James A. Hanley, PhD

Alternative Approat:hes to Receiver Operating

Characteristic Analyses!

N this issue of Radiology, Berbaum et
al (1) describe what to many is a
new statistical technique for analyzing
data from a receiver operating charac-
teristic (ROC) study. This editorial is a
tutorial on this new approach and is an

attempt to show where the approach
fits in with conventional analyses and
when it may be an oversimplification.

Traditional Approaches

The reported diagnostic performance
under a certain experimental condition
is usually obtained by averaging per-
formance over a sample of observers.
Usually all observers read the same
sample of cases, generally only once in
each condition. The uncertainty of the
average is quantified with the use of a
standard error (SE). Ideally, this SE
should be a composite of all of the
sources of variation introduced by sam-
pling individual cases, observers, and
reading occasions. The form of the SE
and the meaning of each of the vari-
ance components are fully explained in
the text by Swets and Pickett (2). As ex-
pected, the average is more trustworthy
(its SE is smaller) if it is calculated with
more cases, more observers, and more
occasions.

Inferences on the difference in per-
formance in two conditions are based
on the SE of the observed difference in
averages. If the conditions are tested on
different sets of cases by different read-
ers, the SE of the difference is obtained
by combining the separate SEs in the
usual way. If cases and/or readers are
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See also the article by Berbaum et al (pp 507-
511) in this issue.

matched across the two conditions, the
relevant components of the SE are re-
duced accordingly. The larger the case
correlation across the two conditions
(the larger the degree to which a set of
cases that are above [below] average
difficulty in one condition will be like-
wise in the other) and the larger the
degree to which a set of observers who
are above (below) average accuracy in
one condition will likewise be in the
other condition, the smaller the SE of
the estimated difference in perfor-
mance.

The computation of the composite SE
is described in detail in reference 2. If
case and rereading variances are negli-
gible, the inferences are equivalent to
analysis of the performance statistics of
each observer with familiar statistical
techniques. Similarly, if reader and re-
reading variances are negligible, the
SEs can be based on those produced by
the method of Dorfman and Alf (3).
When all three components are non-
negligible, the “full-blown” SE should
be calculated. In such situations, esti-
mation of the case variance and covari-
ance can be difficult when the number
of cases is small, because it involves
splitting the dataset into subsets of
cases and applying the Dorfman and
Alf éstimation method to each subset;
Hanley and McNeil (4) used a largely
nonparametric approach to estimating
the case covariances when one uses the
“area” as the index of performance.
They also illustrated the use of jack-
knifing of cases, coupled with the
Dorfman and Alf procedure, to esti-
mate directly the SE of a performance
difference measured on the same cases
(5). Metz et al (6) provide a bivariate ex-
tension of the binormal model, which
allows one to estimate case variance
and covarjance parametrically.

Dorfman and Berbaum’s Approach

Recently, Dorfman and Berbaum de-
scribed a method and an accompanying
computer program to compute jack-
knife estimates (and their SEs) of in-
dexes extracted from a single ROC
curve fitted to rating-method data that
have been pooled over a group of ob-
servers (7). Such pooling might be the
iast resort if there are not sufficient
cases to fit separate ROC curves for
each observer. As will be discussed in a

following section, the approach of
Dorfman and Berbaum is more note-
worthy for the form of the SE they use
than for the use of jackknifing per se.
Until now, jackknifing has been used
only to assess sampling variation due to
cases (5). However, Dorfman and Ber-
baum use it to assess the variation due
to readers. To understand their jack-
knife approach, it is best if we restrict

~ attention to data gathered under a sin-

gle experimental condition and to first
review the four steps Dorfman and Ber-
baum might take (and that Berbaum et
al did take in the second row of their
Table 2 [1]) when there are enough data
to estimate directly a separate curve for
each observer. These steps are () calcu-
late a separate value of the area for each
of the seven observers, (b) calculate and
report the average value of this index,
(c) assume that case and rereading vari-
ances are negligible and base the SE of
the reported average simply on the
number (seven) of readers making up
this average and the observed variation
in the index between readers, and (d)
base inferences on the ¢ distribution.

In the jackknife method of Dorfman
and Berbaum, one uses these same four
steps, except that instead of the seven
directly calculated areas, one uses indi-
rectly calculated “pseudovalues” of the
areas. These pseudovalues (which we
will denote by asterisks) can be regard-
ed as the contributions of the individ-
ual observers to the single ROC curve
estimated from the pooled data. (See
Fleiss and Davis [8] for a nontechnical
exposition on jackknifing.) Thus, to ob-
tain the pseudovalues, one must first
calculate the area, which they denote
Area,, from the entire pooled rating-
data. Then, to obtain the pseudovalue
Area*; for observer i, one deletes the
rating-data produced by the ith observ-
er from the overall pool of data and
uses the area, which they denote Area_;
and which is calculated from this re-
duced pool, to calculate Area*; = (7 X
Area,y) — (6 X Area_;). The analysis of
these pseudovalues then proceeds in
the same way as outlined in steps a-d
above.

How to Calculate the SE?

The main implication of Dorfman
and Berbaum’s approach stems not
from the use of jackknifing per se; rath-
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er, the main issue is that they base the
analysis strictly on between-reader
variances. In their users’ guide (7), they
advise that if two independent pools of
observers are to be compared, pseudo
estimates for the different readers can
be used to construct a t test for inde-
pendent samples with the degrees of
freedom based on the number of inde-
pendent readers. For the study with
matched readers, they recommend that
if two pools of data are obtained from a
single group of observers presented
with the same stimuli-under two ex-
perimental conditions, a f test for
paired observations can be performed
on the paired pseudovalues of the two
groups. Thus, in the matched-readers
example here, they test the average of
the seven paired differences d; =
Area,(1) — Areaf2) against zero using a
one-sample Student ¢ test (with7 — 1 =
6 degrees of freedom) by computing
the usual critical ratio d/SE[d], where
the SE is calculated from the individual
d{'s in the same way as for any paired ¢
test.

These suggestions differ from Swets
and Pickett’s approach, in that Dorf-
man and Berbaum effectively ignore
case and rereading variance when cal-
culating the SE and deal only with be-
tween-reader variation. (In principle,
the other sources of variation could be
included by extending the jackknifing
to both cases and readers, as has been
suggested by Hanley [9].)

If one estimates the SE of the differ-
ence in an index between two condi-
tions that use the same set of cases, and
if the case-covariance is high, then the
omitted variance component due to
case selection will be small and will not
cause serious underestimation of the
SE.

The Dorfman-Berbaum approach of
basing inferences on the number of
and variation between readers correctly
emphasizes that the believability of an
observed difference depends on the
number of observers in whom the dif-
ference is observed, as well as on the
number of cases used in the study. In
other words, the unit of analysis is as
much the observer as it is the objects
that are being-observed. Indeed, this is
implicit in the terminology used by
Dorfman and Berbaum, who use the
term “subject” to refer to an observer.
However, the simpler Dorfman and
Berbaum approach, and the smaller SEs
it produces, should not be taken as a li-
cense to ignore the other components
included in the Swets and Pickett for-
mulation.

Implications for Sample Sizes

Tt is unfortunate if the enrly writinoes

It is unfortunate if the ritings
on SEs and with statistical inference in

general—beginning with Dorfman and
Alf and continuing with Hanley and

Volume 168 Number 2

McNeil and with Metz et al—were fo-
cused solely on the numbers of cases
and not at all on the number of readers.
SEs based only on the number of cases
do have a place, albeit in special excep-
tional situations. They are appropriate
for comparison of the performance of a
specific (named) reader in one condition
with the performance of the same (or
another named) reader in a second (or
perhaps in the same) condition. How-
ever, no matter how large the number
of cases, one cannot usually make infer-
ences based on results of one reader to
a whole class of readers (except, of
course, where there is absolutely no be-
tween-reader variation). “Operator-
less” diagnostic systems, which jnvari-
ably give the same test results on a set
of cases, are one such exception. Exam-
ples of such systems might be (a) auto-
mated computer procedures that use
objective features of images to detect
abnormalities and (b) clinical predic-
tion techniques, such as discriminant
analysis, regression, and other patient-
sorting algorithms, that use unequivo-
cal clinical indicants to generate diag-
noses or prognoses. In such situations,
where case and rereading variance are
both zero, the statistical conclusions are
determined solely by means of the
case-variance, the degree of case-
matching, and the size of the case sam-
ple. The “case-based” SEs from the esti-
mation procedures of Dorfman and Alf
(3), Hanley and McNeil (4), and Metz et
al (6) and the formulae and programs
for calculating sample size developed
by Hanley and McNeil and by Metz et
al are directly applicable in such situa-
tions.

The Correct Unit of Analysis: An
Example

Because it is often difficult to know
which is the correct unit of analysis (ie,
which source of variation and which
“n” to use in the numerator and de-
nommator of the standard error [10]), it
is worth considering an illustration.
Imagine that we wish to test whether a
particular method of academic training
leads to better performance than anoth-
er. Performance of trainees is to be as-
sessed (estimated) on a sample of exam-
ination questions. If we compare the
results of the methods using one
trainee per method, the only effect of
increasing the number of questions
used is to make us more convinced
about which of the methods performs
better in these two trainees. Indeed, un-
less we were sure that these two per-
sons would stand in the same relation
to each other on another day, we might
need to augment the number of exami-
nations or sessions to take into account
“within candidate” variability. Either
way, no matter how much we increase
these two n’s, we still cannot infer how

well trainees in general will perform in
each of the two conditions. This can
only be achieved by increasing the n of
trainees assessed. Of course, there
should be enough questions to avoid
the situation in which, somehow by
chance, the limited number of ques-
tions used favored one condition over
the other; one hopes that any observed
difference between two observers (ei-
ther in the same condition or in differ-
ent conditions) is not due to the ques-
tions selected.

Since cases and readers in an observ-
er performance study are analogous to
questions and trainees in this example,
the use of a sufficient number of the
same (or matched) cases in both condi-
tions should allow one to consider that
the contribution of case variance to the
composite SE is minimal compared
with that of between-reader variance.
Then, in planning the statistical power
of an observer performance study, one
can be guided by the same calculations
used for simple comparisons of means
taken over observers: One can simply
consult nomograms or tables for two-
sample ¢ tests showing the number of
subjects (observers) required to have a
specified probability of detecting a dif-
ference of § when the projected be-
tween-reader standard deviation is ¢
(11). For matched readers, one consults
the table for the one-sample f test,
where ¢ is the projected standard devi-
ation of the pair differences. The tables
are tabulated in terms of the “signal-to-
noise” ratio, 6/¢.

Nonparametric Tests: Being
Convinced by Consistent leferences

If one is uncomfortable performing
parametric tests on such few numbers,
the nonparametric analogs of the f tests
(rank tests) are an attractive alternative.
Indeed, they illustrate the minimum
number of readers needed to reach a
“significant” difference: If, in a study
that uses three readers in one condition
and three (unmatched) readers in the
other, the performances for the three
readers in one condition all rank high--
er than those of the three in the other
condition, and if this was the hypothe-
sized direction, such a pattern is associ-
ated with a P value (one-sided) of 1/20
or .05 with the rank sum test. If a study
with five matched readers produces
five intercondition d’s that are consis-
tently in the hypothesized direction,
this pattern is associated with a P value
(one-sided) of 1/32 or .03 with the sign
test (in the study of Berbaum et al [1],
the difference between location
prompted and unprompted detection
accuracy was present in all seven ob-
servers). Many investigators have re-
ported such patterns without formal
statistical tests, knowing instinctively
that the differences must be “real.” In
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fact, if they are achieved despite the
statistical noise caused by low numbers
of cases and no rereadings, one could
argue that the patterns are all the more
remarkable. Although they leave the
choice of the number of readers up to
an investigator’s scientific judgment,
Swets and Pickett (2) suggest that, even
apart from issues of power require-
ments, a reading test should as a rule
have "at least several” readers; in an-
other chapter, they “emphasize again
that one should strive to work with a
reasonably large sample of readers,”
since small samples can easily give rise
to “sampling oddities.”

More Readers, Fewer Cases?

The number of cases a reader is ex-
pected to read limits the number of
readers willing to participate in an ob-
server performance study. Fortunately,
the increased emphasis on and under-
standing of the value of a larger selec-
tion of readers will make it easier to re-
duce somewhat the case numbers and
thereby allow more readers to partici-
pate (the number of cases in this and
other studies by Berbaum and Dorfman
was small enough that they could list
the individual characteristics of the
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cases! [12]). The use of pooling and
pseudovalues can overcome the practi-
cal difficulty of fitting reader-specific
ROC curves from such a small number
of cases, although the pooling can pro-
duce larger estimates of between-read-
er variance than is seen in the data
from individual readers. However,
even if these pooling artifacts could be
avoided, the number of cases still can-
not be allowed to be so small that it is
impossible to generalize from them.
Even if one were to employ jackknifing
of readers, a study with two cases and
140 readers cannot equal one with 40
cases and seven readers! H
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