 = 44, 150 (i.e. >90%) of
the matched sets did not contribute to the fitted mortality ratio. Since there was no
specific mention of it in their report, it appears that the authors did not take advantage
of this considerable potential economy. Even though they were largely obtained from
administrative databases, the marginal cost of obtaining and processing these unin-
formative 441,500 records was hardly minimal. As Walker19 emphasises, if obtaining
important exposure or covariate information involves substantial unit costs, these should
be expended on the informative, i.e. event-containing, matched sets. The accompanying
commentary on the matched cohort study pointed out that ‘cohort studies usually have
to be very large to obtain a sufficient number of outcome events.’ To this, one might add
‘once the large number of events has been generated, we should use both the exposure
and confounder data in the most cost-efficient and statistically-efficient way.’

This economy was exploited in a study of the risk of percutaneous injuries among more
than 2000 medical interns during standard and extended work shifts.20 To assess the
relationships between injury risk and either time of day or duration of work, the authors
‘used a within-person […] design in which each participant acted as a separate stratum,
and a combined OR was generated using a Mantel–Haenszel [summary ratio]. Because
each participant acts as his or her own control, the […] study design eliminated the need
to account for potential between-subject confounders such as differences in age, sex or
medical specialty.’ Thus, the data-preparation could be limited to the within-participant
information just for the approximately 200 participants who suffered a percutaneous
injury.

One variation on this design has become known as the case-crossover design, a term
generally ascribed to Maclure,21 although variations on this design have been used
in epidemiology for quite some time (e.g. Haddon22), and by individuals since time
immemorial to investigate the origins of rashes, headaches, computer crashes and other
untoward personal events. The statistical analyses are just as in the matched case-control
examples discussed above. We wonder why the design – or at least the analysis – was
not given the more informative ‘self-paired case control’ label.

In these two examples, the efficiency stemmed from ignoring the sets (elevens in the
infections study, interns in the injuries study) in whom there were no events (deaths,
injuries). The case-crossover study also ignores cases in whom there is no variation in
exposure, unless there are ‘within-set’ confounding variables – in which situation the
exposure-concordant sets contribute to estimating their effects, and thus ultimately to
the control of confounding.

4 `External' control of, or allowance for, confounding

Section 3 described instances where the information on potential confounding variables
was readily available, but either did not matter, or – even if the variable were
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important – the data for the majority of the matched sets were uninformative. But what
of the opposite situation, where the data on potential confounders might well matter,
but it would be prohibitively costly, or maybe even impossible, to obtain them on all
subjects?

Restricting the study population, thereby increasing homogeneity, is often the first
line of defense against the effects of potential confounding factors. Schneeweiss et al.23

recently illustrated the benefits of this approach in pharmacoepidemiologic database
studies: they compared the results of using increasing levels of restriction with those
from randomised trial results. They found that ‘restricting to incident drug users, similar
comparison groups, patients without contraindication, and to adherent patients was a
practical strategy, which limited the effect of confounding, as these approaches yield
results closer to those seen in trial results.’

Another option is to conduct formal sensitivity i.e. ‘what if’ , analyses, using external
information, or external expert opinion. In the simplest situation, where both E and C
are unidimensional binary variables, outside estimates – subjective or objective – of the
confounding ratio in expression (3) can help to adjust the point and interval estimates
obtained. A Bayesian analysis can be used to combine the sampling variability in
the statistical estimate of ψ̂E−crude with the uncertainty in the elicited, or literature-
based, estimates of the ID ratio parameter ψC and of the prevalence proportions
PC=1|E=0 and PC=1|E=0. If the latter proportions are difficult to document/estimate
directly, it may be more feasible to substitute estimates of their components into
PC|E = (PE|C × PC)/PE. In many situations, there will be more than one potential
confounding variable, and so expression (3) would need to be extended accordingly.
However Greenland24 provides arguments why, under certain causal models, unmea-
sured confounding be modelled via a single latent variable. Section 3.7 of his article
provides a worked example of how to implement this. The article also describes how
to deal with other sources of uncertainty, such as possible uncontrolled associations of
exposure and disease with selection and participation (sampling and response biases)
and – especially important for database studies in pharmaco-epidemiology – the effects
of measurement errors.

Schneeweiss25 describes four approaches to sensitivity analyses to investigate the
impact of residual confounding in pharmacoepidemiologic studies that rely on health
care utilisation databases (1) sensitivity analyses based on an array of informed assump-
tions; (2) analyses to identify the strength of residual confounding that would be
necessary to explain an observed drug-outcome association; (3) external adjustment of
a drug-outcome association given additional information on single binary confounders
from survey data using algebraic solutions; (4) external adjustment considering the
joint distribution of multiple confounders of any distribution from external sources of
information using propensity score calibration. Given the availability of easy-to-apply
techniques, he like Greenland, advocates greater use of formal sensitivity analyses, rather
than the current culture of qualitative discussions of residual confounding. The articles
by Strümer et al.26 and by Schneeweiss et al.27 provide good examples of some of these
approaches.

Methods that use individual validation data – internal or external – to correct the
parameter estimate of interest for measurement errors in the regressor variables have
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been available for some time.28 Although, they have not been widely used elsewhere,
they can be particularly helpful for database studies, where the limited information
on each person in the database can be thought of as an imperfect version of what
would have been provided by the full set of relevant covariates. The essence of this
correction (often called regression calibration) can be illustrated using the simplified
case-control example that will be used extensively in Section 5. If the investigator only
had access to the dichotomised version (C∗) of the quantitative confounding variable
(C) – the subject’s background risk – on each of the 44,199 study subjects, the data
would yield log{ψ̂E} = 0.545, and log{ψ̂C∗} = 1.12. Suppose that we estimated, from
an auxiliary sample, that the correlation between C∗ and C was 0.80, and that Ĉ =
0.35 + 0.096 × E + 1.08 × C∗. Then, the regression calibration would yield log{ψ̂E} =
0.545 − 0.096 × 1.12 ÷ 1.08 = 0.445. This lower value reflects the greater control of
residual confounding by using a more refined version of the confounding variable.

If there are several confounding variables, they can be converted to a scalar quantity
for each study subject via a propensity score. The score is the probability, estimated
using a logistic regression model based on these variables, that a subject with this
covariate pattern was exposed. If a suitable auxiliary database or clinical subsample
exists, the relationship between the more refined, but unavailable, propensity score
and the less refined version, available from the study database, can be estimated
from the exposure and covariate information in this auxiliary source. The estimated
parameters of this relationship are then used to correct the parameter estimate of
interest obtained from the database-only regression model. Stürmer et al.29 describe
a striking pharmaco-epidemiologic example of this combination of propensity scores
and regression calibration, and the software implementation. The main study population
consisted of just over 100,000 community-dwelling New Jersey residents aged 65 years
or older who filled prescriptions within the Medicaid program or the Pharmaceutical
Assistance to the Aged and Disabled program and who were hospitalised at any
time between January 1, 1995, and December 31, 1997.The auxiliary validation
sample of just over 5000 was drawn from the the Medicare Current Beneficiary
Survey (MCBS) – a sample of beneficiaries selected each year to be representative of
the current Medicare population. Data, including data on medication use over the
past 4 months (verified by inspection of medication containers), are obtained from
face-to-face interviews and linked to Medicare claims data. The authors assessed
the relation between non-steroidal anti-inflammatory drugs (NSAIDs) and 1-year
mortality (22,000 deaths). Adjustment based only on the variables available for
the 100,000 resulted in a hazard ratio for NSAID users of 0.80 as compared with
an unadjusted hazard ratio of 0.68. Propensity score calibration resulted in a ‘more
plausible’ hazard ratio of 1.06.

5 Using confounding data on sub-samples of cases and controls

5.1 Motivation and data for illustration
How much can be accomplished if we obtain ‘internal’ confounder data on a

judiciously selected subset of those in the database study? To illustrate, we use
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information from a study that examined whether, and if so by how much, selective
serotonin reuptake inhibitor antidepressants (SSRIs) increase the risk of upper gastro-
intestinal haemorrhage.30 This population-based case control study was conducted
using the General Practice Research Database. In addition to documenting concomitant
medications considered to increase/decrease the risk of GI haemorrhage, this database
also contains information on items such as the patient’s smoking history, body mass
index, and history of heavy alcohol use, items not available in administrative databases.
Some 4028 persons who suffered a first episode of upper GI haemorrhage were matched
with up to 10 persons, sampled from those at risk, i.e. in the riskset, on the date of the
haemorrhage (the ‘index date’). Those who had been issued an SSRI prescription in
the 90 days before the index date were considered to have been ‘exposed’. Since omit-
ting the matching variables age, practice and index-date from the regression analyses
had little effect, we ignore them here. In order to simplify the illustration, and be able
to show the detailed calculations, we combined several other variables into a single
confounder score, and then dichotomised it: individuals who are ‘positive’ on this 0/1
scale are – independently of SSRI exposure – at higher risk of bleeding, and would be
suspected to be more common among those who have recently received SSRIs. We refer
to this potential ‘confounding’ variable by the generic letter ‘C’.

5.2 Additional data available only for cases
In some studies, it may be possible to access the medical records of those in the case-

series but not for those in the denominator (control) series. Since the information on this
‘background-risk’ was in fact available for each person in the GPRD database, we first
show what the researchers would have observed if they had access to it for each of the
c = 4028 in the case series but for none of the d = 40, 171 persons in the denominator
series.

Stratum: Lower risk (C = 0) Higher risk (C = 1) Unstratified

c’s & d’s: c1 d1 c0 d0 c1 d1 c0 d0 c1 d1 c0 d0

number: 135 – 1768 – 200 – 1925 – 335 1780 3693 38391

To understand what one can and cannot learn from these supplementary case-only
data, let the four proportions PE=0,C=0 to PE=1,C=1 denote the frequency distribution of
the total population-time in the study base. If the ‘no effect modification’ (no interaction)
model (1) holds, then the numbers of cases (135, . . . , 1925 in our example) in these four
stratum-specific ‘cells’ should – apart from sampling variability – be proportional to

PE=0,C=0, PE=1,C=0 × ψE, PE=0,C=1 × ψC, PE=1,C=1 × ψE × ψC.

Ray and Griffin31 proposed that this mathematical relationship could be used
to infer that, if the ‘no effect modification’ model holds, and if the cross-product
ratio of these four frequencies is close to 1, then the distributions of E and C in
the study base are independent of each other, and thus one of the two necessary
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conditions for confounding is absent. They used this approach in a population-based
case-control study32 of the role of cyclic antidepressants in the risk of hip fracture,
using administrative data. Medical record review for a sample of 164 of their 4501
cases suggested the observed ID ratio of 1.6 was not due to confounding by body mass,
impaired ambulation, functional status or dementia.

If however, the cross-product ratio is substantially different from 1, so that
confounding is definitely possible, one cannot – without further external information
on the plausible values for ψC, and on the prevalence of C in the various exposure
categories in the base – adjust for the confounding. Moreover, the limitation of this
use of ‘case-only’ confounder data is that a null cross-product ratio only rules out
confounding if the uncheckable ‘no effect modification’ (no interaction) model (1) holds.
Suissa and Edwardes33 proposed ‘simple conditions under which an adjusted estimate
of the relative risk can be obtained’ when data on a confounder are available only for
the cases, and derived formulae for the estimator and its confidence limits. The method
relies on an external estimate of the confounder prevalence or, additionally, of the
confounder-exposure OR. Unfortunately, one of these conditions is the correctness of
the no-effect-modification model (1).

In our SSRI scenario, the cross-product ratio of (135 × 1925) ÷ (1768 × 200) = 0.73
would have left the researchers in a quandary, and might have prompted them
to either use additional external information, and some additional assumptions, or
else to pursue background-risk data on at least some of those in the denominator
series.

5.3 Additional data available for samples of cases and controls
We will suppose that the unit costs of obtaining the additional documentation on

this confounding factor were the same for ‘cases’ and for ‘controls’. If one had a fixed
budget, how should the ‘phase-2’ sub-sample be selected? How should the resulting
phase-1 and phase-2 data be included in the analysis? How much wider would the
confidence intervals for the estimate of IDRSSRI be? In a 1996, the authors of a database
study were faced with a similar question when planning a study to investigate the role
of non-steroidal anti inflammatory drugs in the prevention of breast cancer, and the
role of antidepressant medications in the etiology of breast cancer. A fuller account of
how we proceeded can be found elsewhere.34−36 From the Saskatchewan databases,
we had detailed prescription drug information on the 1440 cases diagnosed in the
years 1991 to 1995. We could, if we wished, have obtained the corresponding medication
histories for all of these women’s peers (i.e. the entire dynamic population). Instead,
we obtained this information for four ‘controls’ for each woman with breast cancer,
with the controls for each case chosen at random from the ‘risk set’ of women of the
same age who had not been diagnosed with breast cancer by the date of diagnosis
of the case. Despite this detailed medication history on almost 7500 subjects, we still
lacked critical information on their individual breast cancer risk profiles, i.e. family
history of breast cancer, age at menarche, reproductive history, use of alcohol and
over-the-counter (non-prescription) medications, etc. These items are known risk factors
for breast cancer, and that have different distributions in those exposed and not exposed
to the medication of interest. Information on these potential confounding factors could
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only be obtained from the women themselves, or if they were no longer alive, from
family members.

Locating and interviewing this number of women or their families was not
economically feasible, and so we were forced to consider a sampling approach. We
realised that even if we were able to interview as many as a 10% random sub-sample,
these 750 would still be a relatively uninformative subsample: the relative rarity of
long-term exposure to the medications of interest would mean that some of the cells
frequencies in the 2 × 2 tables (and in the logistic regression which adjusted for the
confounding variables measured) would be single- or barely double-digit numbers.
We decided to deliberately over-sample some of the cells, and to – ‘somehow’ –
account for the sampling at the analysis stage. We were able, by algebra and by
simulations, to see that this selection bias, deliberately introduced, could be removed
in the analysis by using the known sampling fractions. But would the rest of the
epidemiology world believe us? And would the funding agency be convinced by our
sample size considerations? Two-phase designs, in which in which basic and easily
obtained data are determined for a large first-stage sample, but additional more expen-
sive data are measured on a second-stage sub-sample, have a long history in survey
sampling, but we had not seen them used in epidemiology. After an intense search,
we found the articles by White37 and by Walker,38 who introduced this design into
etiologic studies in epidemiology, and the regression-based extensions introduced by
Breslow and Cain39−40 (some of the other work since then will be described in
Section 5.3).

To motivate and illustrate the efficiency implications of various sampling strategies,
and how in fact the two stage data are combined, we again use the case-control study
of SSRIs, with the binary background-risk data item as the single potential confounder.
This allows us to simulate the phase-2 sampling variation and, by hand-calculating the
estimated variance of the parameter of interest, to see what influences it. To make the
exercise realistic, we simulate a situation where the budget for obtaining the information
on the background-risk factor limits us to a phase-2 sample of 1000. We compute
ψ̂adj and SE[log{ψ̂adj}] using the two-phase and svyglm functions in the survey41

package in R (we will describe this software, and the analysis methods later). In order
to give some sense of the sampling variation, we show the data and the results in five
of the infinitely many possible samples.

Lower risk Higher risk

Possible sample c1 d1 c0 d0 c1 d1 c0 d0 ψ̂adj SE[log{ψ̂adj}]
1 2 30 40 645 4 14 50 215 1.17 0.458
2 0 23 43 645 2 19 40 228 0.40 0.724
3 3 27 42 612 5 11 53 247 1.87 0.410
4 8 19 42 633 3 17 43 235 2.84 0.392
5 3 26 41 631 4 18 51 226 1.25 0.440

Clearly a two-stage sample of 1000, even when coupled with the SSRI data available
on all of the the 44,199 subjects in phase-1, could lead to a very imprecise estimate
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of ψSSRI. Even though in reality a research team does not have the luxury that we
have here to judge how far off the target their point estimate may have been, the large
SE[log{ψ̂adj}] indicates that the point estimate may be very wide of the mark.

Epidemiologists are taught early in their training that it is permissible to sample
‘by Y value without regard to the E value,’ or ‘by E value without regard to the Y value,’
but not by both. Thus, they would probably have tried to obtain a more informative,
i.e. balanced second-stage sample of 1000 by selecting 500 from the case series and
500 from the denominator series. This strategy might have led to one of the following
data sets:

Lower risk Higher risk

Possible sample c1 d1 c0 d0 c1 d1 c0 d0 ψ̂adj SE[log{ψ̂adj}]
1 14 10 233 358 22 6 231 126 2.06 0.327
2 14 13 205 370 30 5 251 112 2.33 0.316
3 22 21 215 349 25 9 238 121 1.55 0.263
4 20 23 213 333 23 7 244 137 1.57 0.260
5 14 18 219 348 27 11 240 123 1.25 0.270

This approach leads to somewhat less variable estimates, since instead of having
two single-digit frequencies (both c1’s) as ‘weak links’ (recall the heuristics from the
Woolf variance formula), we now have only one – the d1 in the higher background-risk
stratum. However, since the marginal frequencies in the 2 × 2 stage-1 data are more
imbalanced with respect to SSRI exposure than with respect to case:control status,
some epidemiologists would probably have selected 500 from those exposed to SSRIs
and 500 from those not. Possible results of this strategy are:

Lower risk Higher risk

Possible sample c1 d1 c0 d0 c1 d1 c0 d0 ψ̂adj SE[log{ψ̂adj}]
1 33 275 14 344 38 154 24 118 1.76 0.223
2 30 280 16 346 46 144 26 112 1.69 0.214
3 29 268 28 343 52 151 26 103 1.35 0.196
4 29 257 21 324 55 159 21 134 2.00 0.204
5 40 266 19 353 63 131 14 114 3.33 0.214

This approach produces a further slight improvement, but continues to be hampered,
albeit to a lesser extent than before, by the low c0 frequencies. This leads to the
obvious strategy: select 250 persons from each of the 2 ( SSRI+, SSRI−) × 2 (‘case’,
‘control’) = 4 cells.

This approach produces a large reduction in variance. Furthermore, it raises the
natural question as to how far more we can reduce it, and what uncertainty would
remain if the researchers had a budget that allowed them to obtain this information
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Lower risk Higher risk

Possible sample c1 d1 c0 d0 c1 d1 c0 d0 ψ̂adj SE[log{ψ̂adj}]
1 103 154 116 177 147 96 134 73 1.78 0.079
2 100 149 125 187 150 101 125 63 1.66 0.087
3 105 160 118 193 145 90 132 57 1.64 0.092
4 95 160 130 190 155 90 120 60 1.69 0.085
5 103 162 125 186 147 88 125 64 1.75 0.082

on the background-risk status of each of the c = 4028 persons in the case-series and
on each of the d = 40, 171 persons in the denominator series? The entire data, and the
resulting adjusted IDR estimates they would have derived from them – under the assump-
tion of no-effect modification – are as follows (MH: Mantel–Haenszel; LR: logistic
regression).

Stratum: Lower risk Higher risk Unstratified

c1 d1 c0 d0 c1 d1 c0 d0 c1 d1 c0 d0
no: 135 1126 1768 28,415 200 654 1925 9976 335 1780 3693 38,391
ψ̂ 1.93 1.58 1.96
ψ̂adj. MH → 1.74; 1.72 ← LR

SE[log] MH → 0.063; 0.063 ← LR 0.062

As it turns out, the full data show little evidence of effect modification: in a formal
test of homogeneity, the p-value was 0.12. The full denominator series allows us to
quantify the prevalence of the higher-risk profile in the study base: it was present in
an estimated 654/(654 + 1126) = 37% of those who were exposed to SSRIs, and in
9976/(9976 + 28415) = 26% of those who were not. The combined data from the
denominator and case series also allow us to use a logistic regression model con-
taining indicator terms for both SSRI exposure and the higher-background-risk to
estimate that, independently of SSRI exposure, the ID of GI bleeding is just over 3 times
higher in those with the higher- than the lower-risk profile. This same logistic regres-
sion model allows us to estimate that after adjustment for this confounding, the ID
of GI bleeding is 1.72 times higher in those exposed to SSRIs than in those who
were not. Of particular note is the standard error obtained using the background-risk
status of all 44,000 subjects – not that much smaller than the one achieved when we
had this information on just 1000 of them. The slight exaggeration in the crude ID
ratio (1.96) relative the the adjusted one (1.72) is reflected in the confounding ratio:
{1 + (3.05 − 1) × 0.37}/{1 + (3.05 − 1) × 0.26} = 1.15. As expected, in this simple
situation, the Mantel–Haenszel summary ratio, 1.74, is very close to the one derived by
logistic regression.
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We now explain how the data from the two stages are combined, how the selection
bias42−p96 that was deliberately introduced at stage 2 is removed, how the variance of
the parameter estimate of interest is calculated, and how it can be decomposed in a
way that helps us plan the size of a 2-phase case-control study. To illustrate, we use
the data from the first ‘possible sample’ of 250 from each of the four stage-1 cells,
i.e. the one that yielded ψ̂adj = 1.78 and SE[log{ψ̂adj}] = 0.079. White’s approach37

was to multiply the observed stratum-specific two-stage frequencies by the inverses of
the 4 sampling factions – in this example by 1.34 to 154 – in order to project what the
full (but unobserved) first-stage frequencies must have been.

Phase
c′

1 d′
1 c′

0 d′
0

1: 335 1780 3693 38391
c′′

1 d′′
1 c′′

0 d′′
0

2: 250 250 250 250
c′

1/c′′
1 d′

1/d′′
1 d′

0/c′′
0 d′

0/d′′
0

Ratio: 1.34 7.12 14.8 154
Lower risk Higher risk

c′′
1 d′′

1 c′′
0 d′′

0 c′′
1 d′′

1 c′′
0 d′′

0
2: 103 154 116 177 147 96 134 73 ← Observed
1: 138 1096 1714 27181 197 684 1979 11210 ← Projected, based on Ratio

ψ̂ = 2.00 ψ̂ = 1.63

As one might expect, the cross-product ratios involving the projected phase-1
frequencies are used as the two stratum-specific point estimates of ψ . White37

showed that in order to obtain the variance of the log of each stratum-specific point
estimate, one needs to subtract the quantity K = (1/250 + · · · + 1/250) − (1/355 +
· · · + 1/38391) = 0.0122 from the ‘Woolf’ variance based on the phase-2 frequencies.
Thus, for the lower-risk stratum, for example, the variance is (1/103 + · · · + 1/177) −
K = 0.0183. For the higher-risk stratum, the variance is 0.0262. The common set of
ratios used in the projected frequencies means that the logarithms of the two point
estimates have a (negative) covariance, of magnitude −K.

One can, as White did, combine these two negatively correlated point estimates using
a weighted average. Or, one can estimate the common ID ratio using regression methods.
The more recent of these, implemented in thesvyglm function in thesurvey41 package
in R, fits a generalised linear model to data from complex survey designs, with inverse-
probability weighting and design-based standard errors. It produced the ψ̂adj = 1.78 and
SE[log{ψ̂adj}] = 0.079, shown above. In the original logistic-regression-based approach
devised by Breslow and Cain,39 one fits a logistic regression to the stage-2 data,
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with log{(c′′
1 × d′

1)/(d′′
1 × c′

1)} and log{(c′′
0 × d′

0)/(d′′
0 × c′

0)} as offsets, and modifies the
covariance matrix that is output by the software. The R statements

E = c( 1, 0, 1, 0);
hi.R = c( 0, 0, 1, 1);
c = c(103, 116, 147, 134);
d = c(154, 177, 96, 73);
o = log( c( 250*1780/(250*335), 250*38391/(250*3693) ) ); o=c(o,o);

glm( cbind(c,d) ˜ hi.R + E, family=binomial,offset=o )

yield ψ̂ = exp(0.6021) = 1.83. Since in this example both the stratum and exposure
variables are binary, the variance obtained from the logistic regression program (0.0170)
simply needs to be reduced by the same correction factor K = 0.0122 derived by White,
to give SE[log{ψ̂}] = (0.0170 − 0.0122)1/2 = 0.069. See Breslow and Cain39 for the
(matrix) variance calculations when the regressor variables are more complex.

5.4 Sample size considerations
Many of the early methodological papers focused on the relative efficiencies of various

designs and methods of data analysis, using simulated and already assembled data
sets. A number of planning tools have been developed to help end users calculate
statistical precision/power in absolute terms. The earliest43,44 only accommodates case-
control studies with a binary exposure and a single binary confounder. We have
recently extended this45 to accommodate multiple confounding variables and/or covari-
ates and either a binary or a categorical exposure; we also indicated how to proceed
when exposure is represented as a quantitative variate. Schill and Wild46 developed a
strategy to obtain optimised sampling fractions to estimate a parameter vector. They
note that no global optimal design exists and that local optimal designs depend on
scenarios comprising the true disease model and the association between the phase-1
and phase-2 information. Thus they develop ‘an admissibility test that rejects scenarios
inconsistent with the phase-1 data and, for the selected scenarios, determine a minmax
D- or A-optimal design that protects against worst-case scenarios.’ More recently, Schill
et al.47 developed a software tool for planning two-phase case-control studies assuming
categorical covariates. It offers a graphical user interface to organise and input the
relevant anticipated entities and calculates a normed, expected two-phase case-control
study. The planning tool helps to select a stratification.

The basis of our approach45 to sample size considerations can be illustrated
heuristically using the worked example used above, involving one binary exposure, and
one binary confounder, and the structure of the variance formula for log{ψ̂} developed
by Breslow and Cain,39 namely

Var[log{ψ̂}] = VLR2 − K.

VLR2 (0.0170 in the worked example) is the variance obtained from the logistic
regression, with offsets, fitted to the stage-2 data. K (0.0122 in the example)
is the difference between the ‘Woolf’ variance calculated using the four stage-2
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frequencies, i.e. the VW2 = 1/250 + · · · + 1/250 = 0.0160 in the example, and
the corresponding one calculated using the the four stage-1 frequencies, i.e.
VW1 = 1/335 + · · · + 1/38391 = 0.0038. In this simple case, the Breslow-Cain
variance (0.0048 in the example) can be re-written as

Var[log{ψ̂}] = VW1 + (VLR2 − VW2)

= 0.0038 + (0.0170 − 0.0160) = 0.0038 + 0.0010 = 0.0048.

Re-arranging it this way shows the two separate variance components associated with
the sample sizes used in each stage. The first component, VW1, is determined by the four
stage-1 frequencies. Thus, its magnitude, for case and denominator series of planned
sizes c and d, can be projected from the expected frequencies of exposed and unexposed,
c1, c0, d1 and d0. The second, VLR2 − VW2, is the difference between the variances from
two logistic regression models applied to the stage 2 data: one that includes and one
that excludes the (binary) confounding variable. The difference can be re-written as
VLR2 − VW2 = VIF × VW2, where VIF is the variance inflation factor associated with
including the additional variable in the logistic regression. This VIF been extensively
studied,16,17,48 and so allows us to give a rough guide for the overall variance:

Var[log{ψ̂}] = VW1 + (VIF − 1) × VW2 .

This representation can then be used to plan the sizes of the phase-1 and phase-2 samples.
See Hanley et al.45 for a more detailed investigation of the (VIF − 1) quantity.

5.5 Additional literature and applications
For a helpful orientation to the literature on this, and allied designs, the reader

is first referred to the encyclopedia entry by Breslow49 and the references therein.
Much of the theoretical work on these designs has focused on more efficient data-
analysis models, and on the tradeoffs between efficiency (when using the correct model)
and bias (when not). The main approaches include Horvitz-Thompson estimating
equations, non-parametric maximum likelihood, and pseudo-likelihood, estimators
for logistic regression coefficients, and a pseudo-score method, in which the scores
for subjects not included in phase-2 are estimated from the regression model. The
semi-parametric methods incorporate data from phase-I subjects when the covariate
information can be summarised into a finite number of strata. Chatterjee and Chen50

have recently extended their pseudo-score approach to incorporate information on
continuous phase-1 covariates. The special March 2007 issue on Statistical Analysis
of Complex Event History Data in the Scandinavian Journal of Statistics and the
December 2007 issue of Lifetime Data Analysis have further theoretical articles on
some of these issues.

Whereas, the previous examples in this section were mainly case-control studies, the
same principles apply to cohort studies, and to ‘case-cohort’ studies that collect data
on additional risk factors from a sub-sample of the cohort. Eng et al.51 describe an
application of the case-cohort design to assess residual confounding by risk factors not
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captured in the comparison of the event rates in two (propensity score-matched) cohorts
of n1 = 22, 429 and n0 = 44, 858 derived from medical claims for members of a large
health plan. Supplementary data on risk factors not measured in the two cohorts were
collected from medical records for 701 of the 67,287. The authors estimated the ID ratio
of interest adjusted for the supplementary variables . The ID ratio of interest adjusted
for the supplementary variables using Cox regression modified for a case-cohort design
was 0.90 (95% CI): 0.49 to 1.68). This was similar to the ID ratio from the cohort
study itself (0.92; 95%CI: 0.50, 1.63). The authors took this to indicate that there was
negligible confounding by the supplementary variables in the cohort study. The most
recent two-stage methods described by Breslow52 include several ways to include all of
the available information in a single analysis.

The methods described above have focused on the efficiency achievable by the biased
selection of subjects for further data collection were for unmatched case control studies.
A stratified version of nested case-control sampling was introduced by Langholz and
Clayton.53 This design, which they call ‘countermatching’, uses data available for all
cohort members to select a case-control sub-sample for whom additional information
will be collected. Rather than match controls to make them as similar as possible to cases,
they make them as different as possible on exposure, to ensure the maximum contrast.
Relative to a simple random sample of controls, countermatching can yield a substantial
efficiency gain when a surrogate measure of exposure is available for the full cohort,
but accurate exposure data is to be collected only in a nested case-control study, and
when exposure data are available for the whole cohort but data concerning important
confounders are not. Further theory can be found in Langholtz and Borgan.54 Counter-
matching can also be an efficient way to study interaction, when selecting controls
in nested case-control studies of the joint effects of multiple risk factors when one is
previously measured in the full cohort.55

6 Concluding remarks

Since epidemiologic studies of the unintended of medications usually rely on non-
experimental comparisons, confounding by ummeasured factors must be considered
when evaluating the resulting estimates of the comparative parameter of interest. This
review has considered statistical strategies for situations where information on these
factors is not available in the large administrative databases that are used in pharmaco-
epidemiology research. Although, it may have seemed like a digression, Section 2 (and
part of Section 4) were included to emphasise that there are at least two additional
components in the log{ψ̂} derived from most non-experimental studies:

log{ψ̂} = log{ψ} + log[Confounding Ratio] + log[Attenuation Ratio]
+ Random Error.

Thus, while the emphasis in this review has been on efficient study designs and statistical
strategies to reduce the effects of confounding, and of attenuation due to measurement
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errors, one also needs to have a large case series in order to reduce the imprecision
(random error) in the estimate.

In some situations, the unmeasured risk factors are unlikely to be uncorrelated with
the choice of medication, and thus to distort the comparison. For example, compared
medications in the same class are likely to be prescribed without considering the subtle
details in their chemical composition (e.g. a carbon vs. a nitrogen atom at a specific posi-
tion in the central ring35) and without knowledge of possible differences in unintended
effects (e.g. genotoxicity35).

In other situations, it may be possible to use external population-level data to quantify
the maximum bias that would ensue from not being able to adjust for an unmea-
sured factor. In a different context, Wacholder et al.56 used the confounding ratio and
population-based estimates of the components of this ratio to measure the potential
bias from a particular form of confounding in genetics studies. In 1972, Miettinen4

suggested that routine assessment of the amount of confounding in the crude ID ratio
‘would help accumulate valuable experience for use in the planning and evaluation of
other studies.’

As described in Section 4, sophisticated statistical tools and accessible software are
becoming available to incorporate quantitative sensitivity analyses into pharmaco-
epidemiology studies based on databases. These corrections can be based on expert
opinion, external population-level data, or where available, on individual level data on
auxiliary samples such as those used by Stürmer et al.29

As described in Section 5, two-stage sampling to provide additional data on the
subjects in the main data-based study can offer large economies; the statistical properties
of the various estimators are beginning to be better understood, and easy-to-use software
is becoming more readily available. But, despite its 25-year existence, two-stage sampling
continues to be under-used. We identified the approximately 200 citations of the initial
articles by White, Walker, Breslow and Cain. The vast majority of citations were in
methodological articles; only about a dozen were in reports of actual epidemiologic
studies. We suspect that some of the problems may stem from the nature of the admin-
istrative databases – many of them government operated – used for the studies, and on
the privacy issues and other difficulties involved in contacting patients. We contracted
with the Government of Saskatchewan to send questionnaires on our behalf to a sub-
sample of those in our case control study of NSAIDs and breast cancer,36 ∼ 50% of the
cases and 4% of the controls responded – far fewer than is customary with traditional
case-control studies where the investigators themselves have direct access to subjects.
In a study which used birth-certificates to study the relationship between ambient air
pollution and preterm birth, the response rate in the second-stage sample was only
40%.57 In some contexts, investigators have been able to obtain the relevant additional
information directly from hospital or medical charts58 or from health maintenance
organisations.59

Given these access difficulties, the techniques in Section 4, particularly propensity
score calibration, may offer a valuable alternative. These difficulties also reinforce the
the plea4 to researchers who do have access to more comprehensive data, to ‘routine[ly]
assess […] the amount of confounding in the crude RR’ and to share this information
to ‘help accumulate valuable experience for use in the planning and evaluation of other
studies.’
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