The Statistician (1995)
44, No. 2, pp. 143-154

Sample size calculations for binomial proportions via highest
posterior density intervals

By LAWRENCE JOSEPH{,
Montreal General Hospital and McGill University, Montreal, Canada

DAVID B. WOLFSON
McGill University, Montreal, Canada

and ROXANE pu BERGER

Montreal General Hospital, Canada
[Received April 1993. Final revision February 1994]

SUMMARY

Three different Bayesian approaches to sample size calculations based on highest posterior density (HPD) intervals
are discussed and illustrated in the context of a binomial experiment. The preposterior marginal distribution of the
data is used to find the sample size needed to attain an expected HPD coverage probability for a given fixed interval
length. Alternatively, one can find the sample size required to attain an expected HPD interval length for a fixed
coverage. These two criteria can lead to different sample size requirements. In addition to averaging, a worst possible
outcome scenario is also considered. The results presented here provide an exact solution to a problem recently
addressed in the literature.
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1. Introduction

Several criteria have been proposed recently for Bayesian sample size estimation. The
particular application to the binomial parameter 6 has been examined in detail in Pham-Gia
and Turkkan (1992), whereas Adcock (1987) considered multinomial experiments, which of
course include the binomial as a special case. Adcock (1992) compared the various approaches
presented in the above two papers.

Although there is potential for using a decision theoretic approach to sample size
estimation in any given problem (Berger, 1985), practical considerations dictate that simpler
criteria concerning accuracy in the estimation of 6 are often preferable. Therefore, many of
the methods considered to date suggest sample sizes that satisfy criteria relating in some way
to either the variance of the posterior distribution for 6 or posterior coverage probabilities
for intervals of prespecified length.

The purpose of the present paper is to re-examine the sample size question from the point
of view of highest posterior density (HPD) regions. This approach is natural, since HPD
regions result in the shortest intervals for any given coverage and provide a convenient
summary of the posterior knowledge about 6. Of course, there is a relationship between the
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posterior variance and HPD intervals. For example, if we let U be the posterior mean and
W be the posterior variance, an approximate 95% HPD interval may be found by taking
U + 2,/W. This result should be adequate for large sample sizes, as it is based on a normal
approximation to the posterior density for 6. However, for small or moderate sample sizes,
or when 6 may be concentrated near 0 or 1, the approximation is less accurate, and the
resulting deviations may be enough to cause sample size estimates given by the approximation
and the exact method to differ substantially. In fact, as observed by Pham-Gia and Turkkan
(1992), the probability of an interval calculated by taking U + 2\/ W can be as low as 0.75.

The three possible sample size criteria based on HPD regions are given in Section 2, and
the particular application to binomial sampling is discussed in Section 3. Section 4 contains
some examples as well as notes on the practical implementation of the methods, while the
final section concludes with a discussion.

Throughout this paper, f( ) will be used to denote generically a probability density or
probability function, and f( | ) will denote a conditional density or probability function. The
random variables to which these distributions refer will be clear from their arguments and the
context in which they appear.

2. Bayesian criteria for sample size

Let n denote the sample size, 6 the parameter of interest, ® the parameter space for 8 and
f(6) the prior distribution of 6. The experiment will consist of observing n data points
X = (Xy, X5, .., X,), Where x is composed of n exchangeable components, from the data space
Z. The preposterior marginal distribution of x is

flx) = f f(x10)£(0)do, (1)
and the posterior distribution of 6 given data x is
f6lx, n) = L0 @
J f(x10)£(0)do

where f(x|6) is the likelihood of the data.
The posterior coverage probability of the region R of volume V = V(R) is given by

f f(0]x, n) do.
R

The volume V is minimized for the given coverage if R is an HPD region. A necessary and
sufficient condition for this is that f(0,|x, n) = f(0,|x, n) for all 6, in R and all 0, not in R
(see Box and Tiao (1973)).

In view of our application we shall consider 6 to be a one-dimensional real-valued
parameter. The theory extends easily to vector-valued parameters, such as the parameter p
of the multinomial distribution, although in practice the calculations become much more
difficult.

If 0 is one dimensional and f(0|x, n) is unimodal, (a, b) is an HPD interval if and only
if f(6,|x,n)=f(0,|x,n) for all 6, in (a, b) and all 6, not in (a, b). For monotone increas-
ing posterior densities defined on the interval (u, v), the corresponding condition for (a, b)
to be the HPD region is that b = v, and

Jb fO|x,n)d0 =1 —a.
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A similar condition holds for monotone decreasing densities. These characterizations will be
exploited in Section 4.

Under these conditions, an experimenter typically would specify that 6 should fall in an
HPD interval of length | with probability 1 — «. However, the fact that the posterior
distribution depends on x whose uncertainty must be eliminated leads to the consideration
of three criteria in the determination of sample size. These are as follows.

2.1. Average coverage criterion
For a given fixed HPD interval length [, find the minimum sample size n such that the
expected coverage probability is at least 1 — o, i.e. the smallest n satisfying

a(x,n)+1
JU( ) 1(0)x, n)de}f(x)dx>1—a, 3)
z

a(x,n)

where f(x) is given by equation (1), f(0|x,n) is given by equation (2) and a(x, n) is the
lower limit of the HPD credible set of length [ for the posterior density f(0|x, n). Note that
a will in general depend both on the data x and the sample size n. This criterion is similar
to that proposed by Adcock (1987), equation (4), except that the average there was taken over
coverages of tolerance regions R(x), where R(x) are not necessarily HPD regions, although
they are asymptotically the HPD. This can lead to differences in sample size requirements
under certain circumstances, since R(x) can either be longer than the equivalent HPD interval
of the same coverage or have smaller coverage for an interval of the same length. Further,
Adcock’s sample size equations for multinomial sampling are based on a normal approxi-
mation, whereas those presented here in the simpler binomial case are exact. Here the term
exact is used in the sense that the only source of error is computer error, which can be made
negligible. Since we can draw a very rough analogy between a multiple of the standard devia-
tion and the coverage of HPD intervals, this criterion may be compared with the Bayes risk
(as an average) of Pham-Gia and Turkkan (1992), equation (10), with ¢ = 1.

2.2. Average length criterion
In a similar spirit, an alternative way to select a sample size would be to fix the coverage
probability 1 — o of the HPD credible set for 6. Then each possible outcome x will require
a certain length I'(x, n) to obtain the desired coverage probability.
The structure of this criterion then ensures that, for any x in %,
a(x,n) +1'(x,n)

j fOlx,n)d0 =1 —a,

a(x,n)

and the problem is then to select the sample size according to the smallest n such that the
expectation (with respect to x) of these lengths is less than [, i.e. satisfies

f I(x, n) f(x)dx < I, 4
x

where [ is the prespecified average length that is desired. In contrast with the previous criterion
where the length was fixed, here the average length of the HPD interval is fixed. This criterion
can perhaps surprisingly lead to very different sample sizes from the average coverage criterion
(ACC). The average length criterion (ALC) does not appear to have been discussed previously,
although it may again be compared with the Bayes risk in that the posterior variance can
be indirectly related to the length of the corresponding HPD interval.
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2.3. Worst outcome criterion

Both of the above criteria may be criticized on the grounds that they ensure the desired
coverages or lengths only on average. Thus they give no guarantee for any particular observed
data x. The most conservative approach would be to ensure that the requirements for both
length and coverage probability hold simultaneously over all possible data vectors x that
may arise. Thus, rather than averaging, a minimum » is chosen such that

a(x,n)+1
inf {J‘ f0)x, n) d@} =>1—o, %)
xeZ a(x,n)

where both | and « are fixed in advance. This specification is similar to the criterion of
Pham-Gia and Turkkan (1992) that ensures that the maximum posterior variance over the
sample space Z does not exceed a prespecified value. As before, direct use of the HPD interval
could lead to different sample sizes.

3. Bayesian sample sizes for binomial proportions

This section applies the three criteria discussed above to the estimation of 6, the probability
of success from a binomial experiment. Here the space of possible outcomes, %, is discrete,
taking on values in the set {0, 1, ..., n}, where n is the sample size.

3.1. Average coverage criterion
In the context of a binomial parameter, the ACC can be written as the minimum » satisfying

n

Y. Pr{0e(alx, n), a(x, n) + )} p(x,n)>1—a, (6)
x=0
where
a(x,n)+1
Pr{6 € (a(x, n), a(x, n) + 1)} oc J‘ - 6*(1 — 6)™" ~ 2 £(0) do,
a(x,n)

a(x, n) is the lower limit of the HPD credible set given the sample size and observed number
of successes, [ is the user-specified length of the credible set, f(6) is the prior distribution of
0 and p(x, n) is the preposterior probability function of the data. If f(6) can be represented
by a beta distribution with parameters (c, d), i.e.

1
0) = ¢~ b1 —-0“-, 0<f0<1,
SO) = g5 071 =0)
where B(c, d) is the beta function with parameters (c, d), then
1
f0|x, n, c,d)= O T e 1)1 — gyn-x+d-1) 0<6<1, 7

B(x + ¢,n — x + d)
is the posterior distribution for 0 given the data x and

p(x, n) = (Z) B(x +c,n—x +d) / B(c, d) (8)

is the preposterior marginal distribution for x. ACC (6) then reduces to finding the minimum
n that satisfies

n n a(x,n)+1
Y {<x>/B(c, d)}f Oxte~ (1 — g)n~x*d-Ddh > 1 — a. ()]
x=0

a(x,n)
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3.2. Average length criterion
Following inequality (4), the equation

‘2 I'(x, n) p(x, n) <1 (10)

must be solved, where p(x, n) is glven by equation (8). The length I'(x, n), corresponding to
the HPD interval, is found for each given x and n by solving

a(x,n) +1'(x,n)

fO|x,n,c,d)d0 =1 —a,
a(x,n)

where f(0|x,n, c,d) is given by equation (7) and a(x, n) and a(x, n) + I'(x, n) are the lower
and upper limits of the HPD interval of this distribution. Solution of the above equation
does not by itself guarantee an HPD interval, so that for each x and n we must check a
condition such as the condition previously referred to in Box and Tiao (1973). Details of a
procedure for simultaneously searching for a(x, n) and I'(x, n) are deferred to Section 4.

3.3. Worst outcome criterion

The sum n + ¢ + d is often referred to as the ‘effective sample size’, i.e. the sum of the
actual sample size and the sample size equivalent of the information contained in the prior
distribution. It is intuitively reasonable but very difficult to prove that, for any fixed n, ¢, d
and [, the value of the integral

a(x,n)+1
f Sf0lx, n, c, d)d6

a(x,n)
is minimized for x€(0, 1, 2, ..., n) by taking

x* = x*(n, c, d)

+d+1 +e+d—1
ﬁcz——corncf—c, ifn+c+disoddandn > |d — |,
={n+c+d
2 -c ifn+c+disevenandn > |d — |, (11)
n ifo<sn<|d—c|,

where f(0|x, n, c, d) is given by equation (7). In other words, for any given sample size, the
length of the HPD interval is maximized when the two beta parameters belonging to the
posterior distribution are as close as the sample size will allow.

The following reasoning lends plausibility to conditions (11). Consider the family of beta
distributions with parameters (u, v), where u + v = k is a fixed constant. Since the variance of
this family of distributions is given by uv/k*(k + 1), it is easy to show that this is maximized
when u = v. If u, v and k are all positive integers with k odd, then it is not possible to have
u =y exactly, in which case choosing |u —v| =1 will maximize the variance. In our
problem, there is a further complication due to the constraints k =n+c +d, u > ¢ and
v >d, leading to the statement that the variance will be maximized when Iu —v| is
minimized subject to these constraints. Equations (11) follow directly from this, albeit with
the leap of faith that maximum variance implies minimum HPD coverage for any given
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interval length. This supposmon is intuitively acceptable for unimodal distributions but
appears difficult to prove.

This conjecture was checked via a computer simulation for all possible n, 1 < n < 1000,
and found to be correct throughout this range. Although ¢ = d = 1 was used throughout the
simulation, it also shows that the result holds for many non-uniform prior distributions as
well. To illustrate, suppose that we are considering the case ¢c=1, d=1 and n=4.
The simulation will investigate the five beta distributions beta(l, 5), beta(2, 4), beta(3, 3),
beta(4, 2) and beta(5, 1), eventually choosing beta(3, 3) as the ‘worst case’. If instead we wished
to consider the case ¢ = 1, d = 2 and n = 3, we would consider beta(1, 5), beta(2, 4), beta(3, 3)
and beta(4, 2). Since this a subset of the first case, beta(3,3) again will give rise to the
worst case, and there is no need to run a separate simulation. The result should also hold
asymptotically, since the lengths of HPD regions for the normal distribution depend only
on the variance, and the result is true for variances of the beta distribution. This contrasts
with the mathematical derivation of the location of the maximum posterior variance in
Pham-Gia and Turkkan (1992). Assuming that x* is correctly chosen, either through
conditions (11) or by some other means, the worst outcome criterion (WOC) is satisfied by
the minimum »n with

a(x*,n)+1
J. f@|x* n,c,d)d0 =1 — a (12)

a(x*,n)

4. Examples and practical implementation

4.1. Example 1

Consider the problem of the quality manager given by Pham-Gia and Turkkan (1992).
Here ¢ = 13 and d = 57 represent parameters of the beta prior distribution of the probability
of a substandard item in a manufacturing process. The manager wishes to obtain the
two-standard-deviation credible interval, which roughly corresponds to 1 — a = 0.95, which
is less than [ = 0.20 for any data x that may result. The value | = 0.17 was also considered.
For | = 0.20, both methods agree that no sampling is required, as there is already sufficient
prior information. However, for [ = 0.17, Pham-Gia and Turkkan (1992) found n = 68,
whereas nyoc = 62, a difference of almost 10%. This percentage can increase further for prior
distributions which are more asymmetric. In part 2 of this example, the sample size required
such that the average posterior variance is less than 0.0012 is n = 55, whereas n,cc = 48 and
narc = 47, a difference of about 15%. In making these comparisons here and elsewhere, we
have used the two-standard-deviation rule as suggested by Pham-Gia and Turkkan (1992),
or |l =2Z,,./W, where W is the posterior variance, and Z,, is the upper a/2 percentile of the
standard normal distribution.

4.2. Example 2

It is possible to produce wildly divergent estimates from the various criteria. Consider the
situation of a known rare outcome, which commonly occurs, for example, in estimating the
prevalence of a rare disease. Suitable prior input may be ¢ =1, d = 200, 1 — a = 0.90 and
I = 0.01. The prior mean and standard deviation are thus both approximately 0.005. In this
case, Nacc = 164, nyc =96 and nyoc = 26854. Here there is more than a hundredfold
difference between the sample size estimates. This is due to the extreme a priori rarity of
the worst outcome x = 13526, which will occur with probability 4.4 x 10752 according to
the prlor information.
- Ttisalso 1mportant to note that in this example the sample size suggested by the average
“variance criterion is 332, which is more than double n,.- and more than triple n,; .
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43. Example 3

The ACC and ALC are averages, and it is often of interest to observe the individual lengths
or coverages from which the average is calculated. Fig. 1 shows the coverages across the
various possible values of x that may occur, for the case of I = 0.1, 1 — « = 0.95 and a uniform
prior, ¢ = d = 1. Under these conditions, the ACC yields a sample size of n = 274. The worst
HPD coverage occurs at x = 137, where it is 0.9039. The probability of the event {x = 137}
is 0.00362. Further, increasing the coverage to the desired 0.95 at x = 137 and n = 274 requires
an HPD length of 0.1177. A judgment can now be made on whether this is an acceptable
trade-off for the savings on sample size, or if it is preferable to increase the size to the n = 381
required for I < 0.1 and coverage greater than 0.95 for all x, or somewhere in between.

4.4. Example 4

Fig. 2 shows the individual lengths for the same input, | = 0.1, 1 — a = 0.95 and a uniform
prior, ¢ = d = 1. This yields a sample size of n = 234 using the ALC. The widest length,
I = 0.1272, occurs at x = 117, an event with a probability of 0.00426. Decreasing this length to
I =0.1 would entail a coverage of only 0.8761. The insight gained from considering the
question of sample size from a variety of viewpoints should help in the selection of the optimal
choice in any given application.

4.5. Comparing various criteria

Table 1 compares the required sample sizes for five different Bayesian criteria, assuming
a uniform prior distribution. The criteria are enumerated below, in order of appearance in
Table 1:

(@) nacc, given by inequality (6); -
(b) n,;c, given by inequality (10);
(c) nwoc, given by inequality (12);

R
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Fig. 1. Coverage versus x (I = 0.1; ¢ = d = 1; average coverage, 0.95)
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Fig. 2. Length versus x (coverage, 0.95;c=d = 1; average length, 0.1)

(d) ncons, from equation (15) of Adcock (1992), which gives a conservative region in a
sense similar to the WOC;
(¢) nyar from equation (10) of Pham-Gia and Turkkan (1992), the average posterior

variance criterion.
The sample size given by ncoys is equivalent to the maximum posterior variance criterion
of Pham-Gia and Turkkan (1992), equation (3), if ¢ = y},/d? where y}, is the upper «

percentage point of the x>-distribution with 1 degree of freedom and I = 24.
From Table 1, two main observations can be made. Firstly, there is virtually no difference

between the various conservative estimates when starting from a uniform prior. In fact, all
are roughly equivalent to the standard conservative frequentist formula. Since, for example,
Ncons is based on the normal approximation to the binomial distribution and nye is based
on the beta distribution which is also asymptotically normal, this is hardly surprising. A
similar observation was made concerning sample sizes derived from the normal distribution

itself in Adcock (1988).

Secondly, the various Bayesian criteria can suggest very different sample sizes. It is
intuitively obvious that both n,cc and ny; ¢ are less than nyec, since if inequality (5) holds
for any particular n then so will inequalities (3) and (4). Whether there are any general rules
for comparing n,cc with ny, ¢ is less evident, although some crude observations for a binomial
outcome can be made from Table 1. Consider the ACC. Since coverage probabilities are
bounded above by 1, we might expect that, as « moves towards 0, maintaining an average
coverage of 1 —a would become more difficult, not only because of the larger coverage
probability required, but also because it becomes more difficult to balance the values which
contribute less than average values to the mean coverage. A symmetrical argument can be

made as the desired length [ approaches 0 in the ALC. Thus we might expect to observe
Nacc = Narc if a but not [ is close to 0, and the reverse to hold if I but not « is close to 0.

- Indeed, Table 1 is consistent with these observations.
It is also worth observing from Table 1 that, for 1 — & > 0.90, ns; ¢ < fyag < Bace < Nwoc
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TABLE 1
Comparison of the sample sizes given by the various criteriat
I1-u ) Nacc MavLc woc Ncons Nyar
0.50 0.01 2444 2804 4548 4547 3031
0.50 0.02 609 699 1136 1135 757
0.50 0.05 95 110 181 179 120
0.50 0.10 22 26 44 43 29
0.50 0.15 9 10 19 18 12
0.50 0.20 4 5 10 9 6
0.50 0.25 2 3 6 5 3
0.50 0.30 1 1 3 3 2
0.50 0.40 1 1 1 0 0
0.50 0.50 0 1 0 0 0
0.90 0.01 18533 16686 27053 27053 18035
0.90 0.02 4631 4169 6762 6761 4508
0.90 0.05 739 665 1080 1080 720
0.90 0.10 183 164 268 268 179
0.90 0.15 80 71 118 118 79
0.90 0.20 44 39 65 65 44
0.90 0.25 27 24 41 41 27
0.90 0.30 18 16 28 28 19
0.90 0.40 9 8 15 14 10
0.90 0.50 5 4 8 8 6
0.95 0.01 27691 23693 38412 38412 25608
0.95 0.02 6921 5921 9601 9601 6401
0.95 0.05 1105 945 1534 1534 1023
0.95 0.10 274 234 381 382 255
0.95 0.15 120 102 168 168 112
0.95 0.20 66 56 93 94 63
0.95 0.25 42 35 59 59 39
0.95 0.30 28 23 40 40 27
0.95 0.40 15 12 21 22 15
0.95 0.50 8 7 12 13 9
0.99 0.01 51552 40923 66345 66346 44231
0.99 0.02 12885 10228 16583 16585 11057
0.99 0.05 2058 1633 2650 2651 1768
0.99 0.10 512 405 659 661 441
0.99 0.15 225 178 291 292 195
T 099 0.20 125 98 162 163 109
0.99 0.25 79 62 102 104 69
0.99 0.30 53 42 69 71 48
0.99 0.40 28 22 37 39 26
0.99 0.50 17 13 22 24 16

fnacc is given by inequality (6), ns ¢ is given by inequality (10), nyoc
is given by inequality (12), ncons is given by equation (15) of Adcock
(1992) and ny,g is given by equation (10) of Pham-Gia and Turkkan
(1992). All sample sizes were computed starting from a uniform prior.
Entries have been rounded upwards to the next highest integer.

R ngons. Finally, we note that ny,g = naic across all cases considered in Table 1. This
follows from the minimum length property of HPD regions.

4.6. Practical implementation

Finding the sample sizes in the above equations involves many intermediate steps, most
of which have no closed form solution. However, computer algorithms may be devised that
attain the sample sizes relatively quickly.
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Each algorithm is composed of several subalgorithms. A description of the main
subalgorithms is given below, followed by an outline of the steps required for each criterion.

4.6.1. General strategy for finding sample size. All algorithms employ a bisectional search
strategy to arrive at the final sample size, which stops when the criterion is satisfied for n but
not for n — 1. The lower bracketing limit was always assumed to be 0, whereas the upper
limit was taken from the standard frequentist formula for binomial sample sizes. For each
possible value of n, the relevant criterion was evaluated, and the next candidate was chosen
depending on the result of the previous.

4.6.2. Calculation of the incomplete beta function. The frequent calculation of areas under
the curve of a beta density between fixed upper and lower limits can be expressed in terms of
the difference between two incomplete beta functions. Each of these integrals can be evaluated
by using the continued fraction approximation of the incomplete beta function (Abramowitz
and Stegun (1965), equation (26.5.8)). Sufficient terms in the continued fraction were retained
to ensure accuracy to nine decimal places.

4.6.3. Finding lower and upper limits of highest posterior density intervals. Although the
previous paragraph indicates how integrals with known limits can be evaluated, another
frequent problem was to find the particular limits corresponding to HPD intervals. As
indicated in Section 2, the method of solution depends on whether the beta density is unimodal
or monotone increasing or decreasing. It also depends on whether a and / are both unknown,
or whether [ is given. In the latter case, lower (a), and upper (a + ), limits for unimodal
densities can be found by solving the equation

falx, n,c,d) — fla+1|x,n,¢c,d) =0,

where f is given by equation (7). Newton—Raphson iterations (Thisted, 1988) can be used to
improve the speed of convergence. For monotone densities the problem is trivial, one end
point being fixed at either 0 (if monotone decreasing) or 1 (if monotone increasing), and the
second at a distance / from the first.

The case of a and | both unknown is two dimensional but can be approached through a
combination of techniques already mentioned. A bisectional search strategy can be used to
iterate towards the correct value of [, and a can be found for each [/ dictated by the search
by the methods of the previous paragraph. Good starting points for the search are helpful
in reducing the computing time. For example, first approximations for a and [/ can often be
obtained from the symmetric credible set, for which a is simply the lower «/2 percentile of
the appropriate beta density, and a + [ is the upper o/2 point. These quantities can be obtained
from the approximation of beta quantiles given by equation (26.5.22) of Abramowitz and
Stegun (1965).

4.6.4. Algorithm for average coverage criterion. For the ACC, ¢, d, « and | are fixed
constants, and the coverage depends on x. For each n in the bisectional search, the left-hand
side inequality (9) must be calculated and compared with the desired average coverage 1 — o.
For each value of x, x =0, ..., n in the sum, the upper and lower limits, which depend only
on a, as well as the resulting definite integral can be calculated as indicated earlier. The sum
is compared with 1 — «, and the process continues until convergence.

4.6.5. Algorithm for average length criterion. For the ALC, the parameters c, d, a and !
are again fixed constants and the length of the HPD interval depends on x. The minimum
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n such that equation (10) is satisfied is sought. For each n indicated by the bisectional search,
the vector p(x,n), x = 0, 1,...;n, is calculated by using equation (8). The length of the HPD
interval, represented by the vector I'(x,n), x =0, 1,...,n, is found by taking the difference
between the upper and lower limits found as indicated above in the case that both a and [
are unknown. The inner product of the resulting vectors can then be compared with 1 — a,
and the search continues until convergence.

4.6.6. Algorithm for worst outcome criterion. For the WOC, ¢, d, | and « are fixed, with
no averaging required. The value of x* is determined by conditions (11), if we accept this
conjecture. Thus, for each n, we need only to calculate the left-hand side of inequality (12),
this integral being calculated as indicated earlier.

An easy-to-use Fortran program that implements all the HPD interval criteria discussed
above is available for Sun SPARC workstations from the authors. In this program, all
calculations are correct to at least nine decimal places. Finding sample sizes for all three
criteria as well as calculating the minimum coverages, maximum lengths and preposterior
probabilities of these values as discussed above typically took less than 1 min of computing
time, and often only a few seconds.

5. Conclusion

Owing to their minimum length property and the feasible calculations for binomial
outcomes, HPD regions are the preferred form of summary interval. The posterior variance
can be used as a proxy, but caution must be exercised in its use. For conservative criteria,
the answers provided by HPD regions and posterior variances are usually very similar. This
is because these methods do not average over the predictive marginal distribution, and because
the worst outcomes typically occur when the posterior parameters of the beta distribution
are equal or nearly equal, so that the normal approximation to the beta distribution tends
to be accurate. However, it is not difficult to construct examples where the average criteria
can differ when HPD regions are replaced by posterior variances. In particular, for either
rare or very common outcomes, there can be substantial savings in calculating sample sizes
by using the HPD regions. Examples of this occur frequently, for instance in medicine when
a rare disease is under study, or in quality control when defective items are uncommon.

It has been said (Berger, 1985) that design problems are naturally Bayesian, since before
there are data there is no choice but to address planning issues by using prior information.
The three exact methods discussed here are based on three different criteria, each leading to
different sample sizes. All might contribute to the decision of the final size selected. Graphs
such as those provided in Figs 1 and 2 are especially helpful in this regard.

Other criteria are also possible. A decision theoretic approach to finding the optimal sample
size for both fixed and sequential sampling is discussed in Berger (1985), who also provided
some examples. Pham-Gia and Turkkan (1992) discussed the problem in terms of the expected
value of sample information. For estimating the mean of an arbitrary distribution, Goldstein
(1981) suggested a Bayesian criterion based on the expected change of the point estimate for
the mean over future sample values, and he provided an upper bound for the sample size.

The work presented here can be extended to other situations. One of the most commonly
encountered sample size problems is to calculate the number of experimental units required
for accurate estimation of the difference in response rates of the two independent groups when
the outcome is dichotomous. Exact calculations may be very difficult owing to the complicated
nature of the posterior distribution of the difference between two binomial random variables.
Fortunately much progress has recently been made on the approximation of Bayesian
posterior distributions, so that methods such as sampling-importance resampling (Rubin,
1987) can be used. We have already evaluated this algorithm as a substitute for exact
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calculations in the context of the single binomial sample presented here. The results have
encouraged us to investigate extensions to the two-sample problem.
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