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Practical and efficient estimates of one’s accuracy in
darts

We thank Tibshirani et al. (2011) for their most interesting essay. In addition to its innovative use of a
personalized heat map to show the optimal strategy for throwing darts, it provides an engaging example for
teaching several statistical concepts and techniques, such as fast Fourier transforms, the EM algorithm,
Monte Carlo integration, importance sampling and the Metropolis—Hastings algorithm. It is a delightful
blend of the applied and the theoretical, the algebraic and the graphical.

It also continues the tradition of statisticians’ fascination with the imagery of marksmen (Turner and
Hanley, 2010). In her chapter on metaphor and reality of target practice, Klein (1997) wrote of ‘men
reasoning on the likes of target practice’ and described how this imagery has pervaded the thinking and
work of natural philosophers and statisticians. Klein showed a frequency curve, by Yule, for 1000 shots
from an artillery gun in American target practice. Pearson used it in his 1894 lectures on evolution; he
decomposed the frequency curve into two chance distributions centred slightly to the right and left of the
target, gave reasons why this might occur and used it to illustrate the interplay between random variation
and natural selection. He also used it in Pearson (1900) in one of the illustrations of his test of goodness
of fit.

Since the optimal aiming spot in darts—and thus the heat map provided by the on-line applet—depends
strongly on one’s accuracy, much of Tibshirani ez al. (2011) is devoted to the challenge of estimating the
(co)variance parameter(s) that describes this accuracy. All the estimators rely on the data generated by
throwing n darts, aiming each time at the centre of the board, i.e. the double bull’s-eye, and recording the
result for each throw.

Tibshirani ez al. (2011) noted that they would lose considerable information by not measuring the actual
locations where the darts land but considered this to be too time consuming and error prone. Instead, they
chose the individual scores produced by the throws (the 44 possible scores are 0-22, 24-28, 30, 32-34, 36,
38-40,42, 45,48, 50, 51, 54, 57 and 60). Based on n =100 throws by authors 1 and 2, assuming the simplest
variance model (equal, uncorrelated vertical and horizontal Gaussian errors), their standard deviations
were estimated to be 6 = 64.6 and 6 = 26.9 respectively (the applet gives & to two decimal places).

We write to provide a measure of the statistical precision of these estimates of accuracy (for example,
we calculate that the 95% limits to accompany the reported point estimate 64.6 derived from 100 scores
are approximately 56 and 75). More importantly, we show that more precise estimates of o can often be
achieved with the same number of throws (or the same precision with fewer throws) if we use a simpler yet
more informative version of the result from each throw. Here we focus on the simplest variance model.

The low information content of the scores with respect to o is because many of them arise from throws
that land at very different distances from the centre. For example, a score of 18 can arise from a throw that
lands in one of four regions: double 9 (least accurate), outer single 18 (accurate), triple 6 (more accurate)
or inner single 18 (most accurate). This ambiguity and loss of information are avoided if we simply record
instead which of the seven ‘rings’ the throw lands in: 1, the double bulls-eye; 2, the single bull’s-eye; the
rings formed by the 3, single bulls-eye and inner triple, 4, inner and outer triple, 5, outer triple and inner
double, and 6, inner and outer double wires respectively; and 7, beyond the outer double wire (i.e. the throw
misses the board), i.e. we need only to divide the dartboard into seven rings according to their distance to
the centre.

To quantify how much information is conserved if the raw location data are reduced to

(a) ‘ring’ data and

(b) ‘score’ data,

we can measure the relative efficiency of these two latter methods of data recording. Since the log-likelihood
is more symmetric in log(o) than in o, each panel in Fig. 1 shows the log-likelihood, but on a log-scale for o.
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The log-likelihood function and the three amounts of (Fisher) information are based on a sample size
n =50, as suggested by the authors. The expected amount of information concerning log(c) contained
in the raw location values can be shown analytically to be 4n, or 200 in our example. We calculated the
corresponding information for the competitors by using the expected (multinomial) frequencies.

Fig.1 shows that the ring data are often much more (and never less) informative than the score data.
This difference in information is greatest when the player is moderately accurate: as is seen in Fig. 1(d) and
Fig. 1(e) we can obtain the same amount of information about log(c) by using ring data on 26 (=50 x
90/171) throws or score data on 50 throws. This difference is least when the results from the two data
recording systems overlap considerably, i.e. if most of the throws are in or close to one of the two bulls-eye
regions (Figs 1(a)-1(c), where curves shown with dotted and broken lines are virtually indistinguishable),
or if a large percentage of throws fall outside the board (Fig. 1(f)).

Fig.1 can be used to provide a confidence interval to accompany (for example) the reported ¢ = 64.6
based on Tibshirani’s 100 scores (see Fig. 1(e)). If this estimate had been based on the detailed locations
for n =100 throws, SE{log(6)} would have been approximately (1/4n)'/> =1/400'/2, the multiplicative
margin of error for a 95% confidence interval would be approximately exp(1.96SE) = 1.1 and so the
confidence interval for o would be approximately from 64.6/1.1 to 64.6 x 1.1, or 59-71. However, since
they were in fact based on scores, with an efficiency of only 90/200 =0.45, SE{log(d)} is approximately
{1/(4n x 0.45)}1/2 = (1/180)'/2, the multiplicative margin of error for a 95% confidence interval is approx-
imately 1.16 and so the limits are approximately from 64.6/1.16 to 64.6 x 1.16, or 56-75. For o-values in
this range, the information content of the ring data is 2 x 171/400ths, or 85.5% that of the full location
data.

Others may wish to explore what additional data could be used to recover more of the information about
the more complex variance structures that were considered by Tibshirani et al. (2011).

Again, we salute Tibshirani ez al. (2011) for their readable modern essay and for maintaining a statistical
focus on marksmanship, yet using less dangerous missiles than those studied by statisticians of centuries
past.
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