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SUMMARY

A combination of continuous and categorical tests, none of which is a gold standard, is often available
for classification of subject status in epidemiologic studies. For example, tuberculosis (TB) molecular
epidemiology uses select mycobacterial DNA sequences to provide clues about which cases of active TB
are likely clustered, implying recent transmission between these cases, versus reactivation of previously
acquired infection. The proportion of recently transmitted cases is important to public health, as different
control methods are implemented as transmission rates increase. Standard typing methods include IS6110
restriction fragment length polymorphism (IS6110 RFLP), but recently developed polymerase chain re-
action based genotyping modalities, including mycobacterial interspersed repetitive unit-variable-number
tandem repeat and spoligotyping provide quicker results. In addition, it has recently been suggested that
results from IS6110 RFLP can be used to create a continuous measure of genetic relatedness, called
the nearest genetic distance. Whichever method is used, estimation of cluster rates is rendered difficult
by the lack of a gold standard method for classifying cases as clustered or not. Since many of these
methods are relatively new, their properties have not been extensively investigated. Misclassification errors
subsequently lead to sub-optimal estimation of risk factors for clustering. Here we show how Bayesian
latent class models can be used in such situations, for example to simultaneously analyse Mycobacterium
tuberculosis DNA data from all three of the above methods. Using the data collected at the Public Health
Unit in Montreal, we estimate the proportion of clustered cases and the operating characteristics of each
method using information from all three methods combined, including both continuous and dichotomous
measures from IS6110 RFLP. A misclassification-adjusted regression model provides estimates of the
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effects of risk factors on the clustering probabilities. We also discuss how one must carefully interpret
any inferences that arise from a combination of continuous and dichotomous tests. Copyright q 2007
John Wiley & Sons, Ltd.
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specificity; tuberculosis

1. INTRODUCTION

The World Health Organization estimates that one-third of the world’s population is infected with
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and that another individual
is infected every second [1]. The prevalences in most developed countries are lower, and in
Montreal, Canada, the setting of our study, approximately 150–200 people are diagnosed with
active disease each year [2]. Nevertheless, even in the areas of low prevalence, it is important
for public health officials to track the transmission pathways of infectious diseases in order to
promote optimal control measures. In particular, it is useful to know the proportion of cases that
are reactivations of previously acquired infection, versus recent disease transmission. Although
no gold standard method for this exists, it is usually accomplished by comparing M. tuberculosis
strains from new cases to strains from those previously diagnosed with active TB in the community.
It is also important to elicit the demographic factors associated with recent transmission, usually
accomplished by a regression model using the possibly misclassified test results as the outcome.

TB molecular epidemiology exploits selected bacterial DNA targets to serve as markers for M.
tuberculosis strains [3]. The most common method of DNA fingerprinting used is IS6110-based
restriction fragment-length polymorphism (IS6110) RFLP [4]. An important practical limitation of
IS6110 RFLP is that results are usually obtained weeks to months after the diagnosis of TB, because
of the need to grow large numbers of bacteria to extract sufficient DNA. Therefore, while useful
for documenting transmission events, IS6110 RFLP often provides data once outbreaks are well
established. In contrast, a number of polymerase chain reaction (PCR) based typing modalities have
been recently developed, including spoligotyping [5, 6] and mycobacterial interspersed repetitive
unit-variable-number tandem repeat (MIRU-VNTR, or here, simply abbreviated to MIRU), which
offer the possibility of obtaining DNA fingerprints from small numbers of bacteria [7]. The major
advantage of rapid typing of isolates is the capacity to immediately provide a strain designation,
which in turn may facilitate prompt public health intervention. While the technical feasibility to
generate genotypes with these methods has been well demonstrated, their public health utility
depends on the method’s properties.

As the PCR-based methods are relatively new, their sensitivities and specificities are not well
documented to date [8, 9]. IS6110 RFLP is far from a perfect indicator of recent transmission, so
that exactly how to estimate the properties of new methods is not clear. Further, IS6110 RFLP
can either be used as a dichotomous method, or, as has recently been proposed, as a continuous
data method via a measure called the nearest genetic distance (NGD) [10]. Therefore, one has
the choice to compare the new results with the results from a continuous or dichotomous method.
Whichever is selected, neither is a gold standard, and any model must take this into account.

In this paper, the above example is used to illustrate how Bayesian latent class models can be
employed to estimate the properties of combinations of dichotomous and continuous tests in the
absence of a gold standard. While we present two main models, one to analyse three dichotomous
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tests, and another including results from two dichotomous and one continuous test, the methods
are easily extendable to other combinations. We use these models to estimate the properties of our
DNA methods and the proportion of TB cases that are clustered. We compare results from the two
different models, and discuss the various assumptions behind each. Also considering results from
a model which (incorrectly) assumes IS6110 RFLP to be a gold standard, we show that accounting
for the imperfections in each method can lead to very different estimates. We also present, for the
first time, estimates of the risk factors for recent transmission that are adjusted for misclassification
errors.

Bayesian latent class models for dichotomous diagnostic tests arising from laboratory tests in
the absence of a gold standard test have been discussed by many in the past [11–15]. Similar
models for continuous data and ROC curves have been investigated [16], although they assumed
availability of a gold standard test result for each patient. Choi et al. [17] estimated disease
prevalence and predictive probabilities for individual level continuous test results in the absence
of a gold standard, but only considered results from a single test, and assumed the availability
of a training sample of test results to estimate the distributions of truly disease positive and truly
disease negative subjects. Erkanli et al. [18] proposed a non-parametric analysis using mixtures
of Dirichlet processes to model distributions within diseased and non-diseased subjects, leading to
non-parametric ROC curve estimation, but again assumed a gold standard test. Since it is often the
case in practice that results are available on more than one test, none of which can be considered
as a gold standard, we extend these models to allow consideration of one or more dichotomous
test results in addition to a continuous test, in the absence of a gold standard. Another unique
feature of our paper is that, to our knowledge, this is the first time such a latent class model has
been applied to diagnostic tests relying on DNA sequence data.

Section 2 describes the study setting and the three methods which give rise to our data. Section 3
presents our models, and discusses how to estimate not only the proportion of clustered cases,
but also the properties of each genetic method, as well as estimates of the effects of various
demographic factors on the rates of recent transmission. The results of applying our models to our
TB DNA data are given in Section 4, and we conclude with a discussion.

2. BACKGROUND

2.1. Study setting

The study setting and data collection have been described previously [8]. Briefly, the study pop-
ulation consisted of residents of Montreal diagnosed with active TB over a three-year period,
from 1 January 1996 to 31 December 1998. All diagnosed cases of TB are reported to the local
public health authorities, who enter clinical and demographic information into a notifiable disease
registry. Clinical isolates are archived at the provincial public health laboratory. Over 85 per cent
of all diagnosed cases have a positive culture.

One isolate per patient was selected for this study and IS6110 RFLP, MIRU-VNTR and spoligo-
typing were performed according to standard methods [4, 5, 7, 19]. IS6110 RFLP fingerprints were
clustered using Molecular Fingerprint Analyzer 2.0 (Stanford University).

2.2. Molecular methods

Standard IS 6110 RFLP: In molecular epidemiology studies, genotyping is used to characterize
the different M. tuberculosis isolates. Molecular genotyping identifies DNA sequences within the
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M. tuberculosis genome to determine the different M. tuberculosis isolates within a community.
If two clinical isolates from two different patients have identical (or, sometimes, very similar)
genotypes, it is considered likely that transmission of TB took place between them.

The standard genotyping method, IS6110 RFLP typing [4] is based on a small DNA sequence
that is capable of creating copies of itself within the genome [20, 21]. IS6110 RFLP typing cleaves
the M. tuberculosis genome and identifies the number of copies of IS6110 within the genome and
the size of the genomic DNA fragments they are on, creating a pattern that looks similar to a bar
code. Isolates with the same number of fragments of matching molecular weights are considered
clustered, and transmission of TB between those individuals is suspected. However, IS6110 RFLP
typing has significant drawbacks: it is time consuming, labour intensive, is suspected to have poor
specificity in isolates with five or less copies of IS6110, and can only produce results in three to
six weeks [22, 23]. Furthermore, it has been noted that the IS6110 fingerprint pattern can evolve in
an individual or within an epidemiologic cluster over time, resulting in band additions, deletions
or shifts [24, 25]. Therefore, this method will have far from perfect sensitivity and specificity for
detecting recent transmission.

Nearest genetic distance (NGD): Recently, Salamon et al. [10] created a measure of genetic
distance based on IS6110 RFLP. Assuming an exponential rate of transposition that depends on the
number of copies of IS6110 within the genome, they were able to create a measure of time since
two isolates diverged from a common ancestor. Isolates are considered clustered if the genetic
distance between them and the isolate they are genetically most related to (their nearest genetic
distance (NGD)) is below a certain cut-off value. This continuous measure allows for fingerprint
evolution, and depending on the cut-off chosen, can allow IS6110 RFLP to be used in isolates
with less than six copies of IS6110.

Spoligotyping and MIRU-VNTR: Two new PCR-based genotyping methods have recently been
developed. Spoligotyping measures the presence or absence of 40 unique sequences at a particular
site in the M. tuberculosis genome [6]. MIRU-VNTR measures the number of copies of repeated
sequences at 12 different locations in the genome [7]. Isolates are considered clustered when their
genotypes are identical. These methods are less expensive, less labour intensive, and faster to
perform compared to IS6110 RFLP typing, so that genotyping results can be obtained within a
week. This rapidity gives public health authorities the opportunity to include the results of these
methods as new cases are diagnosed. Many public health organizations have switched from IS6110
RFLP to spoligotyping and MIRU-VNTR for these reasons [26], even though their properties are
not yet well known.

For a review of these genotyping methods and their relevance to the understanding of TB
transmission, see Barnes and Cave [3].

3. STATISTICAL METHODS

We have data from two dichotomous methods (MIRU and spoligotyping), and IS6110 RFLP data,
which can be used in the conventional fashion as a dichotomous method (clustered or not), or
converted into a continuous measure using the NGD. We will perform separate analyses of the data
from these three methods, one for each form of IS6110 RFLP data, and also create a model that
allows the probability of clustering to depend on various covariates, including age, sex, country
of origin, and pulmonary disease status. All of our main models assume that none of our methods
provide perfectly accurate results, but we also compare our results to a very simple model that
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assumes IS6110 RFLP dichotomous data to be the gold standard, as has often been the case in
the past literature. Below we divide our methods into three subsections, first describing how to
estimate all unknown parameters when the data consist of three imperfect dichotomous tests. We
next present a model for the situation of two dichotomous tests with one continuous test, and finally,
the latter model is extended to include covariates that can modify the probability of clustering.

3.1. Three dichotomous tests

Bayesian estimation of the prevalence of a condition given results from one, two or three
dichotomous diagnostic tests has been previously discussed [12, 13], and we will first apply
these previously developed methods to detect clustering using data from our three DNA se-
quence tests. Let C+ and C− denote the true clustering status, ‘clustered’ and ‘not clustered’,
respectively. Similarly, let T+ and T− represent test positive and test negative outcomes on a
given dichotomous test, i.e. IS6110 RFLP, MIRU, or spoligotyping. In the absence of a perfectly
accurate method, estimating the clustering rate � will depend on the test characteristics, particularly
the sensitivity Se= P(T + |C+) and specificity Sp= P(T − |C−), where P(A|B) denotes the
conditional probability of A given B. For any single test, the probability of testing positive is
the sum of the probabilities of being a true positive and the probability of being a false positive,
i.e. P(T+)= p= �Se + (1 − �)(1 − Sp). In the single test situation when Se and Sp are exactly
known, algebraically solving for �, a prevalence estimate adjusted for sensitivity and specificity
is given by � = p − (1 − Sp)/(Se + Sp − 1). Note that in the case that Se= Sp= 1 (i.e. a gold
standard test) then � = p, and no adjustment is needed.

Test properties Se and Sp from each test are not usually exactly known, and so have to be
estimated along with �. This presents a non-identifiable estimation problem if data from only one
or two tests are available [12, 15, 27]. Formally, a model expressed via the density function f (y|�)
is identifiable if f (x |�1) = f (x |�2) for all x implies �1 = �2. In non-identifiable problems, it is clear
that the data alone cannot provide consistent estimation of �. Estimates can nevertheless be derived
via Bayesian methods, where prior information can separate out the likelihood of �1 from �2 when
the data cannot distinguish between these values. When using three conditionally independent
tests, however, the problem becomes identifiable, as there are seven degrees of freedom (from the
eight possible outcomes, see Table I) from which to estimate the seven unknown parameters (Se
and Sp from each of three tests, and �). In practice, this means that estimates of all parameters can
be found by maximum likelihood or Bayesian methods with non-informative prior distributions,
avoiding the reliance on finding good prior estimates of test properties. Unlike the one test situation,
however, this method relies on the unverifiable assumption of conditional independence between
the three tests. Tests are conditionally independent if their results are independent of each other,
conditional on the true status of the individual being tested. In our data set, however, three rather
different genetic methodologies are being used, so that conditional independence seems reasonable,
as the target DNA sequences used for each test of clustering are for the most part unrelated to one
another (but see Section 5 for further discussion).

To review how estimates from the three test model are constructed, consider Table I. When
three test results are available for each subject, each result could be either positive or negative,
leading to eight possible combinations for the observed data. It is convenient to also consider
the (latent) true status of each individual, leading to 16 possible combinations of observed and
latent data. Let Y1, . . . , Y8 be latent data that represents the number of true positive subjects out
of a, b, . . . , h, subjects in each possible category for the observed test results, respectively. Given
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Table I. Likelihood contributions of all possible combinations of observed and latent
data for the case of three diagnostic tests.

Test 1 Test 2 Test 3 Likelihood Number of
Truth result result result contribution per subject subjects

+ + + + �Se1Se2Se3 Y1+ + + − �Se1Se2(1 − Se3) Y2+ + − + �Se1(1 − Se2)Se3 Y3+ + − − �Se1(1 − Se2)(1 − Se3) Y4+ − + + �(1 − Se1)Se2Se3 Y5+ − + − �(1 − Se1)Se2(1 − Se3) Y6+ − − + �(1 − Se1)(1 − Se2)Se3 Y7+ − − − �(1 − Se1)(1 − Se2)(1 − Se3) Y8− + + + (1 − �)(1 − Sp1)(1 − Sp2)(1 − Sp3) a − Y1− + + − (1 − �)(1 − Sp1)(1 − Sp2)Sp3 b − Y2− + − + (1 − �)(1 − Sp1)Sp2(1 − Sp3) c − Y3− + − − (1 − �)(1 − Sp1)Sp2Sp3 d − Y4− − + + (1 − �)Sp1(1 − Sp2)(1 − Sp3) e − Y5− − + − (1 − �)Sp1(1 − Sp2)Sp3 f − Y6− − − + (1 − �)Sp1Sp2(1 − Sp3) g − Y7− − − − (1 − �)Sp1Sp2Sp3 h − Y8

Note: The parameter � represents the prevalence, and Sei and Spi represent the sensitivity
and specificity, respectively, of the i th test. The vector of observed numbers of subjects
with each possible combination of test results is given by (a, b, . . . , h), and within each of
these cells, we have the unobserved number of truly positive subjects, represented by the
vector of latent data, (Y1, Y2, . . . , Y8).

results from three dichotomous tests, one can calculate the probability of being in a cluster, given
by the positive predictive values. For example, if a subject is positive on all three tests, then

P(subject is a true positive) = �Se1Se2Se3
�Se1Se2Se3 + (1 − �)(1 − Sp1)(1 − Sp2)(1 − Sp3)

The numerator of this expression results from the probability of being positive, i.e. the prevalence �,
multiplied by the conditional probability of testing positively on each test, i.e. the three sensitivities.
Similar reasoning leads to the second expression in the denominator, and to the rest of the quantities
derived in Table I. The full likelihood function of the observed and latent data is proportional to
the product of each entry in the likelihood contribution column of Table 1 raised to the power of
the corresponding entry in the number of subjects column of the table.

Estimates are derived either by maximizing the likelihood function [27], or by Bayesian methods
via the addition of a prior distribution over the prevalence � and all test parameters, Sei and Spi ,
i = 1, 2, 3. We used beta prior distributions, and if uniform or other low information priors are
used, Bayesian methods will provide similar numerical estimates to maximum likelihood, but have
the added advantage of increased precision if reliable prior information is available, especially
in small data sets [12]. In either case, analytic solutions are not feasible, so the EM algorithm
or the Gibbs sampler are typically used in practice to maximize the likelihood or approximate
Bayesian posterior distributions, respectively. Once the above seven parameters are estimated,
marginal posterior distributions can easily be estimated for any function of these parameters using
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the Gibbs sampler output [28]. Therefore, posterior distributions for the likelihood ratios and the
probabilities of being truly positive given any combination of test results are available, as are the
positive and negative predictive values for each test.

For comparison purposes, we will also present results of the prevalence of recent TB transmission
and the sensitivities and specificities of MIRU and spoligotyping when considering IS6110 RFLP
to be a perfect reference standard. We will thus expose the potential bias in the evaluation of these
recently developed tests if misclassification is ignored.

3.2. Two dichotomous tests and one continuous test

Alternatively, we can treat the IS6110 RFLP data as continuous, using the NGD measure. We first
consider the situation where data from a single continuous test are available, and later show how
the likelihood function changes when there are also data available from one or more dichotomous
tests. We assume that the NGD values follow normal distributions, within each of the clustered and
non-clustered sub-populations, so that N(�C, �2C) is the density function for the results of the NGD
values conditional on being in a cluster, and N(�NC, �2NC) is the density function conditional on
not being in a cluster. Similar to the methods of Section 3.1, we assume that there are latent data
zi , i = 1, 2, . . . , n, representing the (unknown) true status of each subject, with zi = 1 if the subject
is clustered, and zi = 0 otherwise. The likelihood function for the observed and latent data is

f (X∼, Z∼|�, �C, �2C, �NC, �2NC) =
n∏

i=1

(
�

1√
2��C

exp

{
−1

2
(xi − �C)2/�2C

})zi

×
(

(1−�)
1√

2��NC
exp

{
−1

2
(xi−�NC)2/�2NC

})1−zi
(1)

where X∼ = (x1, x2, . . . , xn) are the observed NGD data, and Z∼ = (z1, z2, . . . , zn) are the latent data.
Thus, the likelihood contribution from each subject i is a normal distribution, with the contribution
going to either the first or second normal distribution in the above expression, depending on
whether the subject is considered to be clustered or not, respectively.

The problem reduces to one of fitting a normal mixture model, which can be solved viamaximum
likelihood or Bayesian methods [29]. We use the latter, and thus require prior distributions over
the parameter space (�, �C, �2C, �NC, �2NC). We will use a beta prior distribution for �, normal
distributions for �C and �NC, and uniform distributions over a finite range for �C and �NC.

Of course, once the parameters of the normal curves are estimated, one can estimate any
function of these parameters, including ROC curves [30]. In addition, it is of clinical interest to
know the probability of being in a cluster given any NGD value, x . Once (�, �C, �2C, �NC, �2NC)

have been estimated, the posterior probabilities P(clustered|x, �C, �2C, �NC, �2NC) are obtainable
via the formula

P(clustered|x, �C, �2C, �NC, �2NC)

=
�

1√
2��C

exp

{
−1

2
(xi − �C)2/�2C

}

�
1√
2��C

exp

{
−1

2
(xi − �C)2/�2C

}
+ (1 − �)

1√
2��NC

exp

{
−1

2
(xi − �NC)2/�2NC

}
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In addition to the continuous test, we also have our two dichotomous methods, MIRU (T1) and
spoligotyping (T2). The full likelihood function for data from all three methods, is a combination
of the above likelihood (1) with that from two dichotomous methods, a reduction of the formula
implied by Table I. Therefore, in this case, the full likelihood function is

f (X∼, Z∼, T1∼, T2∼|�,Se1, Se2,Sp1,Sp2, �C, �2C, �NC, �2NC)

=
n∏

i=1

(
�SeT1i1 (1 − Se1)

(1−T1i )SeT2i2 (1 − Se2)
(1−T2i ) 1√

2��C
exp

{
−1

2
(xi − �C)2/�2C

})zi

×
(

(1 − �)(1 − Sp1)
T1iSp(1−T1i )

1 Sp(1−T2i )
2 (1 − Sp2)

(1−T2i )

× 1√
2��NC

exp

{
−1

2
(xi − �NC)2/�2NC

})1−zi
(2)

where T1∼ = (T11, T12, . . . , T1n) and T2∼ = (T21, T22, . . . , T2n) are the results for the two diagnostic
tests across all n subjects, respectively.

We use beta prior distributions on �, Se1, Se2, Sp1, and Sp2, and normal/uniform priors for
the normal parameters, as described above. We again use the Gibbs sampler for inferences, which
again means that the posterior distributions from any function of our unknown parameters, such
as the probability of being clustered given the results from one continuous and two dichotomous
tests are available, as are all likelihood ratios from all combinations of tests.

Non-statisticians would not be usually be sufficiently expert to fit the above models by pro-
gramming the methods themselves. Therefore, user-friendly Windows-based software programs
implementing all of the above models, including generation of ROC curves and graphs of the
probabilities of clustering conditional on the posterior distributions of all parameters, are freely
available from www.medicine.mcgill.ca/epidemiology/Joseph/.

3.3. Inclusion of covariates

Rather than using fixed prior distributions, employing hierarchical modelling allows investigation
of the effects of any covariates on the prevalence � or any of the test properties, including any of
the sensitivities, specificities, or parameters from the normal distributions of the continuous test.
While one can directly model the � and � parameters via hierarchical distributions, for example,
using the gamma distribution, we follow a more common method using the logistic function.

Here, it is of greatest interest to public health officials to investigate whether any demographic
factors may influence the rate of recent transmission. We thus focus on a model for the prevalence
of clustering, although similar models can easily be constructed for the other parameters. To replace
the beta prior distribution for �, let �i represent the probability of clustering for subject i , and
model as follows:

�i = logit(�i ) = log

(
�i

1 − �i

)

�i ∼N(��i
, �2�)

��i
= � + �1agei + �2sexi + �3origini
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where, for example, age, sex, and country of origin are assumed to be the covariates of interest. The
posterior distributions of exp (�i ), i = 1, 2, 3, then estimate the odds ratios for the corresponding
covariates. Normal prior distributions can be used for the regression parameters � and �i , i = 1, 2, 3,
and a uniform prior distribution can be used for ��.

4. RESULTS

Data were available on 393 subjects with recently diagnosed active TB in Montreal. The average age
was 45.1 (SD= 21.1), 44.7 per cent of cases were female, 59.2 per cent were smear positive cases
of TB, and 81.9 per cent of cases were foreign born. The mean NGD value was 98.9 (SD= 55.4),
with range from 11.3 to 270.6 (Figure 1). For each genotyping modality, we determined whether
isolates had a unique pattern in the data set (referred to as negative in our models) or whether
that isolate had a pattern matching that of another isolate (called positive). From this, the rate of
subjects positive on MIRU was 45.8 per cent, while 65.4 per cent were positive on spoligotyping,
and 19.1 per cent were positive on standard IS6110 RFLP typing (Table II). All three methods
agreed on the clustering status of only 117 of the 393 cases, less than 30 per cent agreement. Of
note is that spoligotyping found 197 cases positive that were categorized as negative by IS6110
RFLP, and 104 of these 197 cases were also labelled as positive by MIRU. The large discrepancies
in results across methods means that at least two of the three methods perform very poorly, if not
all three, casting doubt on the clinical utility of these methods. This certainly is true when results
of each method are used alone, and while the situation improves if information from all methods
is combined, as is the case here, considerable uncertainty remains.

Figure 1. Histogram of the nearest genetic distance (NGD) values from 393 subjects.
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Table II. Dichotomous data on 393 subjects, all tested with
standard IS6110 RFLP, MIRU, and spoligotyping.

IS6110 RFLP MIRU Spoligotyping Number of cases

+ + + 35
+ + − 2
+ − + 25
+ − − 13
− + + 104
− + − 39
− − + 93
− − − 82

Table III. Posterior medians and 95 per cent credible intervals for the prevalence of clustering, and the
sensitivities and specificities of the three tests for clustering from the analysis of the data in Table II.

Variable Posterior median 95 per cent credible interval

Prevalence of clustering 0.55 (0.26, 0.77)
IS6110 RFLP Sensitivity 0.26 (0.19, 0.39)

Specificity 0.89 (0.81, 0.95)
Positive predictive value 0.74 (0.40, 0.93)
Negative predictive value 0.50 (0.26, 0.79)

MIRU Sensitivity 0.61 (0.51, 0.91)
Specificity 0.72 (0.62, 0.90)
Positive predictive value 0.73 (0.46, 0.93)
Negative predictive value 0.61 (0.35, 0.95)

Spoligotyping Sensitivity 0.94 (0.78, 0.99)
Specificity 0.67 (0.44, 0.98)
Positive predictive value 0.77 (0.38, 0.99)
Negative predictive value 0.91 (0.57, 0.99)

4.1. Results from three methods, all treated as dichotomous

As discussed above, when three conditionally independent dichotomous tests are used, the problem
is identifiable, and no substantive prior input is required for reasonable Bayesian estimation of all
parameters. We therefore used uniform (Beta(1,1)) prior distributions over the feasible range (from
0 to 1) for all seven parameters, including the prevalence of clustering �, and the sensitivities and
specificities of the three diagnostic tests. The results, based on the data in Table II, are summarized
in Table III.

Treating IS6110 RFLP as a gold standard would result in a clustering prevalence of 19.1 per cent
with 95 per cent confidence interval extending from 15.3 per cent to 23.3 per cent, a relatively
small interval. This would imply that approximately 80 per cent of cases are reactivations of
previously acquired disease. Considering information from all three methods combined, however,
the clustering prevalence rises to 55 per cent, with 95 per cent credible interval of 26–77 per cent,
a much wider interval. This is largely driven by not considering any of the methods to be a perfect
gold standard, and by the large discrepancies between results from the different methods. The
sensitivity of IS6110 RFLP is estimated to be only 26 per cent, but again with a wide credible
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Table IV. Positive likelihood ratios (LR+, see the text for definition) and 95 per cent credible intervals
for clustering for each possible test combination.

IS6110 RFLP MIRU Spoligotyping LR+ (95 per cent credible interval)

+ + + 17.8 (6.78, 282.10)
+ + − 0.52 (0.02, 5.77)
+ − + 3.89 (0.30, 69.56)
+ − − 0.10 (0.0041, 0.69)
− + + 5.8 (2.58, 92.30)
− + − 0.17 (0.0070, 2.00)
− − + 1.23 (0.17, 22.12)
− − − 0.037 (0.0015, 0.13)

interval. Since the sensitivity of ‘exact match’ IS6110 RFLP may be low, the criteria for an
IS6110 RFLP match are sometimes relaxed, so that two fingerprints with one band difference are
considered as clustered. Allowing for this definition here raises the clustering rate from 19 to 43
per cent, much closer to the rate found by our latent class model, and well within the credible
interval from this analysis.

The properties of MIRU and spoligotyping were also generally poor, with the exception of
the sensitivity of spoligotyping. It is interesting to compare these results with the properties
which would be estimated if IS6110 RFLP is considered as the gold standard. The sensitivity and
specificity of MIRU would have been 49 per cent (95 per cent CI 38–61 per cent) and 55 per cent
(95 per cent CI 49–61 per cent), respectively. The same properties for spoligotyping would have
been estimated as 80 per cent (95 per cent CI 69–88 per cent) and 38 per cent (95 per cent CI
33–44 per cent), respectively. All of the point estimates are lower and all intervals narrower than
the corresponding estimates from the Bayesian latent class model, as shown in Table III.

Table IV presents the positive likelihood ratios for all possible combinations. These likelihood
ratios represent the factor which the pre-test odds of being clustered need to be multiplied by to
determine the post-test odds of being clustered. Note that the term ‘likelihood ratio’ is used in
the sense of the diagnostic testing literature, and is not equivalent to the LR test from standard
hypothesis testing. When all three tests classify the subject as positive (LR+ = 17.8) or negative
(LR+ = 0.037), a large degree of confidence can be placed in the test results. Although the credible
intervals are wide, a subject with three positive results has at least six times the odds of being
clustered post-test compared to pre-test, using the lower limit of the LR+ of 6.78. Similarly, a
subject with three negative tests has at least seven times less the odds of being clustered post-test
compared to pre-test, using the reciprocal of the upper credible interval limit for LR+ of 0.13.
When at least one of the methods is discordant with the other two, results are much less certain,
and only when MIRU and spoligotyping both agree do the LR+ credible intervals not overlap
with the null value of 1.

4.2. Results when IS6110 RFLP is treated as continuous NGD data

When analysing the IS6110 RFLP data converted into the continuous NGD measure, we used
N(0, 10,000) prior distributions for the unknown means, and uniform[0, 200] distributions for the
unknown standard deviations. Uniform[0,1], or Beta(1,1), prior distributions were used for the
properties of the two dichotomous methods and for the prevalence of clustering.
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Table V. Posterior medians and 95 per cent credible intervals for the prevalence of clustering, the
sensitivities and specificities of the two dichotomous tests for clustering, and the posterior means

and medians for the NGD data.

95 per cent
Variable Posterior median credible interval

Prevalence of clustering 0.25 (0.16, 0.37)
NGD Mean for unclustered subjects 118.6 (110.5, 127.4)

SD for unclustered subjects 48.6 (44.4, 53.4)
Mean for clustered subjects 38.4 (26.1, 53.4)
SD for clustered subjects 21.3 (10.4, 32.8)

MIRU Sensitivity 0.78 (0.67, 0.89)
Specificity 0.65 (0.58, 0.72)
Positive predictive value 0.43 (0.27, 0.59)
Negative predictive value 0.90 (0.80, 0.96)

Spoligotyping Sensitivity 0.97 (0.90, 0.99)
Specificity 0.45 (0.38, 0.54)
Positive predictive value 0.37 (0.24, 0.54)
Negative predictive value 0.98 (0.92, 0.99)

As shown in Table V, the estimated mean NGD value for clustered cases was close to 40, while
the mean for unclustered cases was approximately 120, about three times as large. Comparing
results from Table III to those in Table V, the most striking difference occurs in the estimated
clustering rate, where the posterior median is cut from 55 to 25 per cent. This is presumably in
large part owing to the increased weight of the IS6110 RFLP results, as continuous tests carry
more information compared to dichotomous test values. When results from three dichotomous tests
are used, all contribute roughly equally to the final results, the difference in information content
from one test to another largely depending on their sensitivities and specificities. However, when
a continuous test is used, the information content for that test is largely determined by the ratio
of heights of the two normal curves for any given observed NDG value, and these ratios can
be very large for some points. In practice, this means that the data from the continuous test can
sometimes overwhelm that from the dichotomous tests. The sensitivities and specificities of MIRU
and spoligotyping also vary between the two analyses, but with considerable overlaps between the
two sets of credible intervals. As is the case with the dichotomous analysis reported in the previous
section, none of the parameters are accurately estimated, even though close to 400 subjects were
available for analysis.

Figure 2 presents a ROC curve for NGD, which shows that regardless of the cut-off value
chosen, the test provides far from definitive classification into clustered and non-clustered cases.
Nevertheless, a range of NGD cut-off values provide sensitivities and specificities both above 80
per cent. For example, a cut-off value of 70 on the NGD scale gives a sensitivity of 97 per cent and
a specificity of 81 per cent. Figure 3 presents the probability of a case being clustered, depending
on the four possible groupings of the two dichotomous methods, and as a function of the continuous
NGD value. Note in particular the weight of the NGD data for larger values, where, regardless of
the MIRU and spoligotyping outcomes, the probability of being in a cluster approaches zero.

Comparing results from Table IV with those in Figure 3 highlights the main difference when
switching the form of IS6110 RFLP data used from dichotomous to continuous. When all three
tests are dichotomous, the data seems to indicate very poor sensitivity of IS6110 RFLP, as both
MIRU and spoligotyping are positive much more often compared to IS6110 RFLP. Since all three
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Figure 2. ROC curve for the nearest genetic distance (NGD) measure.

Figure 3. Probability of being clustered as a function of the nearest genetic distance (NGD) grouped by
the four possible outcomes of the MIRU and spoligotyping dichotomous tests.
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Table VI. Posterior medians and 95 per cent credible intervals for the odds ratios
for the effects of covariates, using data from the two dichotomous tests (MIRU and

spoligotyping) and one continuous test (NGD) for clustering.

Variable Posterior median 95 per cent credible interval

Age 1.01 (0.99, 1.03)
Sex (1= female, 0=male) 1.22 (0.57, 2.67)
Canadian born 3.89 (1.41, 13.14)
Haitian born 14.84 (5.59, 53.04)
Smear-positive pulmonary disease 5.81 (1.69, 40.04)
Smear-negative pulmonary disease 4.29 (1.44, 24.46)

Note: For both smear-positive and smear-negative pulmonary disease, the reference category
is extrapulmonary disease.

methods carry roughly the same amount of information (since all are dichotomous), IS6110 RFLP
fares poorly in this analysis, and the prevalence rises due to low estimated sensitivity of IS6110
RFLP. When IS6110 RFLP data are used in a continuous fashion, it carries more weight than
the dichotomous methods because of the increased information content of continuous values from
normal curves as discussed above.

4.3. Results on covariates

The posterior distributions of the effects of the covariates are summarized in Table VI. While
there was no evidence for an effect from age or sex, Haitian-born cases were more likely to
be clustered, as were Canadian-born cases compared to those non-Canadian not born in Haiti.
A TB diagnosis can involve smear-positive pulmonary disease (highly contagious), smear-negative
pulmonary disease (much less contagious), or extrapulmonary disease (not usually transmissible).
Consistent with this, using extrapulmonary disease as a comparator, both positive and negative
smear pulmonary disease were associated with clustering, as shown in Table VI.

In all cases, the credible intervals were wide, precluding definitive conclusions about any of the
variables investigated. In large part, this is because of the uncertainty induced by the measurement
error in the outcomes in the logistic regression model, demonstrating the increased accounting of
all inherent uncertainty when performing analyses without a gold standard. Once again, this casts
doubt on any analyses of covariates performed without taking into account this considerable extra
uncertainty [15, 31].

5. DISCUSSION

We have illustrated how the estimation of TB clustering rates using data from threeM. tuberculosis
genotyping techniques can be accomplished using Bayesian latent class models. To our knowledge,
this is the first application of these models to TB clustering data. Our methods incorporated the
information from all three methods into a single model, while not considering any method to be
a gold standard. Both dichotomous and continuous IS6110 RFLP data were modelled, likelihood
ratios and the individual probabilities of being clustered given any combination of results were
produced, covariates were incorporated into a hierarchical version of the model, and in the case
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of continuous data, ROC curves were produced. In particular, we have improved on the previous
work [8, 10, 12–15, 32–34] by considering continuous tests, and extending the model to include
covariates.

Considering that no method is a gold standard, the wide credible intervals indicate considerable
uncertainty about the true rate of clustering in Montreal, and about the properties of the three
methods, even though data from almost 400 cases were available. It is clear that country of origin
and both smear-positive and smear-negative pulmonary disease are associated with increased risk
of recent transmission, but wide credible intervals accompany these results as well.

The wide credible intervals resulting from our analyses are not surprising, given previous work
on the large sample sizes typically required in the analysis of data in the absence of a gold standard
[32, 33]. As these papers showed, if misclassification errors are to be fully accounted for, data from
tens of thousands of cases are often required for accurate prevalence and test property estimation,
rather than the few hundred often used in practice, and indicated by standard binomial sample size
calculations. Continuous tests potentially provide more information per subject, but further work
on this sample size problem is required to specify the magnitude of this improvement.

Our results indicate that poor sensitivity of standard IS6110 RFLP leads to estimates of clustering
that are likely too low. Estimation of the properties of PCR-based tests indicates that these methods
are also insufficiently accurate to be used alone. Improved knowledge of the properties of these
methods can lead to inclusion of substantive prior distribution into the modelling effort, providing
more accurate inferences (assuming that the prior information is accurate). While our findings
suggest the need to interpretM. tuberculosis genotyping results with caution, IS6110 typing remains
the best method, at least in a low-incidence setting where the population ofM. tuberculosis isolates
shows a high degree of genetic diversity. This is in large part because IS6110 typing has the slowest
evolution rate.

There are a number of limitations to our data which indicate the need for further work in this
area. First, the interval defining ‘recently transmitted’ disease is often considered to last up to two
years after infection with M. tuberculosis. Therefore, our three-year data set may be too short to
obtain the most reliable estimates; two-year lead-in and lag phases might lead to higher accuracy.
Second, we have assumed that all M. tuberculosis strains evolved at similar rates, an assumption
not yet verified in the literature. Third, as discussed by Murray et al. [35], band assignment and
matching errors, as well as under-sampling on cluster analysis may add further error, although these
problems were minimized here with a sampling rate of over 90 per cent [8], and the utilization
of software which minimized band assignment and matching errors [10]. Fourth, the assumption
of conditional independence between tests may not exactly hold, because the evolution of the DR
region can be mediated by IS6110 activity. We believe that any such activity will be quite small and
have little effect on the results, because the most common means of spoligotype evolution involved
deletion of spacers, with IS6110-mediated changes accounting for a minority of variability [36].
If necessary, methods are available that can account for conditional dependence between tests
[34, 37], and these can be extended to continuous data. For example, the normal mean can be
made a function of the results of one or both of the dichotomous tests. When three conditionally
dependent tests are used the model can become non-identifiable, so adding additional tests, if
available, could be useful. Past studies, however, have sometimes concluded that a simpler model
that ignores conditional dependence may outperform a model that includes this component [15].
Finally, further studies could check whether the predictions made by the model are confirmed
by contact tracing, but contact tracing itself is yet another imperfect test for clustering. It would
similarly be interesting to check how the methods work in higher incidence settings.
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Importantly, we assumed that our continuous test results were normally distributed across the
population, conditional on cluster status. This assumption is routinely made in the analysis of
continuous diagnostic test data, and various authors have shown considerable robustness of the
ROC curve to deviations from normality [38]. Clearly, other distributions can be used, and equations
(1) and (2) modified as needed, with estimation proceeding via the Gibbs sampler. Further work
on non-parametric models for continuous diagnostic test data along the lines of Erkanli et al. [18]
would also be useful.
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