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Summary. Suppose that the true model underlying a set of data is one of a finite set of candidate models,
and that parameter estimation for this model is of primary interest. With this goal, optimal design must
depend on a loss function across all possible models. A common method that accounts for model uncertainty
is to average the loss over all models; this is the basis of what is known as Läuter’s criterion. We generalize
Läuter’s criterion and show that it can be placed in a Bayesian decision theoretic framework, by extending
the definition of Bayesian A-optimality. We use this generalized A-optimality to find optimal design points in
an environmental safety setting. In estimating the smallest detectable trace limit in a water contamination
problem, we obtain optimal designs that are quite different from those suggested by standard A-optimality.
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1. Introduction
Optimal design can be used to sharpen the inferences that
will be carried out following an experiment. There is an ex-
tensive literature on this subject when the underlying model
is presumed known, but far less has been written on optimal
design when there is uncertainty about the underlying model.

In this article we examine the question of robust optimal
design under model uncertainty. When the model is unknown,
the design criterion must work well regardless of which model
is correct. Therefore, the optimal design should ensure that,
on average, our estimator performs well over all models and,
in addition, will not vary much amongst those models with
high posterior probability. It is in this sense that the design
criterion we propose is robust.

We begin by describing how optimal design might be em-
ployed in a particular environmental safety application. Fre-
quently, it is desired to ascertain whether a given sample,
for example, water, is contaminated in some way. Possi-
ble contaminants include bacteria and chemical substances
that arise from environmental pollution. Often these contam-
inants occur in trace amounts and their presence must be de-
tected by sophisticated means, such as chromatography and
spectrometry (Kurtz, 1985).

Whatever the method used, the contaminant is very rarely
observed directly, but rather readings are taken on some dif-
ferent scale. The assumption is made that there is a paramet-
ric relationship between the level of contamination and the
measurements actually recorded. The curve of the hypothet-
ical function relating the trace contamination-measurement
pair is called the calibration curve of the particular measure-
ment method. Calibration curves are constructed from de-
signed experiments in which samples with different known
contamination levels are analyzed, and the calibration curve
fitted to the data.

An important characteristic of any method of trace residue
analysis is the smallest detectable trace level that can be as-
certained. Therefore, it is important to choose a design that in
some sense will optimally estimate the detection limit. Several
authors in Kurtz (1985) describe various frequentist methods
for determining the detection limit LD . Whether the approach
proposed is frequentist or is Bayesian, as we shall propose,
there are several features inherent to the problem. First, the
selection of known trace amount levels for the experiment to
determine the LD is important (Currie, 1985; Mitchell, 1985).
Second, a model must be specified relating the trace contami-
nation amount to the measurement recorded. Although this is
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commonly taken to be a simple linear model, it is recognized
that model uncertainty can affect the results, and quadratic
models have frequently been proposed as alternatives to lin-
ear models (Kurtz, Rosenberger, and Tamayo, 1985). Finally,
note that the parameter LD is common to all models, i.e., the
interpretation of LD remains the same from model to model.

The design problem here is to select experimental contami-
nation values from the range of all possible values, in order to
optimally estimate LD . Since we are uncertain about whether
the model is linear or quadratic, our design criterion must
work well with either model. In analogy to frequentist termi-
nology, we consider both “variance” and “bias,” where with
“variance,” we refer to the performance of the selected de-
sign within each model, with “bias,” refer to the performance
of the design between models, i.e., how well the same design
performs across a variety of plausible models. This viewpoint
has also been taken by Box and Draper (1959), who show
that, in the context of prediction, the “bias” can often be
more important than the “variance.” We shall show that by
basing their design criteria on a weighted sum of losses of
a certain form, other authors (Läuter, 1974, 1976; Cook and
Nachtsheim, 1982) considered, implicitly, only “variance.” We
expand on these ideas in Section 2.

The outline of the article is as follows. Section 2 discusses
the broader issue of optimal design in the presence of model
uncertainty, beginning with a brief introduction to classi-
cal optimal design assuming the model is known. We review
Läuter’s criterion, which addresses a form of model uncer-
tainty, and propose how it may be generalized. In Section 3,
we show that the generalized Läuter’s criterion may be for-
mulated in a Bayesian decision theoretic context. We then
define a generalized model robust Bayesian A-optimal design
criterion. We return to the environmental water contamina-
tion problem to illustrate the difference between standard and
generalized model robust A-optimality in Section 4, and con-
cluding remarks are found in Section 5.

2. Optimal Design and Model Uncertainty
Most optimal design criteria assume that the model is known
before the data are collected. In practice, however, we are
often uncertain of the final model, even at the time of data
analysis. From a frequentist viewpoint, a model usually refers
to the likelihood function, but in the Bayesian paradigm, it
includes not only the likelihood, but also the specification of a
joint prior distribution over all unknown parameters. Model
uncertainty may therefore arise from uncertainty about the
prior distribution, the likelihood function, or possibly both.
In the sequel, our use of the term “model” should be clear
from the context, in that it will refer to the likelihood func-
tion alone when discussing frequentist inference, and to the
likelihood/prior pair when discussing Bayesian methods. In
either case, optimal designs derived from “model-known cri-
teria,” i.e., criteria that assume the correct model is fully
known a priori, can depend strongly on the assumed model.
In many situations, optimal designs concentrate observations
at a small number of support points and can perform poorly if
the assumed model is not correct. For example, in simple lin-
ear regression models when estimation of the slope is the goal,
optimal designs tend to place design points at the extremes of
the range of the independent variable. However, these designs

can perform very poorly if the true model is in fact quadratic.
Therefore, when the true model is unknown and there are pa-
rameters that retain their meaning from model to model, it
is important that data be collected in such a way that the
resulting parameter estimates are robust to model ambiguity.

Läuter (1974, 1976) allowed for model uncertainty in the
choice of design by averaging design criterion functions over
a finite set of possible models. This approach was adapted by
Cook and Nachtsheim (1982) to optimal design for polyno-
mial regression models when the degree of the polynomial is
unknown, and by Dette (1993) for more general linear regres-
sion models. Optimal design for polynomial regression of un-
known degree was more thoroughly investigated by Dette and
Studden (1995) using as a criterion function the weighted p-
mean of the relative efficiencies, which corresponds to Läuter’s
criterion when p = 1. They define relative efficiency of a de-
sign measure for a specified model in terms of the ratio of
the determinant of the information matrix for the proposed
design relative to that for the D-optimal design. The final
criterion function of the design measure, ξ, is of the form
{
∑l

i=1 wi[rel effi(ξ)]
p}1/p, where l is the upper bound of the

degree of the polynomials considered plausible and wi reflects
a prior belief in the polynomial model of degree i.

A related but separate issue is that of optimal design for
model identification. See, for example, Hill (1978). Our discus-
sion here, however, focuses on robustness rather than model
identification.

In the sequel, it is assumed that as we change from model to
model, the parameters of main interest retain their interpre-
tations. This is true in our water contamination application,
for example, where the minimum detectable limit is the same
regardless of the shape of the calibration curve.

When the correct model is assumed known a priori, classi-
cal optimal design theory may be summarized as follows: As-
sume that given a parameter θ ∈ Θ, the distribution of data
y ∈ Y depends on the design variable x ∈ X and θ through
a model M, usually defined through the likelihood function
f(y | θ). The goal is to select a design x which will lead to
optimal estimation of θ. Let θ̂ be an estimator of θ. A good
design criterion ensures that a convex function φ(Σ(θ̂)) of the
covariance matrix Σ(θ̂) be as small as possible, on average,
over the data y. Hence, an optimal design, xopt, should min-

imize φ(Σ(θ̂)). The most commonly used optimality criteria
include D, A, and E-optimality, which correspond to φ being
defined as log(det), tr and the maximum eigenvalue of Σ(θ̂),
respectively, where det(·) is the determinant function and tr(·)
is the trace of a matrix. Minimizing φ(Σ(θ̂)) is desirable in D,
A, and E-optimality, since small values of φ are associated
with small values of the variance of the estimators. See Silvey
(1980).

In standard linear regression problems, optimal designs can
be found that are independent of the true value of the un-
known parameter θ. In nonlinear problems, however, optimal
designs usually depend on θ. Bayesian and frequentist meth-
ods handle these nuisance parameters differently. In the above
frequentist setting, unknown values of θ are given fixed values
that are hopefully close enough to the truth to provide good
designs. The only integration that occurs, then, is in averag-
ing the criterion function, φ(Σ(θ̂)), over all possible data sets,
according to the likelihood function with the assumed value
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of θ. On the other hand, given a design x, Bayesian methods
form the predictive distribution for the data y based on a prior
distribution for θ, f(y |x) =

∫
f(y | θ, x)f(θ) d θ, where f(y |x)

in the predictive distribution given design x, f(y | θ, x) is the
likelihood function given design x, and f(θ) is the prior distri-
bution for θ. Here, a design is typically chosen that minimizes
the design criterion φ(Σ(y)), where one averages over the dis-
tribution of the data y implied by f(y |x), and Σ(y) is the
posterior covariance matrix of θ. Hence, there are two levels
of integration, first over the value of θ, according to the poste-
rior distribution of θ given each possible data set y, f(θ | y, x),
and then over the unknown data y, according to the predictive
distribution f(y |x). Whether frequentist or Bayesian, stan-
dard optimal design criteria all assume that f(y | θ, x) and, in
the case of Bayesian criteria, that f(θ) are known.

Läuter (1974, 1976) proposed the following criterion when
the “true” unknown model is one among m candidate mod-
els, {M 1, M 2, . . . ,Mm}, for some finite m. We shall adapt
Läuter’s criterion to a Bayesian setting and then generalize
our Bayesian version of Läuter’s criterion.

Läuter’s criterion: Let x be a given design, M be a
given model (likelihood function). Let a(M) be the action
(estimator) taken under Model M. Let φi,i(x, a(Mi )) denote
the design criterion function whose arguments are as follows:
the first subscript i, indicates that the predicted data are av-
eraged over model Mi . The second subscript i indicates that
the action a = a(Mi ) selected is also determined by the “pre-
sumed true” model Mi . Finally, the anticipated data are as-
sumed to be collected under design x. Suppose further that
the “true” model is, in fact, unknown and is one among m
candidate models {M 1, M 2, . . . ,Mm} for some finite m. Given
weights wi , an optimal design, xopt is a design that optimizes
(say, minimizes) the criterion function

ψ(x) =

m∑
i=1

wiφi,i(x, a(Mi)), (1)

over all possible designs x ∈ X .
Thus, the function ψ(x) in (1) is composed of two averages.

First, φi,i(x, a(Mi )) is implicitly an average risk over the data
predicted by model Mi when action a(Mi ) is taken. The two
subscripts for φ are used to emphasize that the predicted data
are generated under model Mi , which is also used to deter-
mine the action a(Mi ). The reason for this apparent pedantry
will become clear in the generalization which follows. Second,
ψ(x) accounts for the uncertainty in the choice of model by
providing a weighted average over the m models.

Now, even though (1) was originally proposed by Läuter as
a frequentist criterion function, it may be easily interpreted
as a Bayesian criterion function. The weight wi may be in-
terpreted as corresponding to the prior probability of model
Mi , i = 1, 2, . . . ,n, and the model is assumed to include both
a prior and a likelihood specification. We refer to this in-
terpretation as Läuter’s Bayesian criterion function, and as-
sume henceforth that all discussion is within the Bayesian
paradigm. Once the data are collected, however, it is natural to
first compute parameter estimates predicated on each model
and then account for model uncertainty by averaging these
estimates with respect to the posterior model probabilities.
Since, presumably, the data have in fact been generated by

a unique model, in some instances few, if any, of the model
specific estimates may be optimal.

This possibility arises because in the eventual analysis, the
action taken may not be induced by the “true” model that
generated the data. To guard against this eventuality, we
should select a design that is robust in two senses:

(i) Actions a(Mi ) induced by data from models Mi should,
on average, be “good” for estimating θ. The average
here is a weighted average with weights wi .

(ii) Estimates using actions a(Mj ), j = 1, 2, . . . ,m should
not differ much from one another, especially for those
models that have the highest posterior probabilities of
being selected (see Theorem 2 below). That is, in an
average sense, we should not risk much by selecting a
model Mj and basing our inferential procedure on it,
even though our data were generated under model Mi ,
i 	= j, provided that Mi and Mj have relatively high
posterior probabilities of being selected.

By choosing the criterion functions φi,i of Läuter’s Bayesian
criterion appropriately, we may account for robustness crite-
rion (i). In order to include criterion (ii), however, we need an
extended definition of the φi,i’s.

Generalized Läuter’s Bayesian Criterion: Let π∼ =
(π1, π2, . . . , πm) be the vector of prior probabilities corre-
sponding to models M 1, M 2, . . . ,Mm . Let φi,M∼

= φi(x, a∼, π∼)
denote the risk function associated with using the procedures
a(Mj ), j = 1, 2, . . . ,m, on data collected under Mi , where
a∼ = (a1(M1), a2(M2), . . . , am(Mm), and M∼

= 1, 2, . . . ,m. The
ith criterion function φi,M∼

differs from φi,i in that instead
of anticipating that the action will necessarily be based on
the “true” model Mi , our eventual action may be based on
any one of the m candidate models, whose precedence will
depend on the prior probabilities π∼ through the obtained
posterior probabilities.

Definition: The criterion function

ψGL(x) =

m∑
i=1

wiφi,M∼
(x, a∼, π∼)

is called the generalized Läuter’s Bayesian criterion (GLBC)
function. A criterion that depends on the optimization (say,
minimization) of ψGL with respect to x is called a GLBC. In
Section 3, we move from the above generalities to show a precise
link between the GLBC and a fully Bayesian decision theoretic
approach.

3. A Bayesian Decision Theoretic Formulation
Let θ ∈ Θ ⊂ Rp be an unknown parameter whose meaning is
independent of the choice of model M, as discussed in Sec-
tion 2. Let a(M) ∈ Θ denote an estimator of θ. In practice,
a(M) evaluated at (x, y), namely, a(M , x, y), will depend on
the observed data y whose prior predictive distribution will
depend on the prior distribution and on the design x.

Define a =
∑m

j=1 a(Mj)P (M = Mj | y), where a(Mj ) is
the estimator of θ selected under model Mj . Let L =
LMj

(θ, x, y, a) ∈ R be the loss at θ ∈ Θ associated with the
design x, the observed data y collected under Mj , and the aver-
age action a. Note that we allow the alternative actions a(Mj ),
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mentioned in Section 2 to enter the loss function through the
weighted average, a. Given a data set y, define

EM,θ|y(Lθ,x,y,a) =

m∑
j=1

∫
Θ

LMj
(θ, x, y, a)P (M = Mj | y)

× f(θ |M = Mj , y) dθ.

Define the risk, R(x, a), associated with design x as the aver-
age of the above expected loss over the predictive distribution
of y, given by

R(x, a) =

∫
Y
EM,θ |y(LM (θ, x, y, a))f(y |x) dy, (2)

where

f(y |x) =

m∑
j=1

∫
Θ

f(y |x, θ,M)f(θ |Mi) dθ × πj

is the prior predictive distribution of y for design x, aver-
aged over all models, Mj , j = 1, 2, . . . ,m, and where πj =
P (M = Mj ). Theorem 1 below states that the GLBC func-
tion, ψGL(x), can be expressed as the risk, R(x, a), as defined
above, so that the GLBC can be interpreted as an expected
loss in a Bayesian decision theoretic setup.

Theorem 1: Given Mi , for i = 1, 2, . . . ,m, let

φi,M∼
= φi(x, a∼, π∼)

=

∫
Y

{∫
Θ

LMi
(θ, x, y, a)f(θ |Mi, y) dθ

}
f(y |Mi, x) dy.

Then R(x, a), as defined by (2) is expressible as

R(x, a) =

m∑
i=1

wiφi(x, a, π∼),

for weights wi , i = 1, 2, . . . ,m, where wi = πi.

Proof. By definition,

R(x, a)

=

∫
Y
EM,θ |y (LM (θ, x, y, a)) f(y |x) dy

=

∫
Y

m∑
j=1

∫
Θ

LMj
(θ, x, y, a)P (M = Mj | y)

× f(θ |M = Mj , y) dθf(y |x) dy

=

m∑
i=i

∫
Y

∫
Θ

LMi
(θ, x, y, a)f(θ |Mi, y)f(y |Mi, x) dθ dy×πi

=

m∑
i=i

πi

∫
Y

∫
Θ

LMi
(θ, x, y, a)f(θ |Mi, y)f(y |Mi, x) dθ dy

=

m∑
i=i

wiφi(x, a, π∼).

Corollary: Suppose that θ is scalar valued and that

LMi
(θ, x, y, a) = λEθ |Mi

{
θ −Eθ |Mi

(θ |x, y,Mi)
}2

+(1 − λ)
{
Eθ |Mi

(θ |x, y,Mi) −E(θ |x, y)
}2

,

where

E(θ |x, y) =

m∑
j=1

E(θ |x, y,Mj) × P (M = Mj |x, y),

and where 0 ≤ λ ≤ 1. Then the GLBC function may be expressed
as ∫

Y
[λEM{varθ|M (θ |x, y,M)}

+ {(1 − λ)varM (Eθ|M (θ |x, y,M))]}f(y |x) dy. (3)

More generally, if θ ∈ Rp is vector valued, the integrand of
(3) becomes

tr[λEM (covarθ |M (θ |x, y,M))

+ (1 − λ)(covarMEθ|M (θ |x, y,M))], (4)

where tr(·) is the trace function and covar(·) denotes the co-
variance matrix function.

With λ = 1, the expression (4) reduces to the expected sum of
the posterior variances of the components of θ, corresponding
to the weighted sum of p Bayesian A-optimal design criterion
functions. We propose, therefore, a generalized robust Bayesian
A-optimal design criterion:

Generalized Robust Bayesian A-Optimality: Let M ∈ M be
a class of possible models for the pair (θ, y). A design xopt is
said to be a generalized robust Bayesian A-optimal design if
xopt minimizes∫

Y tr[λEM (covarθ |M (θ |x, y,M))

+ (1 − λ)(covarMEθ|M (θ|x, y,M))]f(y |x) dy.

A design xopt that is optimal in the sense of generalized
robust Bayesian A-optimality is robust against model uncer-
tainty in two senses:

(i) On average, the posterior variance of θ is small when
the model that generates the data and that actually is
used to derive the posterior distribution coincide, and

(ii) on average, over the different models, the posterior pa-
rameter means have small variance.

Consequence (ii) implies that the posterior means used to
estimate θ should not differ much from one another even when
their computation is based on misspecified models for (y, θ).
This is especially important among models with high posterior
probabilities. This is made more precise in Theorem 2 below.

Theorem 2: Let w̃i be the posterior probability that Mi is
the true model for the data y collected at design x, i = 1, . . . ,m.
Then

varM (Eθ|M (θ |x, y,M))

=
∑
i<j

w̃iw̃j

{
Eθ|Mi

(θ |x, y,Mi) −Eθ|Mj
(θ |x, y,Mj)

}2
.
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Proof. To simplify notation, we use Ei to denote
Eθ|Mi

(θ |x, y,Mi). Then

varM (E(θ | y, x,M))

=
∑
i	=j

w̃iw̃jEi(Ei −Ej)

=
∑
i	=j

w̃iw̃j(Ei −Ej)
2 +

∑
i	=j

w̃iw̃jEj(Ei −Ej).

The last term in above expression can be written as∑
i	=j

w̃iw̃jEj(Ei −Ej) = −
∑
i	=j

w̃iw̃jEi(Ei −Ej).

Hence,

varM (Eθ|M (θ |x, y,M) =
1

2

∑
i	=j

w̃iw̃j(Ei −Ej)
2

=
∑
i<j

w̃iw̃j(Ei −Ej)
2.

We may interpret Theorem 2 as follows: The expres-
sion

∑
i<j

w̃iw̃j(Ei −Ej)
2 = (1/2)

∑
i,j

w̃iw̃j(Ei −Ej)
2 may

be written as
∑m

i=1 w̃id i where d i =
∑m

j=1 w̃j(Ei −Ej)
2 is the

weighted sum of the distances of the Ej ’s from Ei . The weights
are the posterior probabilities of the models Mj . Hence d i de-
scribes a weighted average distance of the estimates Ej from
Ei . The expression

∑m

i=1 w̃id i is a weighted average of these

distances. If w̃(1) < w̃(2) < · · · < w̃(m), and d (1) < d (2) < · · · <
d (m), are the ordered w̃i’s and d i’s, respectively, then it can be

shown (Hardy, Littlewood, and Polya, 1997) that
∑m

i=1 w̃id i

would be minimized over all possible permutations of the w̃
and d vectors by choosing the permutations that yield the
products w̃(i)d (m−i+1), i = 1, 2, . . . ,m. That is, the minimum

value of the sum would be
∑m

i=1 w̃(i)d (m−i+1). We cannot, of
course, average our pairings in this optimal way, as for each
w̃(i), there is a d (ji) that accompanies it. The ideal, however, is
to choose the design x in such a way so that the sum is a min-
imum. In order for d i to be small, (Ei − Ej )

2 should be small
for j’s such that w̃j is large. Alternatively, those estimates Ei

which are furthest on average from the other estimates, Ej ,
should correspond to models with low posterior probability.
A good design ensures that models with high posterior prob-
ability produce estimates that are on average close to those
arising from other models with high posterior probability.

The Choice of λ: The choice of the weighting parame-
ter λ should be determined in accordance with the rel-
ative emphasis to be placed on the robustness consider-
ations (i) and (ii). By choosing λ = 1/2 in equation (3),
we see that minimizing R(x) is equivalent to minimizing
2R(x) = EY |x{var(θ |x, Y )}. When λ = 1, the risk is simply∫
Y EM (varθ|M (θ |x, y,M))f(y |x) dy.

4. Optimal Design for Estimating the Detection
Limit in a Water Contamination Experiment

While Mitchell (1985) does not specifically address optimal
design, here we find the optimal design for estimating the
detection limit, LD , in the water contamination experiment

that was described in the introduction. We present a Bayesian
approach to the estimation of LD , followed by a discussion of
the optimal design.

Recall that the calibration curve can be either linear or
quadratic. Regardless of the form of the curve, it is first nec-
essary to find the smallest value on the (transformed) calibra-
tion scale that can be reasonably anticipated to be consistent
with a nonzero value of contamination. We denote this value
by y0, and assume that it is known from previous experiments.
It can be found, for example, by taking several measurements
of the calibrated value, y, each corresponding to a value at
x = 0, i.e., no contamination, and taking the upper 100(1 −
α)th percentile of the posterior predictive distribution for y
from these data.

First assume the model is linear, that is, assume

Yi = a + bxi + εi, i = 1, 2, . . . , n,

where a and b are constants and the errors εi are indepen-
dently and identically distributed N(0, σ2) random variables.
The design point xi corresponds to the selected trace contam-
ination amount, and Yi represents the observed measurement
corresponding to xi for the ith out of a total of n observation
pairs.

Similarly, we can define a quadratic model,

Yi = a + bxi + cx2
i + εi, i = 1, 2, . . . , n ,

where a, b, and c are constants and εi are again independently
and identically distributed N(0, σ2) random variables. The
goal is to estimate LD , defined as (y0 − a)/b for the linear
model, and as the smallest positive solution to the quadratic
equation y0 = a + b × LD + c × L2

D for the quadratic model.
Following Mitchell (1985), suppose that the design space

is X = {0, 10, 20, 30, 40, 50, 60}, and we wish to choose a total
of n = 8 design points within this set, with repeated choices
allowed. This implies a total of 3303 unique designs, and the
question is which of these provides optimal estimation of LD .
We use generalized A-optimality as our design criterion, and
show that the optimal design varies as λ varies across the
range from 0 to 1.

Roughly following the example on page 123 of Mitchell
(1985), we used the following prior distributions. The inter-
cept for the linear model was taken to be a ∼ N(2, 25), with
slope b ∼ N(0.3, 0.09). Further, we took σ2 ∼ IG(1.25, 0.6),
where the latter denotes an inverse gamma distribution with
mean 2.4, with parameters chosen such that the regression
standard deviation has a 99% credible set that runs approx-
imately from 0 to 6. For the quadratic model, we used a ∼
N(3, 25), b ∼ N(0.7, 0.09), c ∼ N(−0.005, 0.000004), and
σ2 ∼ IG(1.25, 0.6). We assumed that all parameters were
a priori independent, allowing the data to provide the appro-
priate correlations between the parameters within each model
a posteriori. In rare cases, these prior distributions gave rise
to lines or curves where no real solution within the range from
0 to 60 could be found (for example, due to negative slopes
or decreasing relationship between x and y). These cases were
excluded from all analyses described below.

For each model, we calculated the risk as given by (4)
where, in our context, θ was replaced by LD . We calcu-
lated this risk for λ = 0, 0.25, 0.5, 0.75 and 1. As closed
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form formulae for the covariances required by (4) were not
available, we used the Gibbs sampler, as programmed in
WinBUGS (Spiegelhalter et al., 1997), which provided esti-
mates for ψGL(x) for all 3303 possible designs, for each λ value
in the set λ = (0, 0.25, 0.5, 0.75, 1). While an exhaustive
search was carried out among all designs, as each risk esti-
mate is only approximate, it does not necessarily follow that
the designated optimal design corresponding to each value of
λ is the true optimal design, due to approximation error in
the WinBUGS simulations. It was not feasible to run sufficient
numbers of iterations across all 3303 designs to obtain exact
optimal designs. We therefore followed the following strategy
to obtain approximate optimal designs for each value of λ. We
first ran 3000 iterations for all 3303 designs, and found the top
50 designs for each of the five values of λ. For these 250 de-
signs (in fact slightly fewer designs, since there were some
designs which were in the top 50 for more than one value of
λ), we reran the analyses with 5000 iterations; we next took
the top 10 designs for each value of λ, which resulted in 31
unique designs. Finally, we ran 15,000 iterations for these de-
signs, and selected the top 3 from each value of λ to report.
While there is no guarantee that the absolute optimal design
is among those included in our final top 31 designs, as we dis-
cuss below, the strong trends in the results allows for useful
generalizations to be stated about which types of designs will
perform well for the various values of λ.

The results are presented in Table 1, which shows that op-
timal designs from the generalized Bayesian A-optimality cri-
terion with λ = 0.5 leads to designs that are quite differ-
ent from those induced by standard Bayesian A-optimality

Table 1
Risk results for the minimal detection limit problem described

in Section 4. For each design, we present the average risk
across the five λ values, including 0, 0.25, 0.5, 0.75, and 1.

The best three designs for each value of λ are shown.

Design points

Rank Risk 0 10 20 30 40 50 60

λ = 0
1 0.01838 3 0 0 2 1 0 2
2 0.02062 3 0 0 2 0 2 1
3 0.02313 3 1 0 1 2 0 1

λ = 0.25
1 0.19167 5 0 0 1 1 0 1
2 0.21307 5 0 0 1 0 1 1
3 0.23684 4 1 0 2 0 0 1

λ = 0.5
1 0.35869 5 0 0 1 1 0 1
2 0.38452 5 0 0 1 0 1 1
3 0.40075 5 0 0 0 1 1 1

λ = 0.75
1 0.45855 6 0 0 0 0 0 2
2 0.52571 5 0 0 1 1 0 1
3 0.53876 5 0 0 0 0 0 3

λ = 1
1 0.44657 6 0 0 0 0 0 2
2 0.53896 5 0 0 0 0 0 3
3 0.63259 7 0 0 0 0 0 1
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Figure 1. Graphical representation of the proportion of de-
sign points at each of the 7 possible positions for each of the
three values of λ = 0, 0.5, and 1, for the detection problem
described in Section 4.

(λ = 1). The optimal designs under λ = 1 tend to place all
design points at the extremes of the design space, at x = 0
and x = 60, with the top three designs including no other
points. This is similar to results from standard optimal de-
sign in linear regression, where points at the extremes are
often optimal. In contrast, for λ = 0.5, several non-boundary
points are also included, with even more non-boundary points
included for λ = 0. This is as expected, since if one needs to
ensure reasonable estimation across both linear and quadratic
models, one needs to not only estimate the slope of a lin-
ear model accurately, as dictated by points near the ends of
the design space (see Silvey, 1980), but also the curvature of
the quadratic model, so that points away from the boundary
are also needed. Designs intermediate to those just described
are seen when λ = 0.25 and λ = 0.75. Figure 1 summarizes
the results by presenting the average proportion of points at
each possible location for λ values of 0, 0.5, and 1. Clearly,
more nonboundary points are included when robustness is
considered.

Overall, these designs are intuitively sensible, with most
points placed near x = 0, which is close to the area of great-
est interest, i.e., close to LD . All designs also include one or
more points near x = 60, required to ensure estimation of the
slope or curve of the calibration function. The degree to which
inner points are also included depends on the degree to which
robustness is considered.

5. Concluding Remarks
We propose a Bayesian generalization of Läuter’s criterion
for robust optimal design when there is model uncertainty.
This criterion is then placed in a Bayesian decision theo-
retic framework and is shown to suggest a generalized ro-
bust Bayesian A-optimal design criterion. Using generalized
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Bayesian A-optimality to find the optimal design in a water
contamination problem, we obtain optimal designs that are
quite different from those resulting from standard Bayesian
A-optimality. Special cases subsumed by our discussion are
problems containing a nuisance parameter whose set of pos-
sible values is finite, as well as finite mixture problems. Ex-
tensions of these to their respective infinite valued parameter
space counterparts remain open questions.

As Key, Pericchi, and Smith (1999) point out, only rarely
does one believe that the list of m models under considera-
tion includes the model which exactly describes the real world
mechanism that generated the data. Nevertheless, one can
consider a set of models, one or more of which can be close
enough to this ideal to provide useful answers to the research
question. Generalized Bayesian A-optimality can be applied
to either of these perspectives, so that one does not necessar-
ily need to assume that the “correct” model is among those
being considered. While we assume that the parameters re-
tain their meanings from model to model, this is a sufficient,
but not necessary, condition. Rather, it is sufficient that the
loss functions from each model are comparable (that is, are
on similar scales) to each other.

Our work is related to that of Raftery, Madigan, and
Hoeting (1997) on Bayesian model averaging for regression
problems, where predictions are based on the weighted av-
erage prediction over all plausible models, the weights be-
ing the posterior probabilities of these models. Our criterion
can therefore be useful in designing studies in which Bayesian
model averaging will be used.

Résumé

Supposons que le véritable modèle sous-tendant un jeu de
données fasse partie d’un ensemble fini de modèles candidats,
et que notre intérêt se porte en premier lieu sur l’estimation
des paramètres dudit modèle. En fonction de cet objectif, un
plan optimal doit dépendre d’une fonction de perte définie
pour tous les modèles possibles. Une méthode classique, qui
tient compte de l’incertitude sur le modèle, consiste à cal-
culer la perte moyenne sur l’ensemble de tous les modèles
envisagés – cette méthode constitue le fondement d’un critère
connu sous le nom de �critère de Läuter�. Nous généralisons
ce critère de Läuter, et démontrons qu’il est possible, en
élargissant la définition de l’A-optimalité bayésienne, de le
resituer dans un cadre théorique de décision bayésienne. A
l’aide de cette A-optimalité généralisée, nous pouvons ainsi
définir les points expérimentaux optimaux d’un problème
de sécurité environnementale, où, pour estimer le seuil de
détection d’une contamination de l’eau, nous obtenons des
plans optimaux très différents des plans suggérés par l’A-
optimalité bayésienne standard.
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