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1. Introduction 

 
ExposureAssessment is a software package for estimating exposure probabilities in a series of 

subjects where one or more continuous test measurements relating to the exposure of interest are 

available for each subject. It is an implementation of the Bayesian latent class hierarchical model 

presented in section 3.2 of 

 

Weichenthal S, Joseph L, Bélisle P, Dufresne A. 

Bayesian estimation of the probability of asbestos exposure from lung fiber counts. 

Biometrics 2010;66(2):603-612. 

 

This paper is available from 
http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/weichenthal2009.pdf 
 

Typically, one or more data points are taken from a sample of subjects, and are subsequently 

used to estimate the probability of exposure to a substance of interest (e.g., a carcinogen such as 

asbestos fibres in the lung).  This can be accomplished by comparing the values from each 

subject to the distribution of test results from unexposed and/or exposed populations. 
 
ExposureAssessment is useful in providing individual level probabilities of exposure based on 

available data or to study the test properties (mean and variance of exposed and unexposed 

populations) of the various test measures at hand. 
 

Since ExposureAssessment is based on Bayesian latent class models, it can analyze data and 

provide probabilities of exposure even when no perfect gold standard test measure is available. 

The software can also accommodate test measures with mixed discrete/continuous distributions. 

 

Depending on the exposure under study, contaminants can be present in some samples but still 

below a given detection limit; if the contaminant measurement is normally or log-normally 

distributed (when detectable), then its overall distribution can be modeled as a mixed 

discrete/continuous distribution, that is, by a normal or log-normal distribution to which a point 

probability mass is attributed to below-detection values. Variables without minimum detection 

limits can also be analyzed by this software provided their distribution is normal or log-normal in 

both exposed and unexposed populations. This distribution, implemented within a hierarchical 

Bayesian latent class model, forms the basis for the probabilities calculated in 

ExposureAssessment. 
 

 

 

http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/weichenthal2009.pdf


2. Hierarchical model 

 
Full details of the model used by ExposureAssessment are given in the reference from section 1, 

which should be read before the software is used.  Briefly, the model fit by 

ExposureAssessment can be described as follows. 

 

A series of V exposure variables are measured on a set of N subjects, where the number of 

measurements per variable can vary from subject to subject. Let Xijk be the k th measurement of 

variable j in subject i and let {Ii}i=1,..,N be the true status for each subject, where 

 

 
 

The values of each of the V exposure variables are modeled as a mixture of a normal density and 

a probability of being at or below the detection limit, so that 

 
                             i=1,2,..,N,    j=1,2,..,V,   k=1,2,..,nij 

 

where 
(1)

ij  and 
(0)

ij are the individual means for variable j in exposed and unexposed 

populations, respectively, and 
2(1)

Wj  and 
2(0)

Wj   are the within-subjects variances for variable j 

in exposed and unexposed populations, respectively. 

 

The values {j}j=1,2,..,V  are the detection limits and the values {p
(g)

j}j=1,2,..,V are the at or below-

detection probabilities in the exposed (g=1)  and unexposed (g=0) populations. 

 

The individual means are modeled through the hierarchical model 

 


(g)

ij        ~   N(
(g)

j, 
2(g)

Bj),                   i=1,2,…,N    j=1,2,..,V,   g=0,1 

 

where 
2(g)

Bj, g=0,1, are the between-subjects variances for variable j and the parameters 
(g)

j  are 

the overall means for variable j in both exposed (g=1) and unexposed (g=0) populations and are 

modeled as 

 


(g)

j      ~   N(
*(g)

j, 
2*(g)

j),                  j=1,2,..,V,     g=0,1. 

 

 

Ii   = {

   

1 if subject i was exposed 

 

0 if subject i was not exposed 

Xijk  ~ { N(
(Ii)

ij, 
2(Ii)

Wj)       with probability  1- p
(Ii)

j   

 

j                         with probability p
(Ii)

j 

, i=1,2,..,N.  

 



The individual means for each of the V variables are subject to the constraints 

 

               Sign(
(1)

ij – 
(0)

ij)  =  i,                           i=1,2,..,N,       j=1,2,..,V 

 

where 

 
 

 

The within- and between-subject variances for each of the V variables are given uniform prior 

distributions 

 


(g)

Wj  ~   U(
(g)

WLj, 
(g)

WUj),               j=1,2,..,V,     g=0,1 


(g)

Bj   ~   U(
(g)

BLj, 
(g)

BUj),                j=1,2,..,V,     g=0,1 

 

while the below-detection probabilities are given Beta prior distributions: 

 

p
(g)

j         ~   Beta(
(g)

j, 
(g)

j),               j=1,2,..,V,      g=0,1. 

 

 

Finally, in subjects where Exposure status is unknown, the latent true status are Bernoulli with 

probability of being positive equal to the prevalence of exposure in the population under study: 

 

   Ii       ~   Bernoulli(),                     i=1,2,..,N 

        ~   Beta(). 

 

Table 3 of Section 5 summarizes the above notation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j   = {

   

 

1 if variable j is expected to take larger values in the Exposed population 

 

-1 if variable j is expected to take larger values in the Unexposed population. 



2.1. Variables with group level means rather than individual level means 

 
In the above section, each variable had individual level means: ExposureAssessment also 

allows for variables with group level means, that is, variables with the following mixture 

distribution: 

 

 
                             i=1,2,..,N,    j=1,2,..,V,   k=1,2,..,nij 

 

 

where 
(1)

j  and 
(0)

j are the group means for variable j in exposed and unexposed populations, 

respectively, and 
2(1)

j  and 
2(0)

j   are the variances for variable j in exposed and unexposed 

populations, respectively. 

 

 

 

3. Data preparation 
 

The data to be analyzed by ExposureAssessment must be available in comma-separated values 

(.csv) files.   

 

All data available for unclassified subjects (that is, subjects whose exact exposure is not known 

with certainty) must be saved in a unique file, while (if available) data for known Exposed and 

Unexposed subjects will be saved to two separate files.  Thus, ExposureAssessment will read in 

data from one, two or three comma-separated values input files, depending on the type of data 

available for analysis. 

 

Each column in the first row of each input data file must consist of the corresponding column 

variable name.  In other words, the first row in the input file must be a header row. 

The ExposureAssessment graphical user interface allows the user to pick a subset of the 

variables in the input files for analysis.  Thus, not every variable present in input data files needs 

to be included in the analysis. 

 

Each data file may optionally contain a subject identity number, which may make data entry of 

the multiple measurement entries for each subject easier, and make the reference to each subject 

easier in the output file (where subject ID number will be displayed). 

 

Xijk  ~ { N(
(Ii)

j, 
2(Ii)

j)         with probability  1- p
(Ii)

j   

 

j                         with probability p
(Ii)

j 



Multiple values for a same variable can be entered in as many columns as necessary, as long as 

the columns are labelled with the same variable name (note that ExposureAssessment is case 

insensitive with regards to variable names). 

In the example below, the variable short fibers was measured four times for subject A-100 (two 

columns on each of this subject’s two rows) while it was measured three times for both subjects 

A-101 (two measurements entered in row 4, one in row 5) and A-102 (all three measurements on 

same row 6). 

 

 

 
 

 

Note that blank cells indicate missing values. Hence subject A-103 did not have any short fibers 

measurements in example above. 

 

In files where no Subject ID variable is defined, it will be assumed that each line of data 

indicates a unique subject.  In output sections where individual data or individual exposure 

probabilities are printed, the Subject ID variable (if defined) will be used as a label to identify 

each subject.  

 

If no Subject ID variable is ever defined (so it does not appear in the unclassified, unexposed or 

exposed subject data files), subjects will by default be labelled as “Unclassified”, “Unexposed” 

or “Exposed” (respectively) followed by a dash and the corresponding input data file row 

number. If Subject ID variables are given in some files but not in others, the above default labels 

will be used where there is no ID variable defined. For example if Subject ID variables are 

defined in the exposed and unexposed files but not in the unclassified file, then the labels given 

in the first two files will be used, and the default label “Unclassified“ will be used for subjects in 

the unclassified file. 

 

 

 



 

 

 

4. How to run ExposureAssessment 

 
Three types of inputs are required for running this program: 

 

• Comma-separated values (.csv) input data files (as just described in Section 3); 

• Prior distributions for each unknown parameter (see Section 2); 

• Initial values for each unknown parameter. 

 
A first form (see below) with three Browse buttons allows the user to select each input data file 

in the appropriate (depending on whether the file consists in a list of Unclassified, Unexposed or 

Exposed subjects) section. 

 

 

 
 



ExposureAssessment 
scans the first row of 

each input data file 

and reads in the 

different variables 

names (case 

insensitive).  

 

These variables can 

include an Identity (or 

Index) variable and 

one or more analysis 

variables. 

 

Not all variables 

found in input data 

files need to be 

included in the 

analysis. 

 

 

 

 
The next form allows you to 

choose between the original 

scale and the log scale for each 

analysis variable: pick the log 

scale for a variable if you are 

going to model its log scores 

(which ExposureAssessment 

will compute) rather than the 

original scores. 

 

You can also select between 

individual level means or 

group level means for each 

variable on that form (not 

shown). 

 
 

 

 



The next form is used to enter 

your prior information on the 

prevalence of the disease, which 

is given a beta density with 

parameters (), such that prior 

mean and variance are  

 and 

), 

respectively. 

 

 
 

 

 

The gold button with text ) ( allows you to specify your prior 

distributions in terms of prior moments () rather than in terms of ().  If 

you choose to enter your prior information using (), the corresponding 

() values will be calculated automatically for you. 

 
 

The next form (below) allows the user to fully describe the prior distributions for each unknown 

parameter used in the model, within both Exposed and Unexposed populations. 

 

Note that for variables with group level means rather than individual level means (shown below), 

the form will not display input boxes for SD between and SD within parameters, but rather for 

SD only. 

 

 



 
 

 



In the next two figures (right and 

below), we have enlarged the left 

and middle parts of figure above 

and superimposed (in gold) the 

corresponding variables names 

used in Section 2. 

 
 

 



 
 

 

 
When the prior mean values entered into the Exposed and Unexposed population mean boxes 

differ, their values indicate whether higher or lower values in the corresponding test are expected 

in the Exposed population (see definition of j in section 2). 

 

When the prior means do not differ, the user will need to manually indicate whether higher or 

lower values in the corresponding test are expected in the Exposed population. A form will pop 

up in which the user must enter this information. 

 

 

 

 

 



The Gibbs sampler specifications form 

(pictured at right) will allow you to 

control for the number of burn-in 

iterations and the number of monitored 

iterations.  

 

Burn-in iterations are iterations that are 

ignored when the summary statistics are 

calculated and are used to allow the 

Markov chain to converge; the history 

plots in the .odc file (see Table 3 in 

Section 5) can be examined to assess 

convergence (of course, more formal 

convergence checks can be done, but this 

is beyond the scope of this document). 

 

 

 

 
You will then need to provide initial values for each unknown parameter, in both Exposed and 

Unexposed populations.  These initial values are required in order to run any Gibbs sampler model, 

and need to be chosen carefully to ensure convergence to the proper posterior distributions.  In 

general, you should pick values that are your best guesses as to the true values you expect for each 

parameter.  You might also want to run the program several times with different starting values to 

ensure the Gibbs sampler converges to the same solution regardless of starting values. 

 

 



 
 
 

Once all of the above required inputs are completed, ExposureAssessment will write a 

WinBUGS program and run it. Upon completion of the WinBUGS run, a form will pop up, 

allowing the user to view all output files produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. An example of running ExposureAssessment 

 
We will now illustrate the use of ExposureAssessment through an example, analyzing the same 

data as in the paper cited in introduction. We will use the same prior parameters as used in that 

paper, and the values are given in the table below. 

 

 Exposed 

(g=1) 

 

Unexposed 

(g=0) 

 

Asbestos Bodies (on log scale) 

Population mean 
(g)

1 N(
*(1)

1= 8, 
2*(1)

1= 1) N(
*(0)

1= 6, 
2*(0)

1= 1) 
SD Between 

(g)
B1 U(

(1)
BL1=0.01, 

(1)
BU1=3) U(

(0)
BL1=0.01, 

(0)
BU1=3) 

SD Within 
(g)

W1 U(
(1)

WL1=0.1, 
(1)

WU1=3) U(
(0)

WL1=0.1, 
(0)

WU1=3) 
Below-detection probability p

(g)
1 Beta(

(1)
1=1, 

(1)
1=1) Beta(

(0)
1=1, 

(0)
1=1) 

Detection limit   40 
Long Fibers (on log scale) 
Population mean 

(g)
2 N(

*(1)
2= 8, 

2*(1)
2= 1) N(

*(0)
2= 5, 

2*(0)
2= 1) 

SD Between 
(g)

B2 U(
(1)

BL2=0.01, 
(1)

BU2=3) U(
(0)

BL2=0.01, 
(0)

BU2=3) 
SD Within 

(g)
W2 U(

(1)
WL2=0.1, 

(1)
WU2=3) U(

(0)
WL2=0.1, 

(0)
WU2=3) 

Below-detection probability p
(g)

2 Beta(
(1)

2=1, 
(1)

2=1) Beta(
(0)

2=1, 
(0)

2=1) 
Detection limit  70 
Short Fibers (on log scale) 
Population mean 

(g)
3 N(

*(1)
3= 8, 

2*(1)
3= 1) N(

*(0)
3= 6, 

2*(0)
3= 1) 

SD Between 
(g)

B3 U(
(1)

BL3=0.01, 
(1)

BU3=3) U(
(0)

BL3=0.01, 
(0)

BU3=3) 
SD Within 

(g)
W3 U(

(1)
WL3=0.1, 

(1)
WU3=3) U(

(0)
WL3=0.1, 

(0)
WU3=3) 

Below-detection probability p
(g)

3 Beta(
(1)

3=1, 
(1)

3=1) Beta(
(0)

3=1, 
(0)

3=1) 
Detection limit  70 
Other 
Prevalence  Beta(=1, =1) 
 

Table 1.  Asbestos Fibers Exposure Assessment: Prior Distributions Hyperparameters. 

 

 
Start ExposureAssessment by double-clicking the file ExposureAssessment.vbs (saved by 

default in c:\Program Files\Bayesian Software\ExposureAssessment or C:\Documents and 

Settings\user name\My Documents\Bayesian Software\ ExposureAssessment, depending on your 

platform). There should also be a shortcut to ExposureAssessment in your Start menu. 

 
Use the data files AsbestosExposed.csv and AsbestosUnclassified.csv (found in the example\data 

subdirectory of ExposureAssessment) as input files; as the file names indicate, 

AsbestosExposed.csv consists of data from (known) exposed subjects while 

AsbestosUnclassified.csv consists of data from a series of unclassified subjects for which we 

would like to compute the exposure probabilities. 



 

 
 

 

 

 

Both input data files included the 

variables Asbestos Bodies, Long 

Fibers and Short Fibers, which will 

be the analysis variables. Autopsy 

Number was an identity number 

included in the file 

AsbestosExposed.csv; click it from 

the list and then click the ID 

Variable button so that it will be 

used as the subject label in the final 

output files. 

 
 

 

 



 

Then select all 

variables to include in 

the analysis from the 

list box and click the 

X Variable button. 

 
 

 

 

 

 
Select the Log Scale for each 

analysis variable, as the log 

scale happened to have been 

used for these data. 

 

 

 
 



Select individual means for each 

variable as well. 

  
Click the Next button. 

 
 

 

 
Since little prior information was 

available on the prevalence of the 

disease in this particular sample, 

indicate a uniform prior distribution 

(=1). You may want to enter a 

label for this non informative prior if 

you feel it is going to be used again 

in the future. 

 

Click the Next button. 

 

 
 

 

 

 

 

 

 

 

 

 
 



In the next form (below), enter the hyperparameter values for the first analysis variable 

(highlighted on the right-hand side of the form, log(asbestos bodies) in the present case). 

Enter a label in the Test label text box to make the use of the same prior description only one-

click away the next time you run ExposureAssessment. 

 

 

 
 

 

Click the Next test description button or the bold label log(long fibers) at the right of the form 

to proceed with the entry of  Long fibers prior distribution parameters. 

 



 
 

 

 

Since we have run ExposureAssessment with both Long fibers and Short fibers before running 

the present example and have saved the prior parameters used by entering a label in the Test 

label text box, we can take advantage of the shortcuts to priors descriptions listed in bottom form 

list boxes (above): when clicking the appropriate prior label (Lg fibers, above), hyperparameters 

text boxes will be automatically filled with the values entered when that prior label was last used. 

 

For the time being, however, you have never entered a prior for Long fibers: thus you will need 

to type in the values shown in figure above (also found in Table 1). 

 

Proceed the same way for Short Fibers prior description and click the Next button to proceed to 

initial value entry. The initial values for each unknown parameter in this example are listed in 

Table 2. 

 

 

 

 



 Exposed 

(g=1) 
Unexposed 

(g=0) 

Asbestos Bodies (on log scale) 

Population mean 
(g)

1 8 6 

SD Between 
(g)

B1 1.5 1 

SD Within 
(g)

W1 0.8 0.6 

Below-detection probability p
(g)

1 0.05 0.5 

Long Fibers (on log scale) 
Population mean 

(g)
2 8 5 

SD Between 
(g)

B2 1.5 1 

SD Within 
(g)

W2 0.8 0.6 

Below-detection probability p
(g)

2 0.05 0.5 

Short Fibers (on log scale) 
Population mean 

(g)
3 8 6 

SD Between 
(g)

B3 1.5 1 

SD Within 
(g)

W3 0.8 0.6 

Below-detection probability p
(g)

3 0.05 0.3 

Other 
Prevalence  0.5 
 

Table 2.  Asbestos Fibers Exposure Assessment: Parameters Initial Values. 

 

 

 



Enter initial values (see Table 2) for each unknown parameter for each analysis variable as well 

as for Prevalence, in the lower-right corner of the form. Click the Next button when done. 

 

 

 
 
 

In the above form, almost every bit of information entered so far can be checked and modified if 

necessary.  Hovering over a modifiable unit of information (such as prior distribution 

hyperparameters or initial values) with the mouse will turn the pointer into a hand: clicking on 

that item will allow you to revisit the values entered in the corresponding original form: when 

necessary, modify the incorrect entry in the form and click Back to Problem Reviewal button.  

 

When every piece of information has been verified as correct and you are ready to proceed to 

parameters estimation, click the Next button. 

 

A final form will allow you to select the Main Output File location (an .html file). Note that 

secondary output files will also produced (click the More button for more information). If any of 

the Main or Secondary output files will overwrite an existing file, you will be prompted with a 

warning message to this effect. 

 

 



 
 

 
On the same form (hidden here by the Select main output file name form), the user can select the 

number of subjects to be plotted on each page in reporting Individual Exposure Probabilities 

 
Upon completion, ExposureAssessment will pop up a final form with contains links allowing 

you to view all main and secondary output files. The output files produced are listed in Table 3. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Main output files 

<output file name>.html Main ExposureAssessment output file. 

 

Contains: 

 

•  Individual Exposure Probabilities (median and 95% 

credible intervals); 

• Posterior distributions (medians and 95%) for each unknown 

parameter; 

• Number of burn-in and monitored iterations; 

• Prior distributions used; 

• Initial values used. 

 

Also contains links to Secondary output files. 

<output file name>.odc WinBUGS odc output file (a complete binary file that can be 

opened in WinBUGS). 

 

This file is produced by WinBUGS, not by 

ExposureAssessment directly. 

Secondary output files 

<output file name>-data.html Html data presentation. 

 

Always good to have a look at that file to make sure the right 

data were analyzed. 

<output file name>.txt WinBUGS text output file. 

 

Also produced by WinBUGS; does not contain information 

not already contained in the .odc output file, but is somewhat 

easier to consult, if necessary (although the Main 

ExposureAssessment .html output file should already contain 

everything you need to know from this file). 

<output file name>.pdf Plot of Individual Exposure Probabilities with 95% credible 

intervals. 

Table 3. ExposureAssessment output files. 

 

 

Of course, these output files will not be deleted when you close the final form; you will still be 

able to view these files by browsing to their location with the Windows Explorer. 

 

 

 

 

 



The top part of the main 

html output file reports 

statistics on the Individual 

Exposure Probabilities. 

Subjects are sorted by 

descending median. 

 

In the excerpt presented 

here, many subjects were 

almost certainly exposed, 

with a median posterior 

probability equal to 1. The 

first bunch even have a 95% 

Credible Interval lower limit 

equal to 1, which translates 

a high certainty about the 

diagnosis. 

 

Other subjects, such as 

Unclassified-42, 32, 12, and 

15 also had a high 

Estimated probability 

median: however, their 95% 

Credible Interval do not 

exclude very low exposure 

probabilities.  

 

Following subjects 

(Unclassified-24, 33, 21,13 

and 77) present a very low 

Estimated probability 

median (virtually 0) but also 

have a wide 95% Credible 

Interval. 

 

The remaining subjects 

were almost surely 

unexposed, with Exposure 

Probabilities concentrated 

around 0. 

 



After a printout of the WinBUGS model run, the next part of the main output file summarizes the 

posterior distribution for each exposure variable. 

 

In this example, the Below-Detection Probabilities (pj
(g)

, j=1,2,3, g=1,2, see Section 2) show 

much higher probabilities of undetectable values in the Unexposed Population than in the 

Exposed population, which also corresponds to intuition. 

 

Posterior means are higher in the Exposed population than in the Unexposed population for each 

exposure variable by a fair margin (from 2.5 to 3 points). The non-crossing 95% credible 

intervals for the means suggets that the data allowed a clear distinction between mean Exposed 

and mean Unexposed parameters. 

 

 
 

The rightmost part of the Posterior distributions (below) summarizes the posterior distributions 

for both Between-subjects SD (
(g)

Bj, j=1,2,3, g=0,1, Section 2) and Within-subjects SD (
(g)

Wj, 

j=1,2,3, g=0,1). Between-subjects variation is somewhat larger in the Exposed population than in 

the Unexposed population for each exposure variable, as one would expect. Within-subjects is 

not negligeable, as can be seen from reported posterior medians and/or 95% credible intervals. 

 

 
 

See original article for full details. 



6.  Monte Carlo Markov Chain (MCMC) can be dangerous 

 
This section aims to introduce the novice to basic MCMC ideas and to the potential traps to 

avoid in order to obtain valid results when using MCMC in general, and ExposureAssessment 

in particular.  This is a very brief overview.  Please consult a textbook such as Markov chain 

Monte Carlo in practice, Walter R. Gilks, Sylvia Richardson, and David. J. Spiegelhalter, 

Chapman and Hall, 1995.               
 
Let  = (1, 2, …, p) be the complete set of unknown parameters in a problem; in the problem 

addressed by ExposureAssessment, these parameters would be the different scales normal 

means, SD Between, SD Within and Below-Detection probabilities in both Exposed and 

Unexposed populations (as well as a set of latent disease status for each unclassified subject). 

 

A Gibbs sampler algorithm proceeds as follows: given a set of initial values for each parameter, 

it samples a value for 1 from its conditional distribution; it samples a value for 1 that seems 

likely given the data AND the other parameters, temporarily considered as fixed. It then proceeds 

with second parameter (2) and samples a value from its conditional distribution given the data 

and other parameters (1, 3, 4, …, p), and so on. Once each of the p parameters were sampled 

(from their respective conditional distributions), it starts again with 1 and repeats the process for 

a second iteration. 

 

In the long run, the values sampled for a given parameter represent a sample from its marginal 

posterior distribution, which is the distribution of interest. 

 

The values obtained at each iteration for a same parameter can be plotted in a time-series-like 

plot: on the y-axis we plot the value taken by the parameter at iteration i vs the iteration number 

on the x-axis, for each iteration, leading to a plot that is called the trace of that parameter. 

 

Once the results from a Monte Carlo Markov Chain model are obtained, one should always 

remember to look at the different parameters traces and posterior distributions in order to assess 

the behaviour of the algorithm and to validate the appropriateness of the prior distributions and 

initial values used. Of course, these prior distributions and initial values should be carefully 

chosen in the first place to make sense clinically, but even with this preventive careful thinking, 

problems at the simulation step of project are not impossible, hence the importance of the 

following additional post-simulation checks. 

 

Ideally, the possible range of values (or the domain) of a parameter should be visited equally 

likely at any point in time, that is, the sampled values should not be restricted to a confined area 

for some time: that would depict an auto-correlation between successive estimates for that 

parameter. Even though it is sometimes (very) difficult to avoid in complex models, auto-

correlation should be avoided as much as possible. 

 

 

 

 

 



The trace below illustrates the ideal scenario: 

 

 
 

Indeed, the algorithm seems to visit the range of likely values (from 0.8 to 1.0, roughly, in this 

example) for that variable (or node, as called in WinBUGS) in a very reasonable way, that is, 

high or low values seem to be visited equally likely at any point in the random walk. 

 

The next trace shows an example where that goal is not really reached (ignore the orange vertical 

bars for the moment). 

 

  
 

Indeed, after visiting the likely larger possible values, e.g., shortly after iteration 8000 (see the 

peak to the right of iteration 8000), it looks like the random walk leads to generally decreasing 

values, reaches a bottom limit, and then goes up for another while. This is obvious auto-

correlation and in an ideal world should be avoided. However, in a package where you do not 

have control over the way the MCMC algorithm is run, you do not have much choice but to 

accept it. In addition, the most important is not really to avoid that auto-correlation phenomenon, 

but to take it into account when running your final simulation to ensure a sufficiently large 

number of cycles.  A plot such as the one above indicates that there may be a problem, and 

running a larger number of iterations is advised.  Even this is not sufficient to guarantee 

convergence, and at this point, the novice may wish to consult with a statistician experienced 

with MCMC convergence issues. 

 

A cycle is a series of iterations where the algorithm seems to have visited the range of possible 

values for a variable. The cycles in the second part of the random walk traced above are roughly 

separated by vertical bars on the second half of the trace. In that part, there are roughly 6 cycles, 

that is, the algorithm has gone over the possible values at least 6 times.  



The final number of iterations chosen in a WinBUGS run should ensure that a large number 

(hundreds or, even better, thousands) of cycles were performed for each node. 

 

The number of burn-in iterations  that is, iterations that are dropped from inclusion when 

calculating the final inferences   is chosen to make sure that the algorithm has converged when 

monitoring of sampled values starts. 

 

The traces below show the values taken for three nodes from the very first iteration. In each of 

them, it is clear that the first several hundred values taken by each of them differ from the 

rightmost more stable values. The trace plot for Node1 shows that the first 300 or so iterations 

are not in the same ballpark as the remainder, while the first 500 iterations for Node2 seem 

different from the rest. For Node3, it appears that a larger number of initial values is different 

from the rest, at least 1000 iterations, maybe 2000 iterations should be dropped. Consequently, in 

that problem, on should rerun the program with a burn-in of at least 2000 iterations.  

 

 

 

 
 

 



In any case, given the complexity of the problem addressed by ExposureAssessment, you 

cannot run the program with less than 4000 burn-in iterations. If the size of the data analyzed is 

reasonable and your computer fast enough, burn-in iterations should be cheap (in terms of 

running time): in that case, do not hesitate to burn-in even more iterations (perhaps 5, 10 or even 

20 thousand). 

 

In the problem addressed by ExposureAssessment, our experience leads us to believe that an 

informed choice of prior distributions and initial values usually leads to a good-mixing MCMC 

run, but this is never guaranteed for any specific data set, so that care is always needed. 

 

Unless your prior distributions were based on very solid and uncontroversial scientific evidence, 

it is good practice to choose prior distributions that will let the data speak for themselves, that is, 

prior distributions that contain much less information about the prior parameter values than the 

information in the data themselves.  For example, in the problem addressed by 

ExposureAssessment, the uniform distributions used on both Between and Within SDs should 

not be too narrow. In the example illustrated below, a uniform prior U(0, 1.2) was used on Short 

Fibers’ Between SD in exposed group: looking at its posterior density (node 

Short.Fibers.sd.between[2]), it is easy to realize that it is leaning towards its higher allowed 

values and that larger values may have been appreciated by the sampling algorithm, had larger 

values been allowed. Indeed, the posterior density falls down to 0 at its upper limit quite 

dramatically, showing a possibly too narrow prior being used. 

 

 

 
 

 

The lower limit used on the uniform prior distributions for the SD parameters may also be 

problematic, although the problem is less likely to appear when many variables are used in the 

model. In the traces below, excerpted form an output where a uniform U(0, 2) prior density was 

used for the Short Fibers Between SD parameter in the unexposed group, it seems like the 

sampling algorithm sometimes becomes stuck at very small values for the SD parameter, roughly 

between iterations 7000 to 7800. 



 
This is clearly an undesired sampling phenomenon, for which a natural work-around may be to 

use a somewhat increased lower limit in the uniform prior for the problematic SD term, for 

example, something like U(0.1, 2). A very small SD parameter is not likely in any case, as this 

implies that there is very little between-subject variability, which we know, in this particular 

problem, is highly implausible. 

 

 

 

6.1 Sensitivity analysis 
 

Finally, a sensitivity analysis should also be performed, that is, ExposureAssessment should be 

run a few times, each time with different (but still meaningful) prior distributions and/or initial 

values.  The general idea is to check the changes in posterior inferences across a reasonable 

range of prior distributions. If the conclusions derived from each run are similar, then the 

conclusions can be considered as robust.  If not, then the choice of prior distributions and the 

impact of prior choice on the conclusions needs to be more carefully assessed, and/or 

conclusions need to be drawn with some questions as to their robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



7.0 Avoiding Trap Errors on Windows 7 and Windows Vista platforms 

 

 
If you are working on a Windows 7 

or Windows Vista platform and have 

run WinBUGS before, you may have 

already run into the cryptic Trap 

#060 error message illustrated to the 

right. This is due to restricted write 

permissions in c:\Program Files, 

where you may have installed 

WinBUGS. 

 

WinBUGS must be installed in a 

directory where you have write 

permissions (e.g. 

C:\Users\user name \Documents) for 

ExposureAssessment to run 

smoothly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.0 Change log 
 

Version 1.1 (July 2011) 

Earlier versions used Excel input data files but did not work with Excel 2010 files. Hence the 

change to easier-to-read (programmatically, that is) Comma-Separated Values (.csv) input files. 

 

Versions 1.2 and 1.2.1 (December 2011) 

The previous default application folder (c:\Program Files) caused write permission problems for 

some Windows 7 and Vista users. Default application folder now changed to C:\Users\user 

name\Documents. 

 

Versions 1.3 and 1.3.1 (February 2012)  

Minor technical problem solved from previous version. 

 

Versions 1.4 and 1.4.1 (April 2012) 

We suggest a solution to prevent Trap errors for Windows 7 and Windows Vista. 

 

Version 1.5 (July 2012) 

Minor update: cmd.exe now closes automatically when program terminates. 

 

Version 1.6 (August 2012) 

The path to the sub-directory where temporary files are stored was added to the Help menu of the 

initial form.  While you can usually ignore these files, they can sometimes be helpful in 

troubleshooting when there are problems. 

 

Version 1.7 (November 2012) 

ExposureAssessment must limit the length of temporary paths, since it uses WinBUGS scripts, 

which limits file paths to a maximum of 119 characters.  Longer names will cause WinBUGS to 

freeze. Therefore, if the default temp directory path is too long, ExposureAssessment will ask 

the user to enter a path with a shorter name. 

 

Version 1.8 (January 2015) 

Minor update. 

 

Version 1.8.1 (April 2015) 

Minor bug fix update: a potential installation problem was fixed. 

 

Version 1.9 (January 2016) 

Minor update. 

 

Version 1.10 (April 2016) 

Technical problem fixed. 

 

 

 

 



Version 2.0 (May 2016) 

Variables with group level means (rather than individual level means only) are now allowed.  

The WinBUGS model used is now included in the main html output file. 

 

Version 2.1 (September 2017) 

ExposureAssessment now works on Windows 8 & 10. Windows 7 users do not need to reinstall 

or upgrade. 

 

 

 

Questions?  Comments?  Please send email to:  lawrence.joseph@mcgill.ca 

________________________________________________________________ 

Other Bayesian software packages are available at 

http://www.medicine.mcgill.ca/epidemiology/Joseph 


