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Objective To develop a Bayesian hierarchical model for human onchocerciasis with which to explore the factors that influence
prevalence of microfilariae in the Amazonian focus of onchocerciasis and predict the probability of any community being at least
mesoendemic (>20% prevalence of microfilariae), and thus in need of priority ivermectin treatment.
Methods Models were developed with data from 732 individuals aged515 years who lived in 29 Yanomami communities along four
rivers of the south Venezuelan Orinoco basin. The models’ abilities to predict prevalences of microfilariae in communities were
compared. The deviance information criterion, Bayesian P-values, and residual values were used to select the best model with an
approximate cross-validation procedure.
Findings A three-level model that acknowledged clustering of infection within communities performed best, with host age and sex
included at the individual level, a river-dependent altitude effect at the community level, and additional clustering of communities along
rivers. This model correctly classified 25/29 (86%) villages with respect to their need for priority ivermectin treatment.
Conclusion Bayesian methods are a flexible and useful approach for public health research and control planning. Our model
acknowledges the clustering of infection within communities, allows investigation of links between individual- or community-specific
characteristics and infection, incorporates additional uncertainty due to missing covariate data, and informs policy decisions by
predicting the probability that a new community is at least mesoendemic.
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Facteur risque; Théorème Bayes; Modèle statistique; Venezuela (source: MeSH, INSERM).

Palabras clave Oncocercosis/epidemiologı́a/quimioterapia; Onchocerca volvulus;Ivermectina/uso terapéutico; Prevalencia; Factores
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Introduction
Data produced from public health research often are organized
in a hierarchical structure, with clustering within units. For
example, individuals ‘‘cluster’’ in the same community, and
communities cluster within regions. Individuals who belong to
the same ‘‘unit’’ may share common genetic, behavioural, or
social risk factors of disease. They may also have similar
exposures to environmental factors or, in the case of
communicable diseases, infectious agents. The health out-
comes of two individuals within the same unit, therefore, will
correlate more highly than those of two individuals from
different units. This correlation structure must be accounted

for irrespective of whether data on chronic diseases or on
communicable diseases are being analysed.

Hierarchical or random effect models acknowledge the
nested form of such data and allow for appropriate modelling
of the correlation structure (1–4). The advantages of
hierarchical models are not exclusive to the Bayesian frame-
work; nevertheless, Bayesian hierarchical models are unique in
that they provide a single coherent framework that allows the
incorporation of multiple sources of variability (including
variability that arises frommissing outcomes or exposures) and
subsequent quantification of within- and between-unit
variability in outcome through the investigation of potential
risk factors at each ‘‘level’’ of the model. The appropriate
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pooling of information across units means that hierarchical
Bayesian models also overcome problems associated with
small sample sizes and thus producemore reliable estimates (or
predictions) of individual- and unit-specific parameters.

A fully Bayesian approach to inference requires the
specification of a full probability (likelihood) model for the
data, together with a prior distribution for all the unknown
parameters. Once data are available, inference is made on the
basis of the posterior distribution. The posterior represents
what is known currently, including the prior information and
that contained in the data. By Bayes’ theorem, this joint
posterior distribution is proportional to the product of the
likelihood function and the prior distribution.

In practice, interest lies typically with the marginal
posterior distributions of a subset of parameters. In realistically
complex applications, evaluation of these marginal posterior
distributions requires high-dimensional integration and rarely
is possible analytically. One powerful technique (and the
approach taken in this paper) is the implementation of a
Markov chain Monte Carlo algorithm, such as the Gibbs
sampler, to obtain samples from themarginal posteriors. These
sampled values are then used to describe the complete
distributions for the parameters of interest or to provide
summaries, such as point and interval estimates. It also is
possible to estimate the posterior distribution of any arbitrary
function of the parameters; this is particularly useful when
estimating quantities needed to inform decision making. For
example, several WHO guidelines for the control of parasitic
infections use threshold prevalence values to guide priority
interventions (5–6). Often, definitive diagnosis at an individual
level is difficult to acquire, in which case, interest lies with the
probability that, conditional on easily observable character-
istics, the (unknown) prevalence of infection in a given
community is above a pre-defined threshold.

This study aimed to show the use of Bayesianmethods in
the analysis of the type of clustered data often encountered in
public health research. In particular, we developed a Bayesian
hierarchical model for human onchocerciasis to explore a
variety of factors thought to influence the prevalence of
infection. Onchocerciasis is caused by the parasitic nematode
Onchocerca volvulus and is transmitted from person to person by
the bite of river-breeding blackfly vectors of the genus Simulium
(7). Onchocerciasis is the second most common worldwide
cause of infectious blindness, and it also causes severe and
incapacitating skin disease. More than 90% of the people
afflicted live in Africa, but smaller foci are found in Latin
America (7). In the latter, the Amazonian focus between
Venezuela and Brazil is one of the most remote and severe (8–
12). In addition to investigating risk factors for onchocerciasis,
therefore, we estimated the probability of any community
being ‘‘at least mesoendemic’’ and thus in need of priority
ivermectin treatment (13), on the basis of information given by
predictive variables that do not require invasive parasitological
procedures. Such a method would provide an advantage over
those that rely solely on skin biopsies, as well as providing
valuable information for the setting of treatment priorities in
areas of difficult access. A given community is at least
mesoendemic when the infection prevalence surpasses 20% in
the Americas (14) and 35% in Africa (15). We used the former
criterion for the Amazonian focus and a method that allowed
us to acknowledge the clustering of infection within commu-
nities, investigate links between individual- or community-

specific characteristics and infection, incorporate additional
uncertainty due to missing covariate data, and inform policy
decisions by predicting the probability that a new community is
at least mesoendemic.

Data and methods
Study area
From April 1995 to August 1999, 46 Yanomami communities
were visited as part of an ongoing onchocerciasis epidemio-
logical survey and control programme coordinated by Centro
Amazónico para Investigación y Control de Enfermedades
Tropicales. We included 29 of these communities in our study
because they had not been treated with ivermectin; were
situated near to or along the rivers Ocamo, Orinoco, Padamo,
and Mavaca; and were located less than 250 m above sea level
(Fig. 1). Above this elevation, altitude has been shown to have
no impact on the prevalence of microfilariae and all
communities are considered to be hyperendemic — that is,
to have a prevalence 560% (11, 15). From the 29 selected
villages, 732 Yanomami individuals aged 515 years were
examined for the presence of O. volvulus microfilariae in the
skin; this age group was chosen because it had been identified
as the indicator age group in the Amazonian focus (12).
Investigators reached the communities by first flying to the
closest rural medical dispensary and then by travelling on foot
or by boat, or both. Twelve villages were situated along the
Ocamo river, eight along the Orinoco, four along the Padamo,
and five along the Mavaca.

Measurement of microfilarial prevalence
and ethical issues
Two iliac skin snips from each participating individual were
taken with a disinfected Holth-type corneoscleral punch; after
24 hours’ incubation, emerging microfilariae were confirmed
morphologically as O. volvulus (9, 10). The outcome was
dichotomized as positive or negative for microfilariae.
Informed consent for the parasitological evaluation was
obtained from each individual. All eligible members of the
village were treated after the parasitological examination,
irrespective of their infectious status.

Measurement of factors potentially associated
with prevalence of microfilariae
Potential risk factors for infection with microfilariae were
measured at both individual and community levels. At the
individual level, age and sex were recorded. At the community
level, altitude, accessibility, and presence of a missionary post
were recorded. Other variables, such as level of clothing and
type of housing, correlated almost exactly with the presence of
amission and so were not considered further (data not shown).
Altitude was measured in metres above sea level, as described
previously (11). Accessibility was entered in the model as a
categorical variable: ‘‘near’’ (<5 hours to reach the commu-
nity), ‘‘intermediate’’ (5–24 hours), and ‘‘remote’’ (>24 hours),
where the number of hours to reach the community started
from the nearest rural medical dispensary (Fig. 1).

We hypothesized that the prevalence of onchocerciasis is
influenced by twomain pathways in addition to individual-level
variables. First, altitude may affect infection status through its
influence upon entomological determinants (11). Second, the
presence of a mission may influence behavioural patterns,
which in turn influence exposure to vectors.
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Statistical analysis
Descriptive statistics
Summary statistics for all variables — including means,

medians, standard deviations, and proportions — were

generated first, so we could perform preliminary investigations

of the association between each variable and the outcome of

interest (microfilarial status) and of the potential for

confounding between variables. Subsequent analyses used

age as a categorical variable (15–19 years, 20–39 years, and

540 years), because its effect was not linear on a logit scale.

Bayesian hierarchical model (16, 17 )
At the first level, we assumed a logistic regression model, in

which the logit probability of infection of each individual was

modelled as an additive function of possible individual-level risk

factors (for example, age and sex) and of a random community-

specific intercept. The latter reflected the underlying prevalence

level (on a logit scale) in each community after individual-level

characteristics were adjusted for. A linear regression model was

then considered at the second level, and the community effects

weremodelled as a function of community-level risk factors (e.g.

altitude and mission). This model was later extended to a third

‘‘river’’ level by introducing a random river-specific intercept at

the second level (see Appendix A, web version only, available at:

http://www.who.int/bulletin). The third model acknowledged

the presence of unmeasured river-specific effects that might

influence an individual’s probability of infection and so induce

correlation in prevalence among communities along the banks

of one river. This consideration was motivated by the

observation in the two-level model (and even after altitude

was adjusted for) that the posterior estimates of the community-

specific intercepts were higher in communities along theOcamo

andOrinoco rivers than in those along the Padamo andMavaca.

All regression coefficients and associated 95% Bayesian
credible intervals (95% BCI) were computed via the Gibbs
sampler, which was implemented using WinBUGS software
(18). The exponential of these coefficients was taken to obtain
estimates of prevalence odds ratios and their 95% BCI. Risk
factors were retained in the model if the associated 95% BCI
excluded one or was borderline.

The results were based on two runs of 10 000 iterations

each, after a burn-in of 1000 iterations. Convergence was

assessed using the Gelman and Rubin statistic (19, 20).

Missing data
Covariate data were imputed for two individuals with missing

age and for a community for which no altitude measurement

was available. The missing ages were imputed at each iteration

of the sampler in relative proportion to the age distribution in

the remaining population. To reflect a priori knowledge, the

missing altitude was imputed from a uniform distribution with

range 165–200m above sea level. The posterior estimates of all

parameters in this model fully incorporated the additional

uncertainty in these imputed data.

Model selection
After we identified the important predictors of infection, we
used the deviance information criterion to compare the fit of: a
naive flat model that assumed independence of disease status
across all individuals after the already identified risk factors were
adjusted for; a two-level hierarchical model that acknowledged
clustering of infection within communities; and a three-level
model that acknowledged additional clustering of communities
along rivers. The deviance information criterion is a measure of
model ‘‘support’’ that aims to balance the fit (deviance) and
complexity (effective number of parameters) of a model (21). In
this way, it can be viewed as a generalization of the Akaike
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information criterion (22). Lower values of the deviance
information criterion indicate higher model support, and a
difference 54 was used to discriminate between models. This
threshold, which was proposed for Akaike information criterion
(23), also was regarded as appropriate for deviance information
criterion (21).

We then assessed the candidate models on the basis of
their ability to predict the observed community-specific
prevalences of microfilariae. Assessment with a Bayesian
predictive model such as this is in the spirit of classical
hypothesis testing (24, 25), in that each candidatemodel can be
criticized without explicit consideration of an alternative. An
ideal approach involves cross-validation, which contrasts the
observed prevalence in each community with its correspond-
ing predictive distribution, given the data from all remaining
communities. Because this can quickly become computation-
ally prohibitive, we adopted an approximation that allowed us
to estimate the cross-validatory predicted prevalences in all of
our communities in a single fit of the model (26, 27).

The comparison between observed and predicted
prevalence is summarized via the tail area probability, or the
Bayesian P-value: P(predicted5observed) (24, 25). A prob-
ability close to 0% or to 100% would mean that prediction is
nearly always lower or higher, respectively, than that observed,
thus casting doubt on the model. In our context, it is less
acceptable not to treat a meso- or hyperendemic community
than to treat a hypoendemic community, so particular concerns
would surround a model that led to estimates of P close to 0%.

In addition to the deviance information criterion and

P(predicted5observed) values, we calculated posterior esti-

mates of the residuals (predicted – observed) and their 95%

BCI, as a third criterion of ‘‘goodness of fit’’. Finally, for the

model that seemed to be the most accurate according to these

three criteria, we calculated the probability that each commu-

nity was at least mesoendemic (P(predicted prevalence of

microfilariae >20%)).

Results
Table 1 gives the characteristics of the study population. The
overall observed prevalence of microfilariae was 32.8% (240/
732), although the variation between communities was large,
ranging from 0% to 100% (Fig. 2).

Accessibility to the community was associated strongly

and negatively with the presence of a mission. A decision was

made not to include these variables in the same model,

therefore, as this introduced near-multicollinearity (data not

shown). The inclusion of the presence of a mission or of

accessibility did not provide significant improvements in fit, as

defined above. Host age and village altitude thus were

confirmed as important predictors of individual infection

status. The variable ‘‘sex’’ was kept in all models to control for

its possible confounding effect. The effect of altitude on an

individual’s infection status was modified clearly according to

which river their community was located along (Fig. 2). The

coefficient for altitude was assumed, therefore, to be river-

specific. The small numbers of communities along each river

meant that we achieved greater precision in our estimates of

river-specific coefficients by assuming that they are exchange-

able a priori.
The values of the deviance information criteria for the

three models tested were highly supportive of the two models

that acknowledged clustering of infection within communities.
The deviance information criterion for model 1 was 669, for
model 2 was 588, and for model 3 was 587 — a difference of
more than 80 was seen between the flat and hierarchical
models.

Fig. 3 shows the predicted prevalences of microfilariae
and their 95% BCIs, along with observed prevalences. The
predictions from model 3 were markedly better than those
from model 2. Table 2 gives Bayesian P-values and residuals.
Model predictions seem to be reasonably good for all
communities except for community 3 (Aweitheri), which is
at a relatively low altitude (162 m) but has a very high recorded
prevalence of infection (86%).

Model 3 showed that prevalence odds ratios increased
with age: prevalence odds ratios were 2.44 (95% BCI 1.29–
4.17) times higher for 20–39 year olds than for individuals aged
15–19 (reference group) and 4.18 (2.00–7.76) higher for those
aged 540 years. The prevalence odds ratio also was slightly
higher for men (1.40, 0.88–2.14) than women (reference
group). The effect of altitude varied according to which river
the community was situated along. For communities situated
along theOcamo andOrinoco rivers, the prevalence odds ratio
increased as the altitude measured in metres above sea level
increased: 1.03 (1.02–1.04) vs 1.04 (1.02–1.05), respectively. In
contrast, altitude had a negligible effect on the prevalence odds
ratio for communities along the Padamo river (1.01, 0.96–
1.06), and even slightly reduced the prevalence odds ratio for
communities along the Mavaca river (0.99, 0.97–1.00). These
prevalence odds ratios indicate the increase in the prevalence
odds for a community only onemetre higher than its reference.

Table 1. Characteristics of and prevalence of infection
with Onchocerca volvulus microfilariae in 732 people aged
515 years from 29 Yanomami communities in the
Amazonian focus of onchocerciasis, southern Venezuela

Factor Averagea No.b

Individual level
Prevalence of microfilariae NAc 240 (32.8)
Age (years)d

15–19 NA 138 (18.6)
20–39 NA 391 (52.7)
540 NA 201 (27.1)
Sex ratio (male:female) NA 384:348 (52.5:47.5)

Community level
Altitude (m above sea level)e 150.7 (67.5) NA
Ocamo river 163.8 (70.8) NA
Orinoco riverf 108.1 (63.0) NA
Padamo river 171.8 (23.2) NA
Mavaca river 162.2 (78.0) NA

Accessibilityg

Near NA 12 (41.4)
Intermediate NA 12 (41.4)
Remote NA 5 (17.2)
Presence of a mission NA 10 (34.5)

a Values in parentheses are standard deviations.
b Values in parentheses are percentages.
c NA = not applicable.
d Two values missing for age.
e One value missing for altitude, but known to be between 165 and 200 m.
f One value missing for the Orinoco river.
g Near, <5 hours to reach community from nearest rural medical dispensary;

intermediate, 5–24 hours; and remote, >24 hours.
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In model 3, the residual variability in (adjusted)

prevalence between communities on the logit scale was

decomposed into the variability between communities situated

along the same river and the variability between rivers. After

age, sex, and the differential effect of altitude on probability of

infection were adjusted for, approximately 77% of the

between-community variability was attributed to differences

between rivers. This information is crucial to the reliable

prediction of community-specific prevalence (Fig. 3).

To demonstrate the usefulness of model 3 in identifying

communities that warrant mass ivermectin treatment, the

approximate cross-validatory probability that the model would

predict a prevalence of microfilariae >20% was assessed for

each community. Twenty-five of the 29 communities were

classified correctly (Fig. 4). One of the incorrectly classified

communities (Purima) had an observed prevalence of 19.4%,

but its probability of being classified as at least mesoendemic

was 65%. Toothothopiwei had an observed prevalence of

39%, but the probability that we classified this as at least

mesoendemic was 45%, marginally below our decision

threshold. Haruri is on the banks of the Padamo river, yet

unlike the other three communities alongside this river, its

prevalence of onchocerciasis was mesoendemic (observed

prevalence, 29%). Finally, Yepropë had a very low recorded

prevalence (only 8%) compared with other communities lining

the Ocamo at the same altitude.

Discussion
This paper shows the broad applications and usefulness of
Bayesian random-effects models in dealing with covariates
measured at various levels, clustering effects, andmissing data.
Another advantage of this approach is its ability to obtain
estimates of arbitrary functions of model parameters, which

automatically and coherently take into account all sources of
uncertainty. We were able to predict correctly the outcome
variable of interest for control planning purposes (that is, the
probability that a new community has a prevalence larger than a
predetermined threshold) in 25 out of 29 Yanomami
communities of the Amazonian focus of onchocerciasis.

In this focus, it had already been established that

communities situated along theOcamo andOrinoco rivers and

higher than 200 m above sea level were hyperendemic

(prevalence of microfilariae 560%) (12). Below this altitude,

however, prevalence had been shown to range from hypoen-

demic to hyperendemic, so that other criteria on which a

decision on whether a community should receive priority

treatment could bemade needed to be identified. We extended

the analysis to two additional river systems (Padamo and

Mavaca) and to other community-level variables.

The study population represented approximately 40% of

the Yanomami communities located lower than 250 m above

sea level in the Venezuelan Amazonian focus of onchocercia-

sis; this in turn represented 30% of the total communities (28).

The study communities varied widely in their degree of contact

with mainstream culture because their selection was not biased

in favour of the most accessible communities, and this allowed

us to explore their contribution to the predictive model. In

addition to the four rivers investigated, other river systems in

the region (for example, Siapa) hardly have been studied.

Ideally, the same exercise should be run for a sample of

communities located on all rivers.
Our results show that most variability in prevalence is

attributable to differences between rivers, but that important
between-community variations remained, even within river
systems. At the community level, and for a chronic infection
such as onchocerciasis that has average latent and duration
periods of one year and >10 years, respectively, the patterns of
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micro-movements (every 2–3 years) andmacro-movements of

Yanomami communities (29) may contribute towards the

variation of prevalence of microfilariae among villages. Over

the last 200 years, the Yanomami people have tended to

migrate from the higher altitudes of the Parima mountains to

lower riverine locations (29). Some communities now found at

similar altitudes may have had different geographical origins

within the region, and geographical proximity between villages

is not necessarily a good reflection of their contact and

exposure patterns.

Another factor that could explain the large variation in

prevalence of microfilariae among communities may be the
slope of the terrain. We showed that within the Orinoco and

Ocamo river systems, prevalence of microfilariae increased

with altitude. Along these two rivers, altitudinal gradient was a

strong determinant of the presence, species composition, and
abundance of blackfly vectors, which also differed in vectorial

competence and capacity (10, 30, 31). Altitude itself, therefore,

had a strong biological effect on infection prevalence. In

contrast, the effect of altitude was negligible for communities
located along the Padamo andMavaca rivers. The rate at which

altitude varies with distance is very different between these

rivers, and slope (rather than just altitude) could influence the

distribution of sites suitable for the immature stages of the
different vector species.

At the river level, micro-movements of communities
usually take place along the same river, and some river-specific
variables might explain why prevalence of microfilariae is
higher along the Ocamo and Orinoco rivers. The variability
among rivers could be due to ecological factors that in turn
determine the availability and productivity of the breeding sites
of the different vector species, as well as the abundance and
age-structure of the biting population (32). As an example,
previous work conducted between 1995 and 1999 showed
that, although the three vector species Simulium guianense,
S. incrustatum, and S. oyapockense were present in communities
along the Ocamo river, S. incrustatum consistently was absent
along the Orinoco (32). Preliminary entomological surveys
along the Padamo river showed that S. oyapockense (a less
successful vector) was present but that S. guianense (the species
with highest vector competence) was absent. Other, as yet
unrecognized, characteristics of the rivers— or characteristics
common to communities situated along the same rivers —
may be important for the transmission of onchocerciasis.

Table 2. Observed, predicted, and residual prevalences
of microfilariae in 29 communities in the Amazonian
onchocerciasis focus of southern Venezuela and probability
that predicted values 5 observed values

Community Prevalence

Observed Predicteda, b Residualb P-valuec

1 Ocamo 9.1 9 (0–45) 0 (–9–41) 43.3
2 Maweti 40.7 26 (0–78) –14 (–41–37) 26.8
3 Aweitheri 85.7 43 (0–92) –43 (–86–37) 4.2
4 Pashopeka 86.8 84 (34–100) –3 (–55–13) 43.7
5 Toothothopiwei 41.7 17 (0–65) –22 (–39–26) 15.3

6 Arata 50.0 79 (25–100) 25 (–29–50) 86.7
7 Potomawei 62.5 86 (31–100 19 (–38–38) 83.3
8 Warapawei 92.3 85 (31–100) –8 (–69–8) 29.5
9 Wareta 100.0 75 (25–100) –25 (–83–0) 7.2

10 Mahekoto 55.3 51 (8–91) –4 (–47–36) 44.0

11 Hasupiwei 90.6 88 (37–100) 0 (–50–9) 44.3
12 Hapokashita 79.0 79 (26–100) 0 (–53–21) 53.9
13 Shakita 10.2 4 (0–35) –6 (–10–24) 21.9
14 Buena Vista 15.4 12 (0–69) –3 (–15–58) 43.7
15 Haruri 29.4 12 (0–65) –18 (–29–35) 19.0

16 Tacamare 2.9 11 (0–63) 8 (–3–60) 84.8
17 Yahanamaña 5.6 11 (0–56) 6 (–6–50) 65.0
18 Mavaquita 0.0 6 (0–47) 6 (0–47) 82.9
19 Mrakapiwei 4.0 4 (0–52) 0 (–4–48) 54.9
20 Sipoi 7.4 7 (0–48) 0 (–7–44) 48.1

21 Warapana 16.0 14 (0–76) –2 (–16–60) 47.6
22 Washewe 6.5 6 (0–48) 0 (–6–45) 45.2
23 Iyewei 5.9 0 (0–29) –5 (–6–23) 34.4
24 Kashora 0.0 4 (0–33) 4 (0–38) 80.3
25 Yepropë 7.7 30 (0–81) 23 (–7–73) 90.5

26 Yoohopë 5.3 5 (0–42) 0 (–5–42) 53.2
27 Shashana 0.0 0 (0–50) 0 (0–50) 71.2
28 Cerrito 76.2 71 (19–100) –4 (–57–24) 47.5
29 Purima 19.4 29 (3–81) 10 (–16–61) 45.0

a Predicted by model 3 (a three-level Bayesian hierarchical model).
b Values in parentheses are 95% Bayesian credible intervals.
c Probability (predicted 5 observed).
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Investigation of the pattern of estimated community- and
river-specific intercepts may help generate new hypotheses
about these characteristics.

Given our current knowledge about factors that
precisely determine prevalence of onchocerciasis, accurate
prediction of the prevalence of infection remains difficult, and
even our best model is imperfect. The problem is of obvious
importance, however, as decisions must be made about which
communities should be included in control programmes. As
more data become available, our model can be updated to
provide increasingly accurate predictions.

Although we considered variables other than altitude in
our analyses, we were unable to disentangle behaviour-related
pathways from vector-related pathways associated with the
prevalence of microfilariae. This was because most missions
were located at a low altitude (and therefore were easier to
access) in our dataset. S. oyapockense had already been shown to
be the predominant species at sites lower than 150–200 m
above sea level (11, 31). A larger dataset, with more altitudinal
variation in the location of missionary posts, would be needed
to disentangle the possibly independent effects of altitude (our
indicator of prevailing vectors) and presence of a mission (our
indicator of cultural changes). Well-established mission posts
are found at 250 and 950 m (in villages located in the Sierra

Parima, which were not analysed here therefore), and these
have a predominance of the highly competent S. guianense (30,
31) and a high (pre-control) prevalence of microfilariae despite
long-lasting missionary influence (8–11, 33).

Although we have shown the application of a Bayesian
approach to the selection of communities with prevalence of
microfilariae >20%, a different threshold for mesoendemicity
could be set according to the epidemiological patterns of a
given focus of onchocerciasis. In the Amazonian focus,
previous research highlighted that prevalence of microfilariae
increases with age, the threshold prevalence could be 30%
instead of 20%when the indicator age group is used (12, 34). In
Africa, the threshold prevalence would be set at 35–40% (13,
15). The approach presented here would need information to
be collected on the age and sex distribution, as well as on the
size of Yanomami communities not yet evaluated. This is
becoming possible, as several health care programmes are
being implemented, and communities are visited regularly by
trained personnel (35). In this way, Bayesian modelling could
play an important role in the planning of community-based
interventions of onchocerciasis in general and of control
programmes in particular. n
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Résumé

Prévision de la prévalence communautaire de l’onchocercose humaine dans le foyer amazonien :
approche bayésienne
Objectif Mettre au point un modèle hiérarchique de type bayésien
applicable à l’onchocercose humaine permettant d’étudier les
facteurs qui influent sur la prévalence des microfilaires dans le foyer
amazonien d’onchocercose et de prévoir la probabilité que
l’onchocercose sévisse au moins sur le mode mésoendémique
dans une communauté donnée (prévalence des microfilaires
>20 %) et nécessite par conséquent en priorité un traitement par
l’ivermectine.
Méthodes Mise au point de modèles à partir des données
recueillies auprès de 732 personnes de 15 ans au moins habitant
dans 29 communautés Yanomami situées le long de quatre fleuves

du bassin méridional de l’Orénoque au Venezuela. La capacité des
divers modèles à prévoir la prévalence des microfilaires dans la
communauté a été comparée. Le meilleur modèle a été sélectionné
par approximation croisée en utilisant le critère d’information
bayésien, les valeurs de p des modèles bayésiens et les résidus.
Résultats Le meilleur modèle est un modèle à trois niveaux qui
tient compte du regroupement des cas dans les communautés,
avec, au niveau individuel, la prise en compte des caractéristiques
d’âge et de sexe de l’hôte, au niveau communautaire, la prise en
compte de l’effet de l’altitude fleuve-dépendant et, au troisième
niveau, la prise en compte de l’agrégation des communautés le
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long des fleuves. Ce modèle a permis de classer correctement
25 des 29 villages (soit 86 %) quant à la priorité du traitement par
l’ivermectine.
Conclusion Les méthodes de Bayes sont une approche souple et
utile pour la recherche en santé publique et la planification de la
lutte contre les maladies. Notre modèle tient compte de
l’agrégation des cas au sein des communautés, permet d’étudier

le lien entre d’une part les caractéristiques particulières aux
individus ou aux communautés et d’autre part l’infection, tient
compte de l’incertitude supplémentaire due aux données
manquantes concernant les covariables, et permet d’étayer les
décisions politiques grâce à des variables prédictives de la
probabilité que l’onchocercose soit au moins mésoendémique
dans une nouvelle communauté.

Resumen

Predicción de la prevalencia comunitaria de la oncocercosis humana en el foco amazónico: un enfoque
bayesiano
Objetivo Desarrollar un modelo jerárquico bayesiano de la
oncocercosis humana para estudiar los factores que influyen en la
prevalencia de microfilarias en el foco amazónico de oncocercosis, y
estimar la probabilidad de que una comunidad sea como mı́nimo
mesoendémica (prevalencia de microfilarias > 20%) y necesite por
tanto tratamiento prioritario con ivermectina.
Métodos Se desarrollaron modelos con datos de 732 in-
dividuos 5 15 años que vivı́an en 29 comunidades yanomami a
lo largo de cuatro rı́os de la cuenca meridional del Orinoco
venezolano, y se comparó la capacidad de cada modelo para
predecir la prevalencia de microfilarias en las comunidades. Se
seleccionó el mejor modelo por aproximación cruzada utilizando
el criterio de información bayesiano, los valores P de los modelos
bayesianos y los residuos.
Resultados El modelo que mejor funcionó fue uno de tres niveles
que tenı́a en cuenta el agrupamiento de los casos en las

comunidades. El modelo incluı́a la edad y el sexo del huésped a
nivel individual, un efecto de altitud rı́o-dependiente a nivel de la
comunidad y, en el tercer nivel, el agrupamiento adicional de las
comunidades a lo largo de los rı́os. Este modelo permitió clasificar
correctamente 25/29 (86%) aldeas en lo referente a su necesidad
de tratamiento prioritario con ivermectina.
Conclusión Los métodos bayesianos brindan un criterio flexible y
útil para las investigaciones de salud pública y la planificación de la
lucha contra las enfermedades. Nuestro modelo reconoce el
agrupamiento de la infección en las comunidades, permite
investigar la relación entre la infección y caracterı́sticas particulares
de los individuos y las comunidades, incorpora la incertidumbre
adicional por falta de datos de covariables, y puede informar las
decisiones de polı́tica mediante variables predictivas de la
probabilidad de que una nueva comunidad sea como mı́nimo
mesoendémica.
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Appendix A. Detailed descriptions of models
Model 3
Stage 1
The observed status of infection with microfilariae (0/1), Yicr ,
of individual i (i = 1,.., Kcr) living in community c (c = 1, ... Cr)
along river r (r=1, 2, 3, 4) ismodelled as a Bernoulli variatewith
mean yicr . That is Yicr ~ Bernoulli(yicr), where:

logit(yicr)= dcr + bage16age1icr + bage26age2icr +
bsex6sexicr (1)

The parameter yicr corresponds to the underlying
probability of infection for the given individual; bage1 and
bage2 represent the regression coefficients for the age groups 1
(20–39 years) and 2 (540 years), respectively; bsex represents
the effect of being male; and dcr represents the underlying
community-within-river specific intercept.

Stage 2
The community-specific intercepts are modelled in stage 2,
where balt[r ] represents the specific regression coefficients for
altitude varying by river r, and fr represents the underlying
river-specific intercept. The parameter sc

2 reflects the
variability in prevalence (on a logit scale) between communities
located along the same river after adjustment for altitude.

dcr ~ Normal (mcr , sc
2) (2)

mcr = fr + balt[r ]6altitudecr (3)

Stage 3
The river-specific intercepts and regression coefficients for
altitude are assumed to be normally distributed, where lr =
global model intercept and nr

2 = measure of variability in
prevalence between rivers.

balt[r ]~ Normal (lalt , nalt
2) (4)

fr~ Normal (lr , nr
2) (5)

Stage 4
At the fourth and last stage of themodel, prior distributions are
set for all unknown parameters, including sc

2, lr , nr
2, and all

regression coefficients. We used diffuse prior distributions, so
that a priori all values in the feasible range have approximately
equal values.

Fig. 5 gives a graphical representation (1A).

Model 1
In contrast to the above, model 1 assumes common underlying
prevalence of infection in all communities after taking into
account sampling variability and differences in known individual-
and community-level factors. Thus, model 1 assumes simply that
scr = lr + balt[r ] 6 altitudecr in equation (1) and ignores the
additional complexity represented in equations (2)–(5).

Diffuse priors are specified for all unknown parameters
in model 1.

Model 2
Model 2 goes a step further than model 1 to acknowledge
explicitly that, after adjustment for known risk factors,
prevalence of infection still varies between communities (due
to the effect of unmeasured or unmeasurable factors).
Communities are, however, assumed to be fully exchangeable,
and so, in the above notation,model 2 assumes dcr~N(mcr ,sc

2),
where now mcr = lr + balt[r ] 6 altitudecr .

Diffuse priors are specified for all unknown parameters
in model 2.

Model implementation
Convergence of the Gibbs sampler was assessed informally by
examining trace and auto-correlation plots, and,more formally,

via Gelman and Rubin’s criterion (see Cowles and Carlin (2A)
and incorporated references). Auto-correlation plots (not
shown) illustrated negligible within-chain correlation.

In the approximate cross-validation, we drew replicate
community-specific random effects and used these to predict
replicate individual-level outcomes (0 or 1). The mean of these
predicted outcomes for each community formed a realization
from the posterior distribution of the predictive prevalence
that was conditional on the known characteristics of the
individuals in that community and the community itself. We
then compared the predicted prevalence with the observed
prevalence in each community, by computing the posterior
probability that the formerwas higher than or equal to the latter
(that is, P(predicted5observed)). These Bayesian P-values
were computed with a Markov chain Monte Carlo algorithm,
by introducing a dummy indicator variable for each community
that took the value 1 at a given iteration if, at that iteration, the
value of the predicted prevalence was greater than or equal to
the observed prevalence, and 0 otherwise. The average of the
indicator variables over all iterations for a given community
gave the required P-value.
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