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Abstract
With greater access to regression-based methods for confounder control, the etiologic study with individual matching,

analyzed by classical (calculator) methods, lost favor in recent decades. This design was costly, and the data sometimes

mis-analyzed. Now, with Big Data, individual matching becomes an economical option. To many, however, conditional

logistic regression, commonly used to estimate the incidence density ratio parameter, is somewhat of a black box whose

output is not easily checked. An epidemiologist-statistician pair recently proposed a new estimator that is easily applied to

data from individually-matched series with a 2:1 ratio (and no other confounding variables) using just a hand calculator or

spreadsheet. Surprisingly—or possibly not—they overlooked classical estimators developed in earlier decades. This

prompts me to re-introduce some of these, to highlight their considerable flexibility and ease of use, and to update them.

Nowadays, for any matching ratio (M:1), the Maximum Likelihood result can be easily computed from data gathered under

the matched design in two different ways, each using just the summary data. One is via any binomial regression program

that allows offsets, applied to just M ‘rows’ of data. The other is by hand! The aim of this note is not to save on

computation; instead, it is to make connections between classical and regression-based methods, to promote terminology

that reflects the concepts and structure of the etiologic study, and to focus attention on what parameter is being estimated.

Keywords Woolf � Mantel and Haenszel � Miettinen � Breslow and Day � Clayton � Nelder and Wedderburn

Abbreviations
ML Maximum likelihood

MLE Maximum likelihood estimator or estimate

IDR Incidence density ratio

BD Breslow and Day

MH Mantel–Haenszel

SE Standard error

Introduction

The essence of an etiologic study was originally taken to be

that of a ‘case–control’ study, which involves a group of

cases of the illness in question and a comparable control

group without the illness; and these groups are compared

with respect to the histories of the etiologic factor under

study.

That conception of the etiologic study, while still com-

mon, is at variance with the principle that ‘‘any empirical

study has, by definition, some particularistic (spatio-tem-

porally specific) experience as its base, and the results of

the study apply in a direct, technical sense to that particular

experience. The base thus is the direct referent of the

empirical information’’ [1]. So-called ‘case–control’ stud-

ies do not have an explicit study base.

In the newer conception of it [2], an etiologic study is to

be constructed on a defined aggregate of study population-

time, constituting the base of the study and, hence, the

referent of the study result. Its elements, in reference to its

study base, are: (1) the suitably documented case series,

constituted by the entirety of the cases (as defined)

occurring in the study base; (2) the similarly documented

base series, derived as a fair sample of the study base; and

(3) the data on these two series (of person-moments)

translated into the corresponding value for the confounder-

conditional rate-ratio of the occurrence of the illness in the

study base, and into its associated inferential statistic(s). In
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this, the study base is ‘‘the aggregate of population-time for

which the outcome’s rate of occurrence is documented.’’

The result is an incidence-density ratio, free of any ‘rare-

disease assumption’ [3].

With increasing access to regression-based adjustment

methods, the use of individual matching in etiologic stud-

ies—and classical (calculator-based) data-reduction—lost

favor in the later decades of the 20th century. This design

was common earlier, but costly to implement. But with the

increasing availability of Big Data, tighter matching in the

selection of the base (‘denominator’) series is an attractive

and economical possibility. Conditional logistic regression

allows individual sets to be tightly matched on the most

important confounders, and the less critical unmatched

ones used as regression variates. This ‘match if possible,

model if you must’ approach provided by conditional

logistic regression makes the results more explainable, and

less reliant on the form of the adjustment model.

This important tool was developed in parallel in the

social sciences (one of its developers, Daniel McFadden

received the Nobel Prize in Economics in the year 2000)

and in biostatistics. These ‘two solitudes’ were the subject

of Norman Breslow’s presidential address [4] to the

International Biometric Society in 2002. Unfortunately,

similar solitudes also now divide ‘classical’ and ‘clinical’

epidemiology: in the 2017 Journal of Clinical Epidemiol-

ogy article [5] that prompted the present piece, the jour-

nal’s referees and editors did not notice that this eminent

developer of statistical methods for epidemiology was

referred to as ‘Bresolow.’

Seemingly unaware of classical methods for individu-

ally-matched etiologic studies developed over the last six

decades, and concerned that conditional logistic regression

is not as transparent as epidemiologists would wish,

Redelmeier and Tibshirani (RT) [5] recently proposed a

new incidence density ratio estimator that uses data from a

2:1 design and is easily implemented on a hand calculator.

I re-analyze their illustrative data by historical classical

methods, and find them as easy to use as, and more flexible

than, the proposed one. Thus, in this piece, aimed espe-

cially at the newer generation, I welcome the chance to

dust off some of these classics, highlight some extensions,

and make new connections. I show how the Maximum

Likelihood (ML) estimate using data from the M:1 design

can be derived in two different ways, both using just the

summary data. One is via any binomial regression program

that allows offsets, applied to just M ‘rows’ of data. The

other is by hand or by spreadsheet!

The emphasis will not be so much on showing how to

save on computation, but on heuristics; on Mantel’s

inspired (and nearly ML) choice of estimator and of

weights for the cross-products; on making connections

between classical and regression-based methods; and on

truly understanding our statistical tools, and the target

parameters we aim at. Intended readers of this piece

include the investigator/supervisor whose assistant/gradu-

ate student brings a point estimate and confidence interval

(CI) based on a conditional logistic regression, or the

reviewer/reader who is digesting the results in an article.

Just from the sufficient statistics, and with a hand calcu-

lator or smart phone, is that person able to check that the

point estimate makes sense, and that the CI is not an order

of magnitude too wide/narrow? By using simple ‘tabular’

methods to reality-check the numbers from black boxes,

both the producers and consumers of the results will also

get a better sense of what precision to expect with various

amounts of data. In some instances, the study results and

inferential statistics obtained from the ‘tabular’ data will be

sufficient, and in any event such results are more likely to

be understood by readers.

Before re-applying these older methods—and applying

the updated ones—to a ‘ragged’ dataset long used in

teaching, I will first use the simpler matched data that RT

used to illustrate their method, namely weather information

from 6962 place-, day-of week- and time-of-day- matched

triplets; the two selected place-moments in each triplet

were 7 days before and after the crash moment. RT asked

whether, and if so, by how much, the rate of traffic crashes

is lower in overcast weather compared with other types of

weather. The hypothesized causal factor is ‘‘the cautious-

ness induced by gloomy circumstances.’’ Curiously, their

justification for using the ‘odds ratio’ was that ‘‘the base-

line risk of a crash is low (\ 1%) during an average day,

thereby making an odds ratio a good estimate of relative

risk.’’

I will adopt the ‘case-referent’ framework [1–3], where

the study base is the referent of both the case and the base/

referent series and, hence, of the study result; thus the

‘odds ratio’ actually is incidence-density ratio, with no

rare-disease proviso. Throughout, I will refer to a ‘case

series’ or ‘numerator series’, and a selected ‘base series’

or ‘denominator series’ that probes into, and thus repre-

sents or ‘refers to’ the base (the aggregate of population-

time in the defined study population’s movement over a

defined span of time) from which the cases emerged (see

Fig. 1). Viewed from this perspective, one that was already

alluded to in 1955, these two series allow a natural and

direct comparison of incidence rates (incidence densities)

by estimating the relative amounts of population time in

the two categories of the etiologic factor at issue. The

object is not to compare ‘cases’ with ‘controls,’ but to

compare incidence densities between the compared seg-

ments of the study base.
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Classical estimators revisited—and updated

Breslow and Day [6] (BD) divide their four key data-

analysis chapters into classical methods for grouped and

matched data, and their respective counterparts uncondi-

tional and conditional logistic regression for large strata

and matched sets. The last of these chapters shows that an

unconditional logistic regression of individually matched

sets (such as the 99 in the lower schematic in Fig. 1), with a

separate nuisance parameter for each set, results in an

incidence density rate ratio (IDR) estimate which is further

from the null than the correct, conditional one, and that the

estimate obtained by ignoring the matching tends on

average to be too close to the null.

The following sections address, and attempt to connect,

the classical and conditional logistic regression estimators

of the IDR using data from individually matched sets, and

using terminology that is more appropriate to what is

involved in the etiologic study.

A ‘nearly maximum likelihood’ incidence density
ratio estimator (1959)

A natural point of departure for classical methods for

matched case-base data is the 1959 citation classic [7] by
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Fig. 1 Top panel: events (red dots) within a fictional dynamic

population of fixed (but possibly unknown) size P over a timespan of

length T, during which the distribution (unknown) of the factor at

issue, or the event rate in the population time in the reference

category, does not change. Estimation of an incidence density ratio

begins by classifying the events in the case series into those that

occurred in the index and reference categories and tallying them as

‘numerators.’ The (unknown) relative amounts of population time in

these contrasted categories are then estimated by classifying the

indiscriminately sampled person-moments (denominator series or

base series, black dots, that ‘probe’ the base) into the two categories.

The empirical incidence density ratio is computed from the estimated

amounts of population time just as if the amounts were known, but the

estimation of the underlying denominators involves an additional

variance component. Bottom panel: events (red dots) arising in a

fictional, dynamic population in which the distribution of the factor at

issue, and event rates in the population time in the reference category,

both vary over the timespan. Ignoring this double time-dependency

would yield a confounded incidence ratio. In the Redelmeier and

Tibshirani (RT) study, each set of 3 moments is matched on place,

time-of-day, and day of week. For each individually-matched triplet,

how many of the 3 moments were classified as being in the index

category of the factor at issue is shown above the triplet. Shown at the

right are the frequencies with which the triplets are distributed over

the 6 configurations. Estimators based on these frequencies are

addressed in Figs. 2 and 3
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Mantel and Haenszel [8] (MH). More important than the

statistic they developed to test the null hypothesis that the

incidence density ratio equals unity is their estimator of the

ratio. And, unlike the ‘large-sets’ one developed by Woolf

in 1955 [9], the estimator works well with individually

matched sets as small as two (matched pairs). Indeed, in

this limiting case, MH noted that the estimator has a par-

ticularly simple form, namely the ratio of the numbers of

discordant pairs of each type. Presumably because of its

focus on these two cells, RT write of it as if it were the

‘McNemar’ estimator. However, McNemar [10] focused

on the statistical variability of the difference of two cor-

related proportions to be used in hypothesis testing, and

was not concerned with estimating an IDR. But his

table layout becomes important below.

Figure 2 shows the contributions to the IDR estimate

obtained via the MH estimator from the data on the 6962

matched triplets. It reduces to

IDRMH ¼ 268 � 1 � 1 � 3 þ 612 � 1 � 2 � 3

168 � 1 � 2 � 3 þ 1489 � 1 � 1 � 3
¼ 1492=3

1825=3

¼ 0:82:

Even though others since then have recast the Sum(ad/n)/

Sum(bc/n) expression as a weighted (by ‘bc/n’) sum of the

(‘ad/bc’) IDR estimates, Mantel would not have endorsed

this formulation. To him, and to those who have developed

ratio estimators elsewhere in statistics, it is the ‘single ratio

of two sums’ structure that gives this classic estimator its

statistical stability. In his teaching, Miettinen used an even

simpler example to make this point. Imagine you were

asked to measure the sex ratio in small (in-home) day-care

centers, using a sample of such facilities. Would you take a

mean or median of the individual facility-specific sex-ra-

tios, or would you take the single ratio of the sum of all

boys sampled divided by the corresponding sum for girls?

As will be seen, the MH estimate is quite close to the

ML one. Even though Mantel developed the estimator

more from intuition than from any formal statistical model,

the table-specific variances in the test statistic are based on

3
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Case
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Category

Index Ref.

3 0

1 0

2 0

N (a d n) 32 x 1 x 0 / 3 = 0 / 3
N (b c n) 32 x 0 x 2 / 3 = 0 / 3

3

1

2

Category

Index Ref.

2 1

1 0

1 1

268 x 1 x 1 / 3 = 268 / 3
268 x 0 x 1 / 3 = 0 / 3

3

1

2

Category

Index Ref.

2 1

0 1

2 0

168 x 0 x 0 / 3 = 0 / 3
168 x 1 x 2 / 3 = 336 / 3

3

1
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Case
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1 2

1 0

0 2

N (a d n) 612 x 1 x 2 / 3 = 1224 / 3
N (b c n) 612 x 0 x 0 / 3 = 0 / 3

3

1

2

1 2

0 1

1 1

1489 x 0 x 1 / 3 = 0 / 3
1489 x 1 x 1 / 3 = 1489 / 3

3

1

2

0 3

0 1

0 2

4393 x 0 x 2 / 3 = 0 / 3
4393 x 1 x 0 / 3 = 0 / 3

Totals
1492 / 3
1825 / 3

Ratio: 0.82

Fig. 2 The Mantel–Haenszel estimate of incidence density ratio,

computed from the data on the 6962 matched triplets analyzed by

Redelmeier and Tibshirani (RT). Each cross-product, reduced by 3, is

multiplied by the number of triplets (N) with the indicated data

configuration. Four of the six configurations (involving

6962 - (32 ? 4393) = 2537 triplets) contribute to the IDR estimate,

while the two ‘concordant’ ones do not
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the hypergeometric model obtained by conditioning on all

four marginal totals of each table, rather than the uncon-

ditional (two independent binomials) model used by

Cochran.

Mantel and Haenszel did not provide an expression for

the precision of the MH estimate. Some 17 years later, by

reverse-engineering a (null) standard error (SE) from this

MH test statistic, Miettinen [3] provided a simple test-

based confidence interval for it. Several standard errors

specific to the MH-estimator were proposed over the

following decade; the most general is the one developed by

Robins, Greenland and Breslow (‘RGB’) [11]. I return to

various SE versions in another later subsection.

Maximum likelihood IDR estimator, with closed
form in 2:1 design (1970)

Section 3 of the ‘Classical Methods of Analysis of Mat-

ched Data’ chapter 5 in Breslow and Day’s textbook [Ref.

11 in RT] is devoted to ‘‘1:M matching: dichotomous

012
Number of Base 'Probes' Classified into Index Category

1 (Yes)

0 ( No)

Case:
Classified

into
Index

Category?

32 268
[ 290.7 ]

612
[ 700.3 ] [ E(No.|null H) ]

4,393168 1,489
436

Diagonal
Totals

2,101

2 1 No. (of 3) classified into index category

DIRECT, AND REGRESSION-BASED, MLE of IDR
* DIRECT: Miettinen, 1970                            .
  (closed form when 2:1 individual matching)         .

436+2,101   2,537
268+612     880

5x880-2,101-4x436     555
4x(2,537-880)   6,628

555/6,628  0.0837
880/(2,537 - 880)  0.5311

MLE = 0.0837+sqrt(0.0837^2+0.5311)  0.8173

* REGRESSION-BASED, 2018                             .
  (Generalized Linear Model, R code shown)           .

Pos =    c(268, 612)   .
Neg =    c(168,1489)   .
O   = log(c(2,1/2))    .

( fit=summary(glm(cbind(Pos,Neg) ~ 1+ offset(O),  .
                family=binomial)) )               .
>          Estimate Std. Error z value Pr(>|z|)   .
>Intercept -0.20177    0.04322  -4.669 3.03e-06   .

[MLE = exp(-0.20177);  0.04322 = SE of log MLE    ]

round(        exp(fit$coefficients[1]+            .
  c(-1.96,0,1.96)*fit$coefficients[2]),4)         .
>  0.7509 0.8173 0.8895                           .

[NOTES]

MH: Mantel-Haenszel;
[SUM] is over INFORMATIVE triplets (m=2,1 in Breslow&Day notation.) 
[E, null] = m*1/3 ; null variance = m*(3-m)*1*2/[(3^2)*(3-1)].
Null variance is under conditional (central hypergeometric) model;
if individual matching, the 'a' frequency is a random variable with
a Bernoulli distribution, so null variance = (m*1/3)*(1 - m*1/3).  
RGB: p = (a+d)/3 &  q = (b+c)/3 ; see text, and [11], for details.

SE's for log(MH IDR estimate)
               No. [m] of triplet members
             classified into index category
                       2           1
MH numerators & denominators                [SUM]
  r = ad/3     (268) 1/3   (612) 2/3     R=1492/3
  s = bc/3     (168) 2/3  (1489) 1/3     S=1825/3
                 MH point estimate = R/S = 0.8175

No. triplets, case classified into index category
Observed(O)          268         612
Expected(Null,E)     290.7       700.3           
O-E:                 -22.7       -88.3       -111

Null Variances  436(2/3)(1/3)  2101(1/3)(2/3)
                      97         467        V=566 

                  CHI.SQ = (-111)^2 / 566 = 21.84

* TEST-BASED SE (Miettinen, 1976)
   SE = abs[log(0.8175)] / sqrt(21.84)   = 0.0428

* GENERAL SE (Robins,Greenland,Breslow, RGB 1986)              
  r*p [Notes]   (268) 2/9   (612) 6/9      4208/9
  r*q           (268) 1/9   (612) 0/9       268/9    
  s*p           (168) 0/9  (1489) 1/9      1489/9
  s*q           (168) 6/9  (1489) 2/9      3986/9

          4209        268 + 1489         3986
 Var =  ---------- + --------------- + ---------- 
        2 x 1492^2   2 x 1492 x 1825   2 x 1825^2  

  SE = sqrt(V) = sqrt(0.001866186)       = 0.0431

* NOT WIDELY KNOWN SE (Clayton & Hills, CH, 1993) 
   SE = sqrt[566/([1492/3] x [1825/3])   = 0.0431

Fig. 3 Layout (after Miettinen, 1970) of data frequencies from

Redelmeier and Tibshirani) (RT)’s 2:1 individually matched case-

base study, showing 2 non-informative and 4 informative triplet

configurations. Shown under it on left are 3 possible SEs for the log

estimate, from which to calculate a confidence interval to accompany

the Mantel–Haenszel (MH) estimate of the incidence density ratio

(IDR). Shown under it on right is manual calculation of maximum

likelihood estimate (MLE) of the IDR described in the 1970 article.

Shown below this is the generalized linear model code that allows the

fitting of the single parameter (IDR) Bernoulli model whose fitted

frequencies are a function of that single parameter, and the number,

m, of triplet members classified into the index category of the

‘exposure’ (see section on a ‘familiar logistic regression’)

Individually-matched etiologic studies: classical estimators made new again 901

123



exposures’’. There they explain that the conditional Max-

imum Likelihood Estimate (MLE) in general requires

iterative numerical calculations, but that in 1970 Miettinen

[12] provided a closed form expression for the case M = 2.

Since this is the very design that RT address, it is

instructive to revisit this 1970 publication. The purpose

here is not to promote the use of his closed form estimator,

but to introduce readers to his extension of McNemar’s

table layout, and his use of the Maximum Likelihood (ML)

fitting criterion. This 2 9 3 table, with its two familiar

uninformative corner frequencies—just as in the McNemar

layout—but with two diagonals, is shown in the top half of

Fig. 3. Because it treats the observations from the two

probes of the base as exchangeable, this layout is more

economical and extensible than RT’s Venn diagram [5].

The ML point and interval estimates are based on a sepa-

rate (binomial) statistical model for the frequencies in each

diagonal (each binomial is induced by conditioning on the

sum), and on the sufficient statistics, whereas, as Miettinen

[12] pointed out, the MH estimator does not reduce to a

function of these.

Standard errors for the log of the Mantel–
Haenszel estimator (1976–1993)

Also shown in the bottom left of Fig. 3 are three versions

of a standard error from which, beginning on the log IDR

scale, one can construct a confidence interval to accom-

pany the MH estimate. The first of these is Miettinen’s test-

based version [3]. It uses the square root of the Null Chi

Square statistic (here sqrt[21.84] = 4.7) to measure that, in

this example, the observed number of exposed cases (880)

deviates from its null expectation (991) by 4.7 standard

errors (SE’s). He takes this as equivalent to observing that

the log of the observed MH estimate (log[0.8175]) deviates

from its null expectation (0) by 4.7 standard errors (SE’s),

implying a standard error for the log[0.8175] of

(log[0.8175] - 0)/4.7 = 0.0428. This inferred null SE of

the log of the IDR estimate is then multiplied by 1.96 to

compute a 95% CI for the log of the IDR estimate. Its

exponentiated form provides a CI for the IDR itself.

The second of these, the Robins-Greenland-Breslow

expression [11], yields a standard error of 0.0431. This

expression, obtained by summing six quantities from each

stratum/triplet (see Fig. 3), was developed in 1986 to

replace seven previously proposed estimators, to be easily

computed, and to be used in the analysis of data from

individually matched, grouped, and unstratified case-base

series.

Writing in 1993, Clayton and Hills [13] noted that most

of the several standard error expressions for the log IDR

estimate (Ref. [11] considered eight of these) that had been

developed over the previous decades were ‘‘rather awk-

ward to calculate,’’ and suggested that ‘‘for most practical

purposes, a good estimate is provided by the (‘‘not widely

known’’) expression’’ sqrt[V/(QR)], where V is the sum

(here 564) of the (null) score variances 
436 � 1 � 2 � 1 � 2

3 � 3 � 2
¼ 97 and 2101 � 1 � 2 � 2 � 1

3 � 3 � 2
¼ 467

!

that forms the denominator of the MH test statistic, and Q

(= 1492/3) and R (= 1825/3) are the numerator and

denominator used to calculate the MH estimate itself

(0.82). The much shorter expression also yields a standard

error of 0.0431. Thus, in this situation where the IDR

estimate is close to the null, and the 3 computed SEs are

likely to be very close to each other, the choice of the

approximate one(s) to calculate when one’s laptop is out of

power—or one did not bring it on the trip, or the internet is

out of reach, or one doesn’t have the full data file to run the

conditional logistic regression itself—can be based on

which of the three formulae one can confidently remember,

and has the fewest steps. But, as we will see with a later

example, this near-equivalence of the three does not extend

over the full IDR range.

Miettinen [12] also considered designs with a fixed

matching ratio, M, for M[ 2. In such designs, the MLE

involves iterative calculations. The advent of pro-

grammable calculators in the early 1970s, and spreadsheets

in the early 1980s, made calculation of these MLEs less

tedious.

Classical methods of analysis of (individually)
matched case-base data (1980)

Section 3 of the BD chapter provides a comprehensive

treatment. It addresses both the MH and ML estimators for

each of the 1:1 (matched pairs), M:1 (M fixed), and

‘variable M’ designs. Throughout, it uses the (mirror image

of the) Miettinen layout, as does chapter 19 of the 1993

textbook by Clayton and Hills [13].

Unlike Miettinen [12], who used the Newton–Raphson

approach, BD obtain the MLE as the root of their esti-

mating equation (5.17), which in this example is

268 þ 613 ¼ 436 � 2 � IDRML

2 � IDRML þ 1
þ 2101 � 1 � RRML

RRML þ 2
:

Following Clayton’s re-expression of the ML estimator

when denominators are known [14, 15], this ML estimating

equation can be re-arranged in a more familiar ‘MH-like’

ratio-estimator form:
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IDRML ¼
268 � 1 � 1 � 2 � IDRML þ 1ð Þ þ 612 � 1 � 2 � IDRML þ 2ð Þ
168 � 1 � 2 � 2 � IDRML þ 1ð Þ þ 1489 � 1 � 1 � IDRML þ 2ð Þ
iMH½ �#

Since the IDRML appears on both sides, entering the null

value IDR = 1 into the expression on the right side yields

an initial estimate, IDR = 0.8175. This is the MH estimate.

Entering this estimate then gives IDR = 0.8173; the 4

decimal places remain unchanged when one iterates fur-

ther. So, even though MH did not use a specific criterion to

derive it, their estimator turns out to be the first iteration on

the way to the ML one obtained by applying conditional

logistic regression to the individually matched sets. And in

most applications, unless the IDR departs considerably

from unity, it provides more than adequate accuracy. The

iterated Mantel–Haenszel estimator (iMH) convergences

very rapidly; as Clayton notes elsewhere [14], ‘‘a single

refinement stage is usually all that will be required.’’

Miettinen [personal communication] once asked Mantel

why he favored his particular estimator among the five

estimators he and Haenszel considered in their 1959 paper.

He also asked why Mantel chose to sum the ad/n and bc/

n products, rather than just the ad and bc products them-

selves. For example, why not a sixth estimator, Sum(ad)/

Sum(bc), which too would be to the left of the target in

50% of shots, and to the right of it in 50%? Mantel

answered that the amount of information concerning the

parameter of interest contained in the ad and bc products is

proportional to the square root of the product rather than

the product itself, and so he used the divisor of

n = a?b ? c?d to ‘slap down’ each product so that it

made a more appropriate (and less noisy) contribution.

[minute 17 of 2011 interview [16]]. Today, we see how

insightful and inspired this was.

In the present application, at the MLE reached by the

iMH procedure, the final weights are 1/

(2 9 0.8173 ? 1) = 1/2.6346 and 1/(0.8173 ? 2) = 1/

2.8173, rather than the common 1/3 for each that MH

proposed. Thus the two diagonals contribute to the MLE in

the ratio of 436/2.6346 to 2101/2.8173, i.e., approximately

18:82; RT’s estimate uses 17:83.

Proposed classical approximate MLE (2017)

RT [5] also take a binomial-model-based approach, but

combined the two independent IDRML estimates,

2 9 [612/1489] = 0.8228 and [1/2] 9 [268/168] =

0.7976, manually using a novel, but somewhat mixed,

approach. Directly in the ratio scale, they took a weighted

average of the two estimates, using weights 0.8281 and

0.1719 proportional to the numbers of informative triplets

of each of the two types (2101 and 436), arriving at a

summary estimate of 0.8178. They calculated the variance

of the log of the summary estimate as if the weighted

average itself was computed in the log scale, and used it to

calculate a multiplicative margin of error for the summary

estimate.

In the situations we have investigated, the CI thus

obtained is close to that obtained by the more common

approach to combining separate IDR estimates: combining

on the log scale, using inverse-variance (i.e., information)

weights. Often referred to as ‘Woolf’s method’, this

approach implicitly assumes that the estimates being

combined are estimates of the same parameter; the com-

bination respects both the minimum-variance and ML cri-

teria; the RT one does not.

MLE and SE of its log: by a familiar logistic
regression, or by hand calculator (2018)

RT’s motivations for their approach were that ‘‘conditional

logistic regression requires accessing the original individ-

ual-level database, is vulnerable to programming errors,

and provides readers no easy way to verify results.’’

If there are relevant within-triplet variables that the

investigator wishes to control for by including them in a

conditional logistic regression, then at each iteration, the

log-likelihood contribution from each of the large number

(here 6962 9 3) of rows of data must indeed be computed

anew. But if, as here, there are no such variables, then the

conditional logistic regression can be fitted using just M

(here just 2) rows of data, using regular (unconditional)

logistic regression software. As is seen in the R code in

Fig. 3, one merely sets up two vectors/columns of length

M, one for the numbers (268 and 612) of triplets where the

case arose from the index category of the factor at issue

(‘Pos’) and one for the numbers (168 and 1489) where it

did not (‘Neg’), along with a third one (‘O’) containing the

logs of the multiples by which each Pos/Neg ratio would, if

the factor were ignored, distort the IDR estimate (here 2

and �). The logs of these multiples are referred to in

generalized models [17] as ‘offsets’, and can be thought of

as variates whose regression coefficients are forced to be 1,

rather than estimated. They are used to compensate for the

fact that the ratio 268/168 is an estimate of 2 9 IDR, and

that 612/1489 is an estimate of (1/2) 9 IDR. Including

their logs in this simple logit model

logðE Pos½ �= E negð Þ½ � ¼ log IDRð Þ þ 1 � log multipleð Þ

allows the antilog of the intercept (exp[-0.20177] =

0.8173) to be directly used as an estimate of the target

parameter IDR, and its standard error used to compute a

multiplicative margin of error. Moreover, the fitted pro-

portions, 0.6204 and 0.2901, can be applied to the two
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diagonal totals (436 and 2101) to arrive at the fitted fre-

quencies 270.5 and 609.5, thereby providing a check on the

coding, and a test of fit.

Thanks to the iterated MH (iMH) procedure proposed

above, epidemiologists who prefer a handheld calculator or

spreadsheet and being close to their data now have an easy

way to arrive at the ‘deluxe’ ML estimate and its SE

without having to run any logistic regression. Here, again

using the RT data, are the steps.

1. Use the ‘iMH’ formula to calculate IDRML = 0.8173.

2. Compute the fitted values:

3. 436 � 2�0:8173
2�0:8173þ1

¼ 270:5 and 2; 101 � 0:8173
0:8173þ2

¼ 609:5

4. and their complements 436-270.6 = 165.5 and

2101-609.5 = 1491.5.

5. Compute and sum the amounts of Information about

log(IDRML).

6. I ¼ 270:5�165:5
436

þ 609:5�1491:5
2101

¼ 535:3572:

7. Calculate the SE of log(IDRML) as

1/sqrt(535.3572) = 0.04322.

The two amounts of information are the reciprocals of

the two variance expressions used by RT, but using the

fitted frequencies rather than the observed ones. The form

provides a helpful connection between logistic regression

and classical methods: the variance for the log(IDR) esti-

mate from a logistic regression fitted to several 2 9 2

tables is merely a ‘smoothed’ version of the one for Woolf

estimate, i.e., with the observed frequencies replaced by

their fitted frequencies.

More generally

RT’s study [5] addressed an agent (weather) one cannot

modify, and was limited to a fixed M = 2 matching ratio.

Lest the methods above be seen to be limited to sets that

are all of the same size, and in order to show the estimators

side by side, I now apply them to a ‘ragged’ data table from

a classic teaching dataset from Breslow and Day’s textbook

[6], also used in reference 11. It is derived from the Los

Angeles Retirement Community Study of the effect of

exogenous estrogens on the risk of endometrial cancer. The

study base consisted of the experience from 1971 to 1975.

Although the investigators did not attempt to measure it, it

helps to denote its (unknown) size by B woman-years (w-

y). The case series consisted of 63 instances of endometrial

cancer. For each case, four woman-moments (base-probes)

were selected from the base; this individually matched

base-series was contributed by women who were alive and

living in the community at the time the case was diagnosed,

were born within 1 year of the case, had the same marital

status, had entered the community at approximately the

same time, and had not had a hysterectomy prior to the

time the case was diagnosed. Information on the history of

use of several specific types of medicines, including con-

jugated estrogens, was abstracted from the medical record

of each of the 63 9 5 women. Since the histories of some

(including 4 in the case series) had missing values, the

data-synthesis was applied to the information from 55

quintuplets and 4 quadruplets. The resulting distribution of

the 55 9 5 ? 4 9 4 = 291 medication histories, each

reduced to a binary—or ?, is shown at the left of Fig. 4.

If one ignores the matching, and contrasts the incidence

density of 47 cancers among an estimated exposed segment

of [(96/232) 9 B] w-y with the 12 among the estimated

unexposed segment of [(136/232) 9 B] w-y, the IDR result

is (47/96)/(12/136) = 5.55.

The calculations involved in, and results obtained by the

various estimators applied to the data from the individually

matched sets are shown in the remaining columns of Fig. 4.

The Mantel–Haenszel estimate is 5.75. The standard

error for its log, obtained by the lengthier Robins-Green-

land-Breslow (RGB) expression [11], is 0.38. Not sur-

prisingly, given how far the 5.75 is from 1, the standard

error of 0.33 produced by the test-based approach is nar-

rower. Of considerable interest, particularly to those who

would like a shorter alternative to the RGB standard error,

is the 0.38 produced by the Clayton-Hills expression [13],

using nothing more than the (null) variance calculation

used in the denominator of the null Chi square test-statistic,

along with the numerator and denominator inputs to the

MH estimate itself.

The ML result is obtained by finding the IDR value that

equates the sums of the observed numbers of sets where the

history was positive (45) with the sum of their ‘fitted’

frequencies. It is both easy and instructive to use trial and

error on a spreadsheet to solve the balancing (‘‘estimat-

ing’’) equation. One can then use the fitted proportions to

compute (and sum) the amounts of (Fisher) information

concerning the log of the IDR provided by each of the six

pairs of frequencies. The square root of the reciprocal of

the sum provided a standard error (SE) for a multiplicative

margin of error.

Also of note is how well the sixty-year-old MH esti-

mator performs, and how it quickly it leads on to the ML

result.

The setup in the ‘‘logistic regression’’ column leads

directly to a rapid deluxe ML answer, while avoiding trial

and error, iterations and conditional logistic regression.

This familiar unconditional logistic regression also pro-

vides fitted frequencies.

Why is it that these ML results obtained from condi-

tional logistic regression, can also be obtained directly

from this unconditional logistic regression? The answer

lies in the individual matching, where conditioning on both

margins of the 2 9 2 table derived from a matched set
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leads to a Bernoulli random variable whose expected value

P has a closed form even when the IDR is non-null. A

similar simplification is achieved when, with the person-

time denominators PT1 and PT0 known, the distributions of

the two independent Poisson random variables C1 and C0

can, by conditioning on their sum, be converted to a single

Binomial distribution with ‘n’ = C1 ? C0 and

P = (IDR 9 PT1)/(IDR 9 PT1 ? PT0). No such closed

form exists for the more general (non-central hypergeo-

metric) random variable that arises from conditioning on

both margins of stratified frequency tables where the

smallest of the four marginal frequencies exceeds 1 (such

data are referred to as ‘grouped data’ (rather than ‘mat-

ched’ data) in chapter 4 of Breslow and Day’s textbook

[6]).

Readers will no doubt have noted that in this individu-

ally matched case-base series, the result from the matched

synthesis is (just slightly) closer to the null than the one

that ignores it, contrary to repeated warnings about the

dangers of ignoring the matching. One can surmise that this

is one of those situations where the matching was on

variables that do not matter. Although Breslow and Day

devoted section 7.3 of their text to the validity and

efficiency issues involved in such matched studies, it has

taken quite a long time for the principles concerning

matching [6, 18–24] to be fully understood, and for the

warnings derived from extreme theoretical scenarios to be

tempered by what is observed in real life examples.

Discussion

Investigators are increasingly relying on not just big, but

also clinically rich, data bases, and thus at little or no

additional cost can include 10–20 base-probes per case

[25]—enough that virtually all matched sets contribute to

the synthesis [cf. Section 7.7 of Volume II of Breslow and

Day [26] for formal efficiency considerations]. In such

applications, the cost constraints that led Miettinen ‘up

from matching’ [27] are no longer a deterrent.

Given the expanding opportunities for conducting case-

base studies with individually matched base series, RT’s

pursuit of simplicity, transparency and ways to check the

analysis is welcome, even if they limited their attention to

methods for designs with a 2:1 matching ratio [5]. But it is

disappointing that the referees and editors of the Journal of

+  -
case a  b
base c  d

a  b
c  d

+  -

History (+/-) of use of conjugated
oestrogens in 59 matched sets
(55 'quintets', 4 'quartets'). 
Data from B&D Vol I, p. 178.

m: No. in set with +ve history

4,1,17 ... No. of Sets

4 4
m = 1 m = 0

1  0 0  1
0  4 0  44 1 4  x 1 x 4

5 1  x 1 x 0
5 4  x 1 x 4

1 x 5.75 + 4

m n+ n P Fitted log[ P/(1-P) ]

1 4 10  x 1 x IDR
1 x IDR + 4

n+ 5.80
P 0.58

I 2.44
log[ IDR ] + log[ 1 / 4 ]

4 4
m = 2 m = 1

1  0 0  1
1  3 1  317 6 17  x 1 x 3

5 6  x 1 x 1
5 17  x 1 x 3

2 x 5.75 + 3 6  x 1 x 1
1 x 5.75 + 3

2 17 20  x 2 x IDR
2 x IDR + 3

n+ 15.73
P 0.79

I 3.36
log[ IDR ] + log[ 2 / 3 ]

4 4
m = 3 m = 2

1  0 0  1
2  2 2  211 3 11  x 1 x 2

5 3  x 1 x 2
5 11  x 1 x 2

3 x 5.75 + 2 3  x 1 x 2
2 x 5.75 + 2

3 11 12  x 3 x IDR
3 x IDR + 2

n+ 10.71
P 0.89

I 1.15
log[ IDR ] + log[ 3 / 2 ]

4 4
m = 4 m = 3

1  0 0  1
3  1 3  19 1 9  x 1 x 1

5 1  x 1 x 3
5 9  x 1 x 1

4 x 5.75 + 1 1  x 1 x 3
3 x 5.75 + 1

4 9 10  x 4 x IDR
4 x IDR + 1

n+ 9.57
P 0.96

I 0.41
log[ IDR ] + log[ 4 / 1 ]

4 4
m = 5 m = 4

1  0 0  1
4  0 4  02 1 2  x 1 x 0

5 1  x 1 x 4
5 1  x 1 x 4

4 x 5.75 + 0

3 3
m = 1 m = 0

1  0 0  1
0  3 0  31 0 1  x 1 x 3

4 0  x 1 x 0
4 1  x 1 x 3

1 x 5.75 + 3
1 1 1  x 1 x IDR

1 x IDR + 3
n+ 0.65
P 0.65

I 0.23
log[ IDR ] + log[ 1 / 3 ]

3 3
m = 2 m = 1

1  0 0  1
1  2 1  23 0 3  x 1 x 2

4 0  x 1 x 1
4 3  x 1 x 2

2 x 5.75 + 2 0  x 1 x 1
1 x 5.75 + 2

     +    offset  

fit=glm(
 cbind(n+, n - n+) ~ 
 1 + offset,
 family=binomial)

exp(fit$coefficients)

> 5.53 
 SE[logIDR.ML] = 0.35

2 3 3  x 2 x IDR
2 x IDR + 2

n+ 2.54
P 0.85

I 0.39
log[ IDR ] + log[ 2 / 2 ]

3 3
m = 3 m = 2

1  0 0  1
2  1 2  10 0 0  x 1 x 1

4 0  x 1 x 2
4 0  x 1 x 2

2 x 5.75 + 1

3 3
m = 4 m = 3

1  0 0  1
3  0 3  00 0 0  x 1 x 0

4 0  x 1 x 3
4

21.85 3.80

IDR.MH =  5.75
 SE[logIDR.MH] = 0.38

Mantel-Haenszel Miettinen; Breslow & Day Logistic Regression iterated Mantel-Haenszel

45 45.00
sum(I) 7.9758

SE[logIDR.ML]=sqrt[1/sum(I)]=0.35

at IDR = 5.53

P is calculated at IDR = 5.53
Fitted n+ = n x P

I = Information re. log[IDR]  = n x P x (1-P)

7.46 1.35

IDR.iMH =  5.52

Fig. 4 Data frequencies from an individually matched case-base

study widely used in teaching [6], together with IDR incidence

density ratio (IDR) results obtained by tabular and regression-based

data-synthesis approaches (see text). In the leftmost column, the

information from each configuration of M = 5 or M = 4 is shown as a

2 (case or base) 9 2 (?ve or -ve history) frequency table; the

multiplicities sum to 59. The IDR result (5.53) obtained using the ML

criterion was obtained either by solving an estimating equation; or

using binomial regression with a logit link, and an offset that is a

function of m (the number of positive histories in the set) and M. The

weights in the ‘iterated MH’ estimator further reduce (‘‘slap down’’)

the ‘ad’ and ‘bc’ products by more than the divisors of 5 and 4 do in

the original MH round. In one further iteration (not shown), the iMH

result is the same as the ML result to 3 digits
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Clinical Epidemiology [5] were unable to help when RT

lamented that ‘‘Methods for extending McNemar’s test for

analyzing one-to-two matched control studies have been

sought but have not been previously developed.’’ In this

example, the near sightedness of modern-day ‘epidemio-

logic academia’ [28] is all the more remarkable: the

overlooked sources were to be found in the very 1980

textbook [6] that RT cited for their ‘simple Mantel–

Haenszel analysis of the two McNemar estimates’ whose

‘estimated variance is slightly too narrow because of the

double count of some days.’ The present piece is a call to

be more far-sighted, and to not forget our still-relevant

‘tabular’ foundations.

If we are to learn from classic articles (RT [5] cite

McNemar’s 1947 article [10]), then a relevant one in this

IDR context is the 1955 one by Barnet Woolf [9]. It—like

three of Miettinen’s—is reprinted in Greenland’s collection

[29]. In it, without explicitly mentioning the amount of

time during which the case series arose, but with remark-

able clarity, Woolf made the case for directly ‘‘work[ing]

with (i.e. contrasting) incidence rates’’. ‘‘The data usually

do not permit calculation of absolute rates, nor are they

needed. What is wanted and readily obtained is an estimate

of the ratio of one rate to another.’’ He denoted by h and

k the numbers of the diseased series in the index and ref-

erence categories (blood groups in his example), and by

H and K the corresponding numbers in the control (de-

nominator) series. Then,

the incidence in the [population time in the index

category] will be h/H 9 some constant, and that in

the reference category will be k/K 9 the same con-

stant. An estimate of the ratio will be hK/Hk, and it

may readily be shown that this is the maximum-

likelihood estimate.

Today’s epidemiologists might note that neither Woolf [9],

not Haldane [30] in his refinement a year later, used the

term ‘odds ratio.’ They might even adopt as a principle,

stated in the same words used by Woolf: ‘‘nor is it

needed.’’
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