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Case-control studies are among the most commonly used means of assessing association between exposure and outcome. Sample size
determination and the optimal control-to-case ratio are vital to the design of such studies. In this article we investigate Bayesian sample
size determination and the control-to-case ratio for case-control studies, when interval estimation is the goal of the eventual statistical
analysis. In certain cases we are able to derive approximate closed-form sample size formulas. We also describe two Monte Carlo methods,
each of which provides a unified approach to the sample size problem, because they may be applied to a wide range of interval-based
criteria. We compare the accuracy of the different methods. We also extend our methods to include cross-sectional designs and designs for
gene–environment interaction studies.
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1. INTRODUCTION

The case-control study is an observational approach to study-
ing exposure–disease relationships (Schlesselman 1982). Tradi-
tional case-control studies compare the exposures in a sample
of n1 diseased cases that occur during an accrual time period,
with the exposure in a sample of n0 control subjects alive and
free of disease and from the same population as the cases. The
investigator must retrospectively collect information on expo-
sure status for each case and each control. Let D and E repre-
sent the disease and exposure status. Let p1 = Pr(E = 1|D = 1)

and p0 = Pr(E = 1|D = 0) denote the conditional exposure
probabilities among case and control subjects. A common mea-
sure of disease–exposure association is the exposure odds ratio,
ψe = p1(1−p0)

p0(1−p1)
. Because the exposure odds ratio is equal to the

disease odds ratio (Cornfield 1951), defined by
p′

1(1−p′
0)

p′
0(1−p′

1)
, where

p′
1 = Pr(D = 1|E = 1) and p′

0 = Pr(D = 1|E = 0), values of
ψe > 1 (resp. ψe < 1) indicate that exposure E = 1 is associ-
ated with increased (resp. decreased) risk of disease. When the
disease is rare, the disease odds ratio closely approximates the
relative risk, defined by

p′
1

p′
0
, a more direct measure of exposure

effect.
Before carrying out a case-control study, among the most im-

portant design issues is determining the required sample size
and the proper control-to-case ratio. The extensive literature
on the sample size problem for case-control studies has been
reviewed by Wickramaratne (1995), with the greatest atten-
tion focused on power-based sample size criteria (Schlesselman
1982). A trend toward the use of confidence intervals rather than
p values in the statistical analysis of medical studies (Gardner
and Altman 1986) has shifted attention to interval-based sam-
ple size criteria, however. In general, it is desirable that sample
size criteria be consistent with the methods used in the eventual
analysis. O’Neill (1984) implemented an interval-based sample
size criterion for case-control studies, and Satten and Kupper
(1990) proposed a similar criterion based on tolerance proba-
bilities. Some (e.g., Nam and Fears 1992) have extended the
sample size problem for case-control studies to include designs
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beyond simple 2 × 2 tables, including stratified studies and cost
considerations. All of these authors have restricted their atten-
tion to frequentist methods.

The most commonly used frequentist sample size methods
for case-control studies have several drawbacks. They rely on
the adequacy of the normal approximation to the binomial dis-
tribution, requiring special refinements when the rare disease
assumption is valid (Lemeshow, Hosmer, and Stewart 1981).
All frequentist sample size formulas depend on accurate point
estimates of p0 and p1 and can be sensitive to minor changes in
these estimates. Also, by using only point estimates, these pro-
cedures do not fully use all available prior information, which
includes the degree of uncertainty about the values of p0 and p1.

In the Bayesian framework, sample size determination is en-
hanced through the specification of a prior distribution for the
unknown parameter vector (p0,p1). Furthermore, by averaging
the potential data with respect to its marginal distribution, the
methodology also takes into consideration the stochastic nature
of the as-yet unobserved data. The approach also does not de-
pend on a normal approximation to the posterior distribution.
Of course, if the prior-likelihood-posterior paradigm were in-
voked at the design stage, then it is anticipated that the same
paradigm would be used at the analysis stage, in keeping with
the earlier-stated principle of design/analysis consistency.

Various Bayesian sample size criteria have been proposed
and applied to a range of parameter estimation problems, in-
cluding multinomial probabilities (Adcock 1987, 1988, 1993),
single- and two-sample normal means (Joseph and Bélisle
1997), single binomial proportions (Pham-Gia and Turkkan
1992; Joseph, Wolfson, and du Berger 1995), and the differ-
ence between two binomial proportions (Joseph, du Berger, and
Bélisle 1997). These criteria have been summarized by Adcock
(1997). Wang and Gelfand (2002) reviewed Bayesian Monte
Carlo methods for sample size determination.

Whereas Bayesian methods have been widely applied to the
analysis of case-control data including matched studies (Ghosh
and Chen 2002) and to studies with misclassified data (Müller
and Roeder 1997), very little has been done in Bayesian opti-
mal design for case-control studies. In Bayesian design prob-
lems, one must consider all possible datasets that can arise,
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whereas in analysis problems one typically considers just a sin-
gle dataset. Thus it is not surprising that sample size methods
tend to lag behind the corresponding analysis methods. Never-
theless, De Santis and Perone Pacifico (2001) and De Santis,
Perone, and Sambucini (2004) were the first to systematically
consider Bayesian sample size problems for case-control stud-
ies. They considered both interval-based and test-based criteria
and examined the optimal control-to-case ratio. Our work dif-
fers from and extends the work of De Santis and colleagues
in several respects. We introduce new sample size criteria and
show how two Monte Carlo methods provide a unified approach
to the sample size problem when applied to a wide range of
interval-based criteria. Moreover, in certain cases we are able to
derive approximate closed-form sample size formulas, and all
of our methods rely on more efficient highest posterior density
(HPD) intervals. We further consider a wider range of problems
beyond those arising from 2 × 2 tables, including higher-order
tables that arise from design problems for gene–environment in-
teraction studies. Our methods are also shown to apply to cross-
sectional sampling designs.

The article is organized as follows. In Section 2 we review
previous Bayesian sample size criteria and propose several new
criteria. To limit the length of the article and for technical rea-
sons, we focus on the average length criterion (ALC). Section 3
begins by developing an approximate closed-form expression
for the optimal sample size for the ALC. Pointing out the dif-
ficulties in deriving analogous closed form expressions for the
other criteria, we introduce a straightforward Monte Carlo ap-
proach, the accuracy and efficiency of which we then improve
by introducing a regression component. Section 3 concludes
with an illustrative example. Section 4 discusses extensions to
cross-sectional (multinomial) sampling and studies of gene–
environment interactions. Section 5 covers Bayesian decision-
theoretic sample size criteria, and Section 6 provides some con-
cluding remarks.

2. BAYESIAN SAMPLE SIZE CRITERIA

Let θ ∈ � be a scalar parameter distributed a priori as
f (θ), and let xn = (x1, . . . , xn) ∈ Xn be n iid realizations of
a random variable X distributed as p(x|θ), x ∈ X , given θ .
Let pXn(xn|n) = ∫

�
p(xn|θ,n)f (θ)dθ be the marginal distrib-

ution. Denote the posterior density of θ by fθ (θ |xn,n). Let
HPDL(xn,n, l) = (u, v), u < v, be an HPD interval for θ of
length l, and let HPDC(xn,n,1 − α) be an HPD interval for θ

of posterior coverage 1 − α. Define l�1−α(xn|n) and α�
l (xn|n) =∫

HPDL(xn,n,l) f (θ |xn,n)dθ to be the length and the posterior cov-
erage of an HPD interval of coverage 1 − α and of length l.

Letting k be a positive integer, we define the kth average cov-
erage criterion (ACCk) sample size to be the minimum n such
that

(∫

Xn

{α�
l (xn|n)}kpXn(xn|n)dxn

)1/k

≥ 1 − α. (1)

This yields the smallest n for which HPD intervals of length l
provide an average posterior coverage of at least 1 − α, where
the average is with respect to the marginal distribution under
the Lk norm, that is, the kth marginal moment of α∗

l .
Conversely, the kth average length criterion, ALCk, fixes the

desired posterior coverage at 1 − α. The lengths of all HPD

intervals are averaged with respect to the marginal distribution
pXn(xn|n) under the Lk norm. One then seeks the minimum n
such that

(∫

Xn

{l�1−α(xn|n)}kpXn(xn|n)dxn

)1/k

≤ l. (2)

The ACCk and ALCk extend and include, as special cases,
the ACC = ACC1 and ALC = ALC1, first proposed by Joseph
et al. (1995). The choices k = 1,2, and +∞ are of particular
interest, because they lead to criteria that are easy to interpret.
In the sequel we discuss these important special cases.

The ACC and ALC guarantee their posterior coverages and
lengths only on average with respect to the marginal distribu-
tion. In contrast, the “worst outcome” criterion (WOC; Joseph
et al. 1995) and its modified version, MWOC (Joseph et al.
1997) are preferred when one desires a more conservative sam-
ple size, which guarantees the length and posterior coverage
over all anticipated data xn or over a subset Sn of Xn. For ex-
ample, Sn could be a 100(1 −γ )% credible region according to
the marginal distribution, pXn . Fixing the coverage, this conser-
vative criterion would then seek the minimum n such that

inf
xn∈Sn

α�
l (xn|n) ≥ 1 − α (3)

or, equivalently,

sup
xn∈Sn

l�1−α(xn|n) ≤ l.

We introduce two new criteria, the median coverage crite-
rion, (MCC) and the median length criterion (MLC), which lead
to the minimum n such that

med
xn∈Xn

α�
l (xn|n) ≥ 1 − α (4)

and

med
xn∈Xn

l�1−α(xn|n) ≤ l. (5)

Rather than depending on HPD intervals, all of the forego-
ing criteria can also be defined in terms of easier-to-compute
equal-tailed intervals. Pham-Gia and Turkkan (1992) proposed
two criteria, PGT-(i) and PGT-(ii), based on posterior variances,
which are equivalent, to the WOC and ALC2 defined earlier as
the sample size increases to infinity. When Xn is a discrete set,
it can also be shown that ALC∞ = WOC.

3. BAYESIAN SAMPLE SIZE METHODS FOR
CASE–CONTROL STUDIES

As discussed earlier, we focus mainly on the ALCk, point-
ing out where there is general applicability of our methods to
the ACCk, WOC, MWOC, MLC, and MCC. The problem is as
follows. Determine the minimum total sample size, n = n0 +n1,
where n0 and n1 are the number of controls and cases to be sam-
pled. Let the control-to-case ratio be g = n0/n1. Concurrent to
the sample size problem, find g.

3.1 Bayesian Modeling of Case-Control Studies

We use the convenient notation T = (a,n1 − a, c,n0 − c)
to notate data arising from a typical case-control study, as il-



762 Journal of the American Statistical Association, June 2006

Table 1. Generic 2 × 2 Table for Exposure–Disease Outcomes

E = 1 E = 0 Total

D = 1 a n1 − a n1
D = 0 c n0 − c n0

lustrated in Table 1. The numbers exposed among the cases
and the controls, are assumed to be independently binomially
distributed conditional on (p0,p1), with a ∼ Bin(n1,p1) for
the cases and c ∼ Bin(n0,p0) for the controls. Most Bayesian
analyses of case-control studies (e.g., Zelen and Parker 1986;
Nurminen and Mutanen 1987; Marshall 1988; Carlin 1992;
Ashby, Hutton, and McGee 1993; Hashemi, Nandram, and
Goldberg 1997) assume that p1 and p0 are a priori indepen-
dent, with p1 ∼ Be(a′,b′) and p0 ∼ Be(c′,d′), where Be(a,b)

represents the beta distribution with parameters (a,b). We also
follow this practice.

Let T ′ = (a′,b′, c′,d′) denote the four prior parameters. The
combination of the prior and likelihood tables, T ′ and T , leads
to a posterior table, T ′′ = (a′′,b′′, c′′,d′′), where a′′ = a + a′,
b′′ = n1 − a + b′, c′′ = c + c′, and d′′ = n0 + d′ − c. The poste-
rior density of the exposure odds ratio ψe = p1(1−p0)

p0(1−p1)
(Marshall

1988) is

pψe(ψ |T ′′) =






ψa′′−1

C

∫ 1

0

ya′′+c′′−1(1 − y)b′′+d′′−1

(1 − y + yψ)a′′+b′′ dy,

0 < ψ < 1

ψ−(c′′+1)

C

∫ 1

0

ya′′+c′′−1(1 − y)b′′+d′′−1

(1 − y + y
ψ

)c′′+d′′ dy,

ψ ≥ 1,

(6)

where C = B(a′′,b′′)B(c′′,d′′), a product of beta functions.
In Appendix A we show that the marginal posterior density,

given by (6), is unimodal. This property is important when cal-
culating HPD intervals using the algorithm of Chen and Shao
(1999) (see Sec. 3.3), in preference to the less efficient but more
accurate algorithms of Tanner (1993) and Hyndman (1996).

The marginal joint mass function of the numbers exposed
in our two independent samples of cases and controls is easily
seen to be

pT(T|n1,n0,T ′) =
(

n1
a

)
B(a′′,b′′)
B(a′,b′)

×
(

n0
c

)
B(c′′,d′′)
B(c′,d′)

, (7)

where T ∈ T = {(a,n1 − a, c,n0 − c),a = 0, . . . ,n1 and
c = 0, . . . ,n0} and T ′ = (a′,b′, c′,d′).

Theorem B.1 in Appendix B implies that a
n1

→d p1 and
c

n0
→d p0 as n1 and n0 approach ∞, where →d denotes con-

vergence in distribution. This, together with the independence
between a and c, implies that ( a

n1
, c

n0
) →d (p1,p0). This as-

ymptotic property of the marginal distribution is essential to the
derivation of Theorem 1 in the next section.

3.2 Approximate ALCk Sample Size Formulas
for the Odds Ratio

The control-to-case ratio can either be based on practical
considerations or chosen to minimize the total sample size
n1 + gn1. We use the notation n0(g) and n1(g) to emphasize

the dependence of n1 and n0 on g. When g is known, the ALCk
sample size problem for a case-control design becomes

minimize Nψe(g) = n1(g) + n0(g) = (g + 1)n1(g), (8)

such that

alck
(
n1(g),n0(g),T ′)

=
(∫

Tg

{
l�1−α

(
T|n1(g),n0(g),T ′)}k

× pT
(
T|n1(g),n0(g),T ′)dx

)1/k

≤ l, (9)

where l�1−α(T|n1(g),n0(g),T ′) refers to the length of the HPD
intervals of fixed coverage 1 − α under pψe(ψ |T ′′ = T + T ′)
and T ∈ Tg = {(a,n1(g)− a, c,n0(g)− c), a = 0, . . . ,n1(g) and
c = 0, . . . ,n0(g)}.

When g is not specified in advance, we need to minimize (8)
over both g and n1(g). One way to proceed is to create a grid of
values gj, j = 1, . . . , J, for g, and for each gj, solve the sample
size problem as if g = gj were known. The overall minimum
value is then chosen as the optimal sample size.

We initially regard g as fixed. The HPD length l�1−α(T|n1(g),

n0(g),T ′) in (8) does not have a closed-form expression, and
even a first-order approximation to the credible interval length
requires intensive computation. We therefore proceed as fol-
lows.

The expression for alck(n1(g),n0(g),T ′) given in (9) is
{ET [l�1−α(T|n1(g),n0(g),T ′)]k}1/k, where ET denotes expec-
tation with respect to pT(T|n1(g),n0(g),T ′). We establish an
asymptotic expression for {ET [̂l�1−α(T|n1(g),n0(g),T ′)]k}1/k

where l̂�1−α(T|n1(g),n0(g),T ′) = 2z1−α/2
√

var(ψe|T ′′) and
z1−α/2 is the usual 100(1 − α/2) percentile of the normal
distribution, and use this expression as an approximation to
the criterion function ALCk. The first-order approximation to
l̂�1−α(T|n1(g),n0(g),T ′) is valid when b′, c > 2.

Theorem 1. Let kψe = [3(k + 1)/2]. For a′,d′ > 0 and
b′, c′ > kψe ,

lim
n1(g)→∞

√
n1(g){ET [̂ l�1−α(T|n1(g),n0(g),T ′)]k}1/k

2z1−α/2

=
{∫ 1

0

∫ 1

0

[
x(1 − x)

g
+ y(1 − y)

]k/2

× xa′+k/2−1(1 − x)b′−3k/2−1

B(a′,b′)

× yc′−3k/2−1(1 − y)d′+k/2−1

B(c′,d′)
dx dy

}1/k

. (10)

For the proof see Appendix C.
The following corollary yields a closed-form approximation

to the sample size based on the ALCk criterion, for fixed g.

Corollary 1. Under the same conditions as Theorem 1, the
approximate ALCk sample size is given by

Nψe(g) = (g + 1)
4z2

1−α/2

l2

×
{∫ 1

0

∫ 1

0

[
x(1 − x)

g
+ y(1 − y)

]k/2
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× xa′+k/2−1(1 − x)b′−3k/2−1

B(a′,b′)

× yc′−3k/2−1(1 − y)d′+k/2−1

B(c′,d′)
dx dy

}2/k

− N0, (11)

where a′,d′ > 0; b′, c′ > kψe ; and N0 = a′ + b′ + c′ + d′ is the
prior sample size.

Proof. Using the right side of (10) as an approximation to the
expression in the square brackets on the left side, and solving
for n1(g) we get (11).

Finally, Nψe(g) may be examined as a function of g, to ascer-
tain the optimal (Nψe(g),g) combination.

Example 1. Let k = 1 and a′ = b′ = c′ = d′ = 3, which
represent the smallest allowable values in Theorem 1 for this
choice of k. Suppose that we desire an expected HPD length of
l = 2, with a coverage of 1−α = .95. Figure 1 displays a plot of
Nψe(g) versus g, where Nψe(g) is obtained by (11) with Monte
Carlo integration. The optimal g is clearly close to 1, which is
not surprising given the symmetry of the prior distribution. The
optimal ratios, gopt = .975, .99,1.0,1.015,1.025, all yield the
same (to the nearest integer) minimum, Nψe(gopt) = 472.

Example 2. Let k = 2. It is easy to show, by differentiating
Nψe(g), given by expression (11), with respect to g, that the
optimal ratio is g = √

ηψe when b′, c′ > 4.5 and where

ηψe =
√

B(a′ + 2,b′ − 2)B(c′ − 3,d′ + 1)

B(a′ + 1,b′ − 3)B(c′ − 2,d′ + 2)
.

In the context of frequentist hypothesis testing, Gail, Williams,
Byar, and Brown (1976) demonstrated that the optimal ra-
tio g follows a “square root rule,” that is, g = √

η, where
η = p1(1−p1)

p0(1−p0)
. Consequently, from a Bayesian viewpoint, there

is also a square root rule when k = 2.

Example 3. When k = ∞, the criterion function correspond-
ing to the WOC = ALC∞ does not converge to 0 as the sample

Figure 1. Graph of Nψe (g) Against g for the Odds Ratio With
(a′, b′, c′, d ′, 1 −α, l) = (3.0, 3.0, 3.0, 3.0, .95, 2.0). The optimal ratios are
gopt ∈ [.975, 1.025], all yielding the same sample size, Nψe (gopt ) = 472.

size derived from Theorem 2 increases to infinity. As often oc-
curs with the WOC (see Joseph and Bélisle 1997), even as the
sample size increases, there is always at least one dataset for
which the length exceeds the target value. The MWOC is pre-
ferred in these cases.

3.3 Extensions to Other Criteria

So far we have presented a closed-form formula for ALCk

(k < ∞) sample sizes when b′, c′ > kψe . There are several other
scenarios to consider:

a. Under the ALCk when b′ or c′ < kψe , the foregoing meth-
ods break down.

b. For the ACCk, one might consider mimicking the ap-
proach for the ALCk instead, minimizing the sum Nψe(g) =
n1(g) + n0(g) = (g + 1)n1(g) subject to the constraint

acck
(
n1(g),n0(g),T ′) = ET

[{
α�

l

(
T|n1(g),n0(g),T ′)}k]1/k

≥ 1 − α, (12)

where α�
l (T|n1(g),n0(g),T ′) is the posterior coverage of an

HPD interval of fixed length l under pψe(ψ |T ′′ = T + T ′). Un-
fortunately, unlike the ALCk, empirical evidence suggests that
a first-order approximation does not provide accurate sample
sizes.

c. There appear to be no closed-form sample size expres-
sions for the remaining criteria, the MWOC, MLC, and MCC.

For these cases, we turn to Monte Carlo methods.

3.4 Sample Size Determination via Crude
Monte Carlo Simulation

We begin by indicating briefly how a simple Monte Carlo
approach may be used to derive sample sizes for estimating ψe,
beginning with the ALCk. (See Joseph et al. 1995 and Wang
and Gelfand 2002 for more details about algorithms that are
similar to those discussed here.) Regression-based approaches
that are generally more accurate and efficient are described in
Section 3.5.

Fix the control-to-case ratio g, the prior parameters, T ′ =
(a′,b′, c′,d′), the posterior coverage 1 − α, and an initial value
for n1(g) and hence, automatically, for n0(g). The following al-
gorithm cycles through various values of n1(g):

1. Simulate pi
1 ∼ Be(a′,b′) and pi

0 ∼ Be(c′,d′), i = 1,

. . . ,m.
2. For each pair (pi

1,pi
0), simulate two independent observa-

tions, ai ∼ Bin(n1(g),pi
1) and ci ∼ Bin(gn1(g),pi

0).

3. For each i, simulate pj
1 ∼ Be(ai + a′,n1(g) − ai + b′)

and pj
0 ∼ Be(ci + c′,gn1(g) − ci + d′) and set ψj =

pj
1(1−pj

0)

pj
0(1−pj

1)
, j = 1, . . . ,M. Estimate the HPD length by, for

example, li = min1≤ j≤M−[(1−α)M](ψ( j+[(1−α)M]) − ψ( j)),
according to the approach of Chen and Shao (1999).

4. Compute alck(n1(g), n0(g), T ′) ≈ ( 1
m

∑m
i=1 lki )

1/k;
see (9).

5. Cycle through the foregoing steps using a bisectional
search strategy until the optimal n1(g) is attained.
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For the ACCk, one may similarly use Monte Carlo integration
to approximate the expression on the right side of (12). Note
that we can define

α�
l = max

1≤ j≤M

#{1 ≤ k ≤ M :ψj ≤ ψk ≤ ψj + l}
M

.

When g is unknown, the foregoing algorithms can be applied
over a grid of preselected values for g to estimate the optimal
case-control ratio and resulting sample size.

Almost identical algorithms can be applied for the MCC
and MLC. To reduce Monte Carlo errors, one could average
over a fixed number of estimated sample sizes. Our experience
in case-control studies is that the crude Monte Carlo approach
has stable trial-to-trial variability of sample size estimates and
works well for the coverage criteria ACCk, MCC, and MLC, but
has several limitations when dealing with the length criterion
ALCk. Even the most efficient algorithm for HPD intervals of
Chen and Shao (1999) is often too slow in practice. As is shown
in Figure 2(a), a prohibitively large number (m = M > 40,000)

of independent runs may be required to reduce trial-to-trial
sample size variability to a reasonable magnitude. The bisec-
tional search is a further computational burden, because often
numerous steps are required. One difference between coverage-
based versus length-based criteria is that coverages are always
bounded by 0 and 1, whereas lengths, particularly for the odds
ratio, are unbounded and highly variable. An alternative is to

adapt a version of the regression-based approach to Bayesian
design developed by Müller and Parmigiani (1995) and Müller
(1999) to the present situation. Besides producing a stable al-
gorithm for the ALCk, it also provides a useful method for the
other criteria.

3.5 A Regression-Based Approach to Sample
Size Determination

We first consider the ALCk. Again, fix g. When b′, c′ > kψe ,
the forms of (10) and (11) suggest fitting a regression of the
type

alck
(
n1(g),n0(g),T ′) = e1

1

n1/2
1

(13)

or
1

alc2
k(n1(g),n0(g),T ′)

= e1 + e2n1, (14)

to J Monte Carlo samples ãlck(n1j(g),n0j(g),T ′), j = 1, . . . , J,
where e1 and e2 are unknown regression coefficients. These
may be estimated using, for example, least squares, to obtain
ê1 and ê2. We prefer using (14) over (13) because the former
better visualizes the linear relationship, as seen in Figure 2(b).

We obtain the sample size by solving the equation ê1 +
ê2n1 = 1

l2
to get n̂1 = 1−ê1l2

ê2l2
. Even though Theorem 2 was es-

tablished under the condition that b′, c′ > kψe , we have found

(a) (b)

Figure 2. Monte Carlo Graphs. (a) The crude Monte Carlo sample size estimates, n1(2), plotted against 500 ≤ m = M ≤ 40,000 for
(a′, b′, c′, d ′) = (5, 5, 10, 40) and 1 − α = .95. The horizontal line corresponds to y = 970 and vertical line corresponds to m = M = 5,000. (b) The

Monte Carlo pairs (n1(2), 1/ãlc
2
(n1(2), 5, 5, 10, 40, .95)). The horizontal line corresponds to y = .25 (or l = 2), and vertical line corresponds to

n1 = 962. ( linear regression; supersmooth.)
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empirically that a linear regression equation fits even when

k < b′, c′ ≤ kψe . The convergence rate is 1/nλ(a′,b′,c′,d′)
1 in-

stead of the rate of 1/n1/2
1 found under (13). The constant

λ(a′,b′, c′,d′) can be recovered by fitting, for example, a re-
gression equation of the form

log
(
alck

(
n1j(g),n0j(g),T ′)) = µ − λ log(n1). (15)

This leads to a third regression approach, with µ̂ and λ̂ as least
squares estimates and a sample size of n̂1 = exp(

µ̂−log(l)
λ̂

).

Example 4. To illustrate, let the prior information be T ′ =
{5,5,10,40} and let 1 − α = .95, l = 2.0, k = 1, and g = 2.
All three regression models give sample sizes very close to
n̂1 ≈ 961. The estimate of λ is .49, implying a convergence
rate of roughly 1/n1/2

1 , as predicted by Theorem 2. In compar-
ison, the closed form given by (11) gives n1 = 981. We used
m = M = 5,000.

Although sample sizes from the different methods were sim-
ilar, the regression-based approaches were more efficient than
the crude Monte Carlo approaches. For the latter approach, we
averaged 10 Monte Carlo estimates, each with m = M = 5,000.
The ALC regression-based approach used J = 100 uniformly
chosen values, 900 ≤ n1j ≤ 1,000, and again m = M = 5,000.
The trial-to-trial standard deviation about n1 was approxi-
mately 3, compared with about 20 using the crude Monte Carlo
estimates.

In summary, we prefer a regression approach for the ALCk,
which reduces the “noise” inherent in Monte Carlo methods
through the use of parametric curves to determine sample sizes.
Our approximate sample size formula provides good starting
values for the crude Monte Carlo estimates. We carried out a
small simulation study that demonstrated that the regression-
based approach also works well for the MLC and MWOC.
Although similar methods can be developed for the ACC and
MCC, the optimal form of the regression equation is not obvi-
ous. We therefore rely on fitting a robust smoother, as originally
suggested by Müller and Parmigiani (1995) and Müller (1999),
to the estimated average and median coverage criterion func-
tions, which we find performs particularly well for the ACC
and MCC. The crude Monte Carlo approach seems also to per-
form well for these two coverage criteria, sometimes even for
m and M as small as 500.

3.6 An Illustrative Example

We use an illustrative example contrasting two frequentist
and our Bayesian sample size methods for case-control studies.
The first frequentist approach, from O’Neill (1984), estimates
the sample size as

Nψe(g) = (g + 1)
z2

1−α/2

p̂0(1 − p̂0)

{ (1−p̂0+p̂0ψ̂e)
2

ψ̂e
+ 1

g

}

{
arcsinh( l

2ψ̂e
)
}2

, (16)

where l is the desired length of a 100(1−α)% confidence inter-
val around the odds ratio ψ̂e and p̂0 is the assumed proportion
exposed in the control group.

The sample size given by (16) does not take into account
the stochastic nature of confidence intervals or the uncertainty

in the values of ψ̂e or p̂0. To address the former shortcom-
ing, Satten and Kupper (1990) proposed choosing N such that
the anticipated reported confidence interval has length no more
than l with probability 1 − γ . In the case-control context, this
requires that one find the minimal n1(g) such that

Pr

[
a(n0(g) − c)

(n1(g) − a)c

× sinh

(

z1−α/2

√

var

(
1

a
+ 1

n1(g) − a
+ 1

c
+ 1

n0(g) − c

))

≤ l

2

]

≥ 1 − γ, (17)

where a and c represent the random variables whose outcomes
are 0 ≤ a ≤ n1(g) and 0 ≤ c ≤ n0(g) (Table 1). The left side
of (17) may be estimated by means of Monte Carlo simulations,
and a bisectional search may be used to find the sample size
N = (g + 1)n1(g).

Multiple Sclerosis and the Epstein–Barr Virus. There may
be an association between Epstein–Barr virus (EBV) infection
and subsequent development of multiple sclerosis (MS) (Marrie
et al. 2000). EBV causes mononucleosis in a small proportion
of those who are infected. In a case-control study of this hypoth-
esis, n1 subjects with MS (the cases) would be compared with
a group of n0 subjects (suitably chosen) without MS (the con-
trols). Antibody titers would be used to ascertain which of the
cases and controls had previously been exposed to EBV. Let
p1 and p0 represent the proportion of subjects who were ex-
posed to EBV among the cases and the controls. Suppose that
a pilot study revealed that out of 7 subjects with MS and 16
without MS, the numbers of exposed to EBV were 3 and 4.

From a Bayesian perspective, one may ask the following
question: Using the prior information gained from the pilot
study, what should the sample sizes of the main study be to
ensure that a 95% posterior credible interval for the odds ra-
tio ψe = p1(1−p0)

(1−p1)p0
would have a length no larger than, say, 3?

From a frequentist perspective, based on (16), one would seek
the sample size that gives a 95% confidence interval for ψe of
length 3, using data from the pilot study to estimate p0, q0,
and ψe in the expression in the right side of (16). Alternatively,
one could use (17) with the specification of l = 3 (l/2 = 1.5),
1 − α = .95, and 1 − γ = .9, again using the pilot study to sim-
ulate a and c.

For the Bayesian analysis, we set the values for the prior pa-
rameters to be (a′,b′, c′,d′) = (3,4,4,12), as suggested by the
pilot study. Similarly, for both frequentist approaches we used
p̂0 = .25 and p̂1 = 3/7.

Results. The optimal frequentist values of g were 1.14 based
on (16) and 1.24 based on (17). Table 2 presents sample sizes
based on (16) and (17), including, for comparison, sample sizes
for g = 1,2. The sample sizes from (16) were, as expected, less
than those from (17), because the stochastic nature of the data
were ignored in (16). The optimal sample size did not differ
much between the optimal ratio and a simple 1 : 1 ratio of con-
trols to cases.
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Table 2. Comparative Table of Frequentist Sample Sizes for
g = 1.14 and 2, 1 − γ = .90, 1 − α = .95, and l = 3.0

g n1 n0 N

From O’Neill, (16)
2.00 193 386 579
1.24 240 297 537
1.14 251 286 537
1.00 269 269 538

From Satten and Kupper, (17)
2.00 292 584 876
1.24 365 453 818
1.14 383 437 820
1.00 413 413 826

The optimal Bayesian value of g was near 1.14, regardless
of the criterion used. Table 3 presents Bayesian sample sizes
for the ALC from both (11) and from Monte Carlo methods, as
well as sample sizes from the ALC2, ACC, MLC, and PGT-(ii).
Table 4 presents results from the MWOC for a variety of cover-
ages (1 − γ ). The MLC gave by far the smallest sample sizes,
below n0 + n1 = 200 regardless of the value of g. In contrast,
much larger values, in the range 600–700, were seen from the
ALC. The ACC provided even higher values than the ALC.
At first glance, it may be surprising that the MLC sizes were
considerably smaller than the ACC or ALC sizes, which av-
erage over the predictive distribution of the data. Clearly, the
distribution of lengths and coverages across possible datasets
were highly skewed, with a least half of the datasets leading to
relatively narrow HPD intervals compared with those intervals

Table 3. Comparative Table of Bayesian Sample Sizes for Various g;
1 − α = .95, l = 3.0, and (a′, b′, c′, d ′) = (3, 4, 4, 12)

g n1 n0 N

ALC from (11)
2.00 242 482 724
1.24 312 380 692
1.14 327 365 692
1.00 355 346 701

ALC
2.00 226 452 678
1.24 282 352 634
1.14 297 339 636
1.00 323 323 646

ACC
2.00 503 1,006 1,509
1.24 643 798 1,441
1.14 676 771 1,447
1.00 736 736 1,472

g n1 n0 N(g)

MLC
2.00 64 128 192
1.24 79 98 177
1.14 82 94 176
1.00 88 88 176

ALC2
2.00 1,150 2,300 3,450
1.24 1,512 1,875 3,387
1.14 1,599 1,823 3,422
1.00 1,736 1,736 3,472

PGT-(ii)
2.00 1,328 2,656 3,984
1.24 1,743 2,162 3,905
1.14 1,838 2,096 3,934
1.00 2,004 2,004 4,008

Table 4. Comparative MWOC Table of Bayesian Sample Sizes for
g = 1.0, 2.0 and 1 − γ = .50, .75, .85, .90; 1 − α = .95, l = 3.0,

and (a′, b′, c′, d ′) = (3, 4, 4, 12)

1 − γ n1 n0 N

g = 1.0
.50 1,409 1,409 2,818
.75 4,635 4,635 9,270
.85 9,241 9,241 18,482
.90 12,750 12,750 25,500
g = 2.0
.50 943 1,886 2,829
.75 2,987 5,974 8,961
.85 6,055 12,110 18,165
.90 8,221 16,442 24,663

from other datasets. Further, the ACC led to higher sample sizes
compared with the ALC, because ensuring an average coverage
of .95 near the boundary of 1 is more difficult that averaging
lengths of 3, which are not near to an endpoint of the range
of possible lengths (see Joseph et al. 1995 for further discus-
sion). The ALC2 and PGT-(ii) suggested sample sizes >3,000,
demonstrating that variance is a more difficult parameter to con-
trol compared with lengths or coverages. Even so, all of these
criteria provided the desired accuracy only on average (or in the
median), so it is not surprising that the MWOC suggested even
larger sample sizes, as displayed in Table 4.

More generally, in this example, for a wide range of g, we
found the following ordering of sample sizes:

MCC ≈ MLC < O’Neill < ALC < Satten and Kupper < ACC.

Although this ordering may not hold for a different set of prior
parameters, our sample size formulas for the ALC and the
Monte Carlo regression-based approach seem to suggest that
the orderings obtained using the length criteria ALC, MLC,
MWOC, and O’Neill are approximately independent of α and l.

Overall, we recommend that when designing a study, sample
sizes should be calculated using a variety of criteria, and full
use should be made of the prior information available. In this
example it would be quite risky to rely on the MLC sample size,
because HPD widths much larger than desired would arise with
high probability. Similarly, sample sizes using (16) are likely
insufficient, because the stochastic nature of the data is ignored.
At the other extreme, there is no strong reason to prefer the
ALC2 [or PGT-(ii)] over ALC, with the latter depending on a
more natural metric. Different prior information could lead to
different orderings of the sizes provided by the various criteria,
so that the foregoing conclusions will not necessarily hold in
other examples.

The very wide range in sample sizes here is explained in large
part by the small amount of prior information. This in turn al-
lows for very wide ranges of p0 and p1 values, meaning that the
odds ratios can vary considerably from sample to sample. Next
we discuss the influence of varying prior information on sample
size determination.

3.7 Sensitivity Analysis

We carried out two different sensitivity analyses. First, we
examined the effect of different prior specifications from our
example in Section 3.6. Second, and unrelated to our example,
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we examined the effect of small changes in prior parameter val-
ues.

We considered two alternative specifications for our exam-
ple in Section 3.6: (1.5,2,2,6), which provides one-half of the
data-equivalent information compared with our original prior
values of (3,4,4,12) and (6,8,8,24), which provides twice
the data-equivalent information. We again examined the four
criteria ALC, ACC, MLC, and MCC, with 1 − α = .95 and
l = 3.

The sample sizes from each choice of prior specification are
provided in Table 5. Only slight sample size reductions were re-
alized for g = 1 compared to g = 2. Comparing the sample sizes
arising from the different prior distributions, it is clear that the
amount of prior information exerted a significant influence, al-
though we also note that the prior mean odds ratio also changed
as the prior information changed, also contributing to the effect.
More precise prior information led to smaller sample sizes. We
also note that the MLC and MCC led to similar sample sizes,
and that the ACC led to the largest sample size.

The ALC sample sizes obtained under the quite diffuse
specification (1.5,2,2,6) were unstable. For example, with
m = M = 10,000, 15,000, 20,000 and g = 1, (13) led to a sam-
ple size of n1 = 5,071, 5,445, 4,947. Equation (14) led to
n1 = 4,521, 4,722, 4,648, and (15) let to n1 = 4,784, 5,054,
4,824. The finding that the size formula did not work well for
the prior table (1.5,2,2,6) was expected, because this prior
specification does not satisfy the conditions required by these
equations.

For the second sensitivity analysis, we considered the ALC,
ACC, and MWOC, with 1 − α − .95, l = 1, g = 1, and γ = .5,
.75, and .85. The prior specifications under comparison were
(50,50,50,50) and (49,49,51,51). These somewhat informa-
tive priors led to the same prior sample size of N0 = 100.
The corresponding total sample sizes [ALC, ACC, MWOC(.5),
MWOC(.75), MWOC(.85)] were (428, 481, 850, 1,150,

1,366) for the first prior specification and (428, 480, 851,

1,150, 1,372) for the second prior specification. Therefore, our
sample sizes were robust to small changes in the prior specifi-
cation. In addition, the ALC and MWOC sample sizes were
similar regardless of the method used to calculate them.

4. MORE GENERAL CASE–CONTROL SETTINGS

We now extend the prototypic case-control design considered
earlier in various directions. We first consider cross-sectional

designs, and then show how our methods can be applied to
gene–environment studies.

4.1 Cross-Sectional Studies

In a cross-sectional study, disease and exposure outcomes
are measured simultaneously. Let p11 = Pr(D = 1,E = 1),

p10 = Pr(D = 1,E = 0),p01 = Pr(D = 0,E = 1), and p00 =
Pr(D = 0,E = 0) = 1 − p11 − p10 − p01. The odds ratio is given
by ψ = p11p00

p10p01
.

The usual Bayesian approach in a cross-sectional study is
to regard the likelihood realizations T = (a,b, c,d), for fixed
N = a+b+c+d (see Table 1) as being governed by a multino-
mial distribution, Mult(N;p11,p10,p01,p00), and the probabil-
ities (p11,p10,p01,p00) as Dirichlet, Dir(a′,b′, c′,d′). Under
this Dirichlet-multinomial specification, the posterior density
of ψ is the same as the posterior density of ψe given earlier
by (6) (Latorre 1982, 1984). The consequent unimodality of the
posterior density, as we have noted earlier, facilitates implemen-
tation of the algorithm of Chen and Shao (1999).

We consider the problem of determining the required sample
size N = a + b + c + d. Let

B(a1,a2, . . . ,aj) = 	(a1)	(a2) · · ·	(aj)

	(a1 + a2 + · · · + aj)

be the multivariate beta function and let a′′ = a + a′,b′′ =
b + b′, c′′ = c + c′, and d′′ = d + d′. The marginal probability
function of T = (a,b, c,d) is

pG(T|N,T ′) =
(

N
a b c d

)
B(a′′,b′′, c′′,d′′)
B(a′,b′, c′,d′)

. (18)

Theorem B.1 implies that ( a
N , b

N , c
N , d

N ) →d (p11,p10,p01,p00)

as N → ∞, a result essential to the derivation of the sample size
formula given by (20).

If we reconsider the parameterization (n1,a, c) where the
random variable n1 is a + b, then a straightforward change of
variable in (18) leads to

pG(n1,a, c|N,T ′)

=
(

N
n1

)
B(n1 + a′ + b′,n0 + c′ + d′)

B(a′ + b′, c′ + d′)
pT(T|n1,n0,T ′),

(19)
n1 = 0,1, . . . ,N,a = 0,1, . . . ,n1, and

c = 0,1, . . . ,n0,n0 = N − n1,

Table 5. Comparative Table of Bayesian Sample Sizes for (a′, b′, c′, d ′) = (6, 8, 8, 24), (3, 4, 4, 12), (1.5, 2, 2, 6),
1 − α = .95, and l = 1.0

(6, 8, 8, 24) (3, 4, 4, 12) (1.5, 2, 2, 6)

Criterion g n1 n0 N n1 n0 N n1 n0 N

ALC from (11) 2.0 97 190 287 242 482 724 3,791 7,582 11,373
1.0 144 126 270 355 346 701 5,707 5,703 11,410

ALC 2.0 89 178 267 226 452 678 3,034 6,068 9,102
1.0 124 124 248 323 323 646 4,521 4,521 9,042

ACC 2.0 159 318 477 503 1,006 1,509 3,645 7,290 10,935
1.0 227 227 454 736 736 1,472 5,422 5,422 10,844

MLC 2.0 51 102 153 64 128 192 80 160 240
1.0 69 69 138 88 88 176 111 111 222

MCC 2.0 51 102 153 62 124 186 77 154 231
1.0 68 68 136 88 88 176 111 111 222
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where pT(T|n1,n0,T ′) is as defined in (7). This form allows
us to once again use Monte Carlo simulations to find the opti-
mal N. The details are omitted here (see M’Lan 2002).

The main difference between the case-control setting and
the cross-sectional design is that the control-to-case ratio is
no longer fixed, but rather is random with N

g+1 ∼ Mult(N;π),
where π ∼ Be(a′ + b′, c′ + d′). Using the same methods as in
Section 3.2, it follows that there is a closed-form expression for
the approximate sample size for the ALCk,

N = 4z2
1−α/2

l2

×
{∫ 1

0

{∫ 1

0

∫ 1

0

[
1

1 − π
x(1 − x) + 1

π
y(1 − y)

]k/2

× xa′+k/2−1(1 − x)b′−3k/2−1

B(a′,b′)

× yc′−3k/2(1 − y)d′+k/2−1

B(c′,d′)
dx dy

}

× πa′+b′−1(1 − π)c′+d′−1

B(a′ + b′, c′ + d′)
dπ

}2/k

− N0, (20)

where a′,d′ > 0 and b′, c′ > kψ = [3(k + 1)/2], and N0 =
a′ + b′ + c′ + d′ is the prior sample size. [For the derivation
of (20), see M’Lan 2002.] Whereas the foregoing closed-form
expression for the sample size is available for the ALC, sample
sizes from all other criteria can be derived via the Monte Carlo
methods similar to those outlined in Sections 3.4 and 3.5.

4.2 Gene–Environment Studies

The importance of gene–environment studies has coincided
with growing recognition that many human diseases are the re-
sult of a joint effect of genes and the environment. In this sec-
tion we extend and adapt the results of the preceding sections to
the design of case-control studies whose purpose is to examine
gene–environment effects defined in a precise way. We concen-
trate on 2×4 case-control designs as well as gene–environment
case-only designs.

Let G be a dichotomous variable indicating the presence
(G = 1) or absence (G = 0) of an inherited susceptibility geno-
type. As in any case-control study, we start by collecting n1
cases and n0 = gn1 controls. Each subject is classified into one
of the four possible pairs of the exposure E and genotype G.
Table 6 summarizes the data so collected and the parameters of
interest. Cases and controls in the first row of Table 6 form the
reference group against which odds ratios will be calculated.

Table 6. Generic 2 × 4 Table for Gene–Environment Interaction
Analysis in Case-Control Settings

Susceptibility
Exposure genotype Cases Controls Odds ratios

0 0 A00 B00 1.0

0 1 A01 B01 ψG = p01q00
p00q01

1 0 A10 B10 ψE = p10q00
p00q10

1 1 A11 B11 ψEG = p11q00
p00q11

Total n1 n0

Let pij = Pr(G = i,E = j|D = 1) and qij = Pr(G = i,E = j|
D = 0), i, j = 0,1, be the cell probabilities given disease sta-
tus. Let ψG, ψE , and ψGE denote the odds ratios of disease for
G = 1 and E = 0, G = 0 and E = 1, and G = 1 and E = 1, rel-
ative to the reference group (G = 0, E = 0). By definition, we
have

ψG = Pr(D = 1|G = 1,E = 0)

Pr(D = 1|G = 0,E = 0)

/Pr(D = 0|G = 1,E = 0)

Pr(D = 0|G = 0,E = 0)

= p01q00

p00q01
,

ψE = Pr(D = 1|G = 0,E = 1)

Pr(D = 1|G = 0,E = 0)

/Pr(D = 0|G = 0,E = 1)

Pr(D = 0|G = 0,E = 0)

= p10q00

p00q10
,

and

ψGE = Pr(D = 1|G = 1,E = 1)

Pr(D = 1|G = 0,E = 0)

/Pr(D = 0|G = 1,E = 1)

Pr(D = 0|G = 0,E = 0)

= p11q00

p00q11
.

One way to measure the influence of gene–environment in-
teractions on disease occurrence is to compute the synergy in-
dex, IGE , where

IGE = ψGE

ψGψE
= p11p00

p01p10

/q11q00

q01q10
.

We exploit the latter form, which is a ratio of two odds ra-
tios. Piegorsch, Weinberg, and Taylor (1994) showed that IGE is
equivalent to the interaction parameter between genotype and
environment under a logistic regression model.

The natural prior-likelihood model for a 2 × 4 gene-environ-
ment study assumes that conditional on (n1;p11,p10,p01,p00)

and (n0;q11,q10,q01,q00), respectively, T1 = (A11,A10,A01,

A00) and T0 = (B11,B10,B01,B00) are independent multino-
mial random vectors using the notation of Table 6. That is,
T1 ∼ Mult(n1;p11,p10,p01,p00) and T0 ∼ Mult(n0;q11,q10,

q01,q00). Next, we assume that the two multinomial cell prob-
ability vectors are independent with different Dirichlet distrib-
utions, that is, (p11,p10,p01,p00) ∼ Dir(a00,a10,a01,a00), and
(q11,q10,q01,q00) ∼ Dir(b00,b10,b01,b00).

Latorre (1984) derived lengthy expressions for the poste-
rior distribution of IGE using the sum of four infinite series.
Rather than work with these expressions, we again take a Monte
Carlo approach, which is computationally more efficient. We
showed in Section 4.1 that the posterior distribution of the
parameters log(

p11p00
p01p10

) and log(
q11q00
q01q10

) are strongly unimodal;
therefore, the posterior distribution of their difference is also
strongly unimodal, and the unimodality of IGE follows from
Theorem A.2. The joint marginal distribution of T1 and T0

conditional on (n1,n0,T ′
1,T ′

0) is p(T1,T0|n1,n0,T ′
1,T ′

0) =
pG(T1|n1,T ′

1)pG(T0|n0,T ′
0), where T ′

1 = (a11,a10,a01,a00),
T ′

0 = (b11,b10,b01,b00), and pG(T|N,T ′) is defined in (19).
Once again, a Monte Carlo algorithm, along the lines of

those of Section 3.4, yields optimal values for n1 and g.
Here, however, one begins by simulating the vectors pi =
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(pi
11,pi

10,pi
01,pi

00) and qi = (qi
11,qi

10,qi
01,qi

00) from their re-
spective Dirichlet priors.

Case-Only Design. In general, inference about IGE requires
information about the controls. Suppose, however, that there is
strong theoretical justification or empirical evidence that geno-
type and exposure occur independently in the population. Under
this assumption, and assuming that the disease is rare, Piegorsch
et al. (1994) showed that

IGE ≈ Pr(E = 1|G = 1,D = 1)Pr(E = 0|G = 0,D = 1)

Pr(E = 0|G = 1,D = 1)Pr(E = 1|G = 0,D = 1)

= p11p00

p01p10
. (21)

Approximation (21) implies that we can estimate IGE using data
from cases only, because p11p00

p01p10
can be estimated without infor-

mation on controls. Piegorsch et al. (1994) also showed that
estimation of gene–environment interaction with a case-only
design, if feasible, offers greater precision than that provided
by the traditional approach and avoids the difficult problem of
validating the control group.

Inferentially, the case-only design is identical to the cross-
sectional sampling design discussed in Section 4.1. Therefore,
all Bayesian sample size methods for the cross-ratio parame-
ter ψ apply directly to estimating IGE under this case-only
setting.

5. BAYESIAN DECISION–THEORETIC SAMPLE
SIZE METHODS

Informally, any sample size problem can be considered a
form of a decision problem. In this sense, the preceding work
in this article can broadly be considered as decision theoretic.
More formally, however, Bayesian decision-theoretic sample
size problems should be expressed in the form of maximizing
an expected utility function over the set of all possible designs
of size n ≥ 0 and over all terminal decisions d ∈ D (Lindley
1997). After observing data xn, we wish to make a decision
d ∈ D about our parameter of interest θ . Thus we find the min-
imal n that maximizes

U(n) =
∫

Xn

{

max
d∈D

∫

�

u(n,xn,d, θ)p(θ |xn,n)dθ

}

p(xn|n)dxn.

For the sample size problem, a common form for the utility
function u(n,xn,d, θ) is

u(n,xn,d, θ) = Kδ(n,xn,d, θ) − Lw(n,xn,d) − cn (22)

for an interval d, where δ(n,xn,d, θ) = 1 if θ ∈ d, and δ(n,

xn,d, θ) = 0 otherwise, and w(n,xn,d) is the width of the inter-
val d. The quantities K,L > 0 are positive constants balancing
high coverage against low width, and c ≥ 0 is the common cost
associated with observing each subject. When c = 0, we have

U(n,K,L)

=
∫

Xn

max
d∈D

{

K
∫

d
p(θ |xn,n)dθ − L

∫

d
dθ

}

p(xn|n)dxn. (23)

Our ACC and ALC criteria satisfy

acc(n) =
∫

Xn

{

max
C∈I(l)

∫

C
p(θ |xn,n)dθ

}

p(xn|n)dxn ≥ 1 − α

and

alc(n) =
∫

Xn

{

min
C∈I(1−α)

∫

C
dθ

}

p(xn|n)dxn ≤ l,

where I(l) and I(1 − α) are the sets of all posterior credible
intervals of length l and coverage 1 − α. When the parame-
ter space for θ is bounded, it is easily seen that the criterion
functions acc(n) and alc(n) are limiting cases, as m approaches
infinity, of the sequence of functions U(n,1,Lm) when setting
D = I(l) and of U(n,Km,1) when setting D = I(1−α), where
the sequences of numbers Lm and Km converge to 0. These re-
sults show that even though our methods do not represent fully
decision-theoretic criteria, they are close in form. In addition,
the ALC2 is asymptotically equivalent to the PGT-(ii), which is
a fully decision-based criteria associated with a quadratic loss
function.

Solving (22) using Monte Carlo methods similar to those
described in this article or those described by Müller and
Parmigiani (1995) should be feasible. In practice, however, de-
riving sensible loss functions for case-control studies is a diffi-
cult problem except for simple cost functions. (See Joseph and
Wolfson 1997 for further discussion of this point.)

Rather than selecting a sample size in advance, one can pro-
ceed sequentially. One simple way to do this would be to apply
any of the criterion defined in Section 2 but with updated prior
distributions, based on the data collected so far. For the case-
control setting discussed elsewhere in this article, the updated
prior is again a beta distribution by conjugacy. One can then
calculate how many further subjects need to be recruited in the
case and control groups according to the criterion chosen, and
proceed accordingly. Other, more complex sequential sampling
schemes can also be considered (see Chen 2000; Berger 1985).

6. CONCLUSION

Considering the central role played by case-control studies
in epidemiology, De Santis et al. (2004) provided a timely first
presentation of Bayesian sample size methods for such studies.
We have extended the methods of De Santis et al. in several
ways: We have included six different Bayesian sample size cri-
teria (two of which are new) and based our sample size methods
on both HPD and equal-tailed intervals. Our methods, which
allow for the simultaneous estimation of the optimal control-
to-case ratio, provide a general unified Monte Carlo frame-
work for Bayesian sample size determination in case-control
studies. At the same time, in some special cases, we provide
a closed-form expression for the sample size. One benefit of
this approach is that the expression given by Theorem 1 allows
us to describe the rate of convergence of the criterion function
alck(n1,n0,T ′) as n0 (= gn1) tends to ∞. The extension of our
methods beyond 2 × 2 tables to include 2 × 4 tables of case-
only designs (a mainstay of gene–environment studies) and to
cross-sectional studies greatly enhances their usefulness.

Using a Monte Carlo approach, sample size estimates can
be made arbitrarily accurate. Software implementing the basic
methods along with the various extensions discussed in this ar-
ticle is available from the authors. This software also imple-
ments sample size estimation for log(ψe). Approximate ALCk

sample sizes and cost formulas for log(ψe) are obtained by re-
placing the terms a′ + k/2,b′ − 3k/2, c′ − 3k/2, and d′ + 3k/2
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in (11) and (20) by the terms a′ − k/2,b′ − k/2, c′ − k/2, and
d′ − k/2. The software extends the Monte Carlo approaches to
sample size to the case where it is known a priori that ψe > 1 or
ψe < 1. Knowing a priori that ψe > 1 can reduce the required
sample size by up to 80%. This observation again reinforces the
advantage of incorporating prior information into the model.

In our software, we also extend our sample size problem to
a related cost problem, although the subject is not discussed
in any detail in this article. If c0 represents the unit cost per
control and c1 = rc0 represents the unit cost per case, then the
cost problem seeks the minimal n1(g) for a given g or the mini-
mal (g,n1(g)) when g is unknown that minimizes the objective
function C(n1) = c1n1 + c0n0 = (g+ r)c0n1(g). This cost func-
tion is simple but still sufficiently realistic for some situations.
When g is known, a cost formula is obtained by replacing the
term (g + 1) in (11) and (20) by c0(g + r) and replacing N0 by
C0 = c0(c′ + d′ + ra′ + rb′).

All prior-likelihood models examined here can be put in the
framework of a logistic regression, when the log-odds ratio is
the parameter of interest. This opens the door for application of
our methods when exposure covariates are continuous, although
the prior specification for the exposure parameters must be care-
fully considered. The implementation often would require using
MCMC with automated convergence checks for each sample
point in the marginal space.

APPENDIX A: UNIMODALITY OF THE POSTERIOR
DENSITY IN (6)

Our proof of the unimodality of the density in (6) requires the no-
tion of strongly unimodal distributions (Dharmadhikari and Joag-Dev
1988) along with the following lemmas.

Lemma A.1 (Dharmadhikariand and Joag-Dev 1988). The set of all
strongly unimodal distributions is closed under convolutions. In par-
ticular, if X1 and X2 are two independent strongly unimodal random
variables, then so is X2 − X1.

Lemma A.2 does not appear to have been stated elsewhere.

Lemma A.2. Let U be a strongly unimodal random variable with an
absolutely continuous density fU . Then V = exp(U) is unimodal.

Proof. The density of V is easily seen to be fV (v) = fU(log(v))
v , and,

consequently, log( fV (v)) = log( fU(log(v))) − log(v). The differentia-
tion of log( fV (v)) with respect to v gives

∂ log( fV (v))

dv
= 1

v

{
f ′
U(log(v))

fU(log(v))
− 1

}

, (A.1)

where f ′
U(u) = ∂fU(u)

du . Because U is strongly unimodal,
f ′
U

fU
is decreas-

ing. Therefore, the right side of (A.1) can have at most one change in
sign. If the sign does change, then the change must be from positive to
negative. This shows that exp(U) is unimodal.

Theorem A.1. Let p1 ∼ Be(α1, β1) and p0 ∼ Be(α2, β2) be two
independent random variables with α1, α0, β1, β0 > 0. Define φ1 =
log(

p1
1−p1

), φ0 = log(
p0

1−p0
), and ρ = p1(1−p0)

p0(1−p1)
. Then (a) φ1 and φ0

are strongly unimodal, (b) log(ρ) is strongly unimodal (and therefore
unimodal), and (c) ρ is unimodal.

Proof. (a) Clearly, the density of φ1, fφ1 (φ) = eα1φ

(1+eφ)α1+β1
, is

strongly unimodal, because

∂2 log( fφ1 (φ))

∂φ2
= −(α1 + β1)

eφ

(1 + eφ)2
.

The same holds true for φ0.
(b) Lemma A.1 ensures that log(ρ) = φ1 −φ0 is strongly unimodal

as the difference of two independent strongly unimodal random vari-
ables.

(c) Again, Lemma A.2 implies that ρ = elog(ρ) is unimodal.

Corollary A.1. The posterior density in (6) is unimodal.

Proof. Under the prior/likelihood model in Section 3.1, the pos-
terior distributions of p1 and p0 are p1 ∼ Be(a′′,b′′) and p0 ∼
Be(c′′,d′′). In addition, p1 and p0 are independent. Theorem A.1
clearly ensures that the posterior density for ψe is unimodal.

APPENDIX B: ASYMPTOTIC DISTRIBUTION OF THE
MARGINAL PREDICTIVE DISTRIBUTION

Theorem B.1, which is a straightforward application of Khintchin’s
weak law of large numbers, does not seem to have been formulated
previously.

Theorem B.1. Let X1, . . . ,Xn conditional on θ be n iid (possibly
multivariate) random variables such that Xi|θ ∼ fX(x|θ), i = 1, . . . ,n,
θ ∼ f (θ), E(‖X‖|θ) < ∞, and let Z = E(X|θ) except on a set of mea-
sure zero with respect to f (θ). Let Sn = X1 + · · · + Xn. Then

Sn

n
→P Z. (B.1)

Proof. We have

lim
n→∞ Pr

[∥
∥
∥
∥

Sn

n
− Z

∥
∥
∥
∥ > ε

]

= lim
n→∞

∫

�
Pr

[∥
∥
∥
∥

Sn

n
− Z

∥
∥
∥
∥ > ε

∣
∣
∣θ

]

f (θ)dθ (B.2)

=
∫

�
lim

n→∞ Pr

[∥
∥
∥
∥

Sn

n
− Z

∥
∥
∥
∥ > ε

∣
∣
∣θ

]

f (θ)dθ (B.3)

= 0,

by first using Lebesgue’s dominated convergence theorem to inter-
change the limit and the integral in expression (B.2) to get (B.3), and
then using Khintchin’s theorem to evaluate the limit inside the integral.

APPENDIX C: PROOF OF THEOREM 1

Define Zn1,T ′ = ( a
n1

, c
gn1

) = (Xn1,T ′ ,Yn1,T ′ ) given n1 and T ′, and
let Fn1 be the set of points (x, y) where the mass function of Zn1 is
positive. After some algebraic manipulations and setting a = n1x,b =
n1(1 − x), c = gn1y, and d = gn1(1 − y), we have

n1 var(ψe|T ′′) =
(
x+ a′

n1

)(
1−y+ d′

gn1

)
Q(n1,x,y,T ′)

(
1−x+ b′

n1

)2(
1−x+ b′−2

n1

)(
y+ c′−1

gn1

)2(
y+ c′−2

gn1

) ,

where

Q(n1, x, y,T ′)

= 1

g

{(

x + a′ + 1

n1

)(

1 − y + d′ + 1

gn1

)

×
(

1 − x + gy + b′ + c′ − 3

n1

)

+
(

1 − x + b′ − 2

n1

)(

y + c′ − 2

gn1

)

×
(

x + g(1 − y) + a′ + d′ − 1

n1

)}

.
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We have

nk/2
1 ET [lkψe

(T ′′)]
2kzk

1−α/2

=
∑

x,y∈Fn1

{n1 var(ψe|T ′′)}k/2pZn1,T′ (x, y|n1,n0,T ′)

= B(a′,b′ − kψe)B(c′ − kψe ,d′)
B(a′,b′)B(c′,d′)

×
∑

x,y∈Fn1

hn1(x, y)pZn1,T� (x, y|n1,n0,T�)

= B(a′,b′ − kψe)B(c′ − kψe ,d′)
B(a′,b′)B(c′,d′)

× EZn1,T�

[
hn1

(
Xn1,T� ,Yn1,T�

)]
,

where T� = (a′,b′ − kψe , c′ − kψe ,d′) and

hn1(x, y) = B(a′,b′)B(c′,d′)
B(a′,b′ − kψe)B(c′ − kψe ,d′)

× {n1 var(ψe|T ′′)}k/2
pZn1,T′ (x, y|n1,n0,T ′)
pZn1,T� (x, y|n1,n0,T�)

.

The proof is completed if we can show that

lim
n1→∞ EZn1,T�

[
hn1

(
Xn1,T� ,Yn1,T�

)] = EZ� [h(X�,Y�)],

where Zn1,T� →d Z� = (X�,Y�) and limn1→∞ hn1(x, y) = h(x, y). We
make use of theorem 25.12 of Billingsley (1995, p. 338):

1. Define Z� = (X�,Y�), where X� ∼ Be(a′,b′ − kψe) and
Y� ∼ Be(c′ − kψe ,d′) are independent. The first step (i.e.,

Zn1,T� →d Z�), is a straightforward application of Theorem B.1.
2. Next, define

cn1

(
k, kψe ,T ′)

= gkψe n
2kψe
1 	(n1 + a′ + b′ − kψe)	(gn1 + c′ + d′ − kψe)

	(n1 + a′ + b′)	(gn1 + c′ + d′) .

We have

hn1 (x, y) = cn1

(
k, kψe ,T ′)[Q(n1, x, y,T ′)]k/2

× un1

(
x, k, kψe ,a′,b′)ugn1

(
1 − y, k, kψe ,d′, c′),

where

un1 (x, k, kψe , e, f )

=
(

e

n1
+ x

)k/2
∏kψe

i=1

( f−i
n1

+ 1 − x
)

( f−1
n1

+ 1 − x
)k( f−2

n1
+ 1 − x

)k/2

with limn1→∞ Q(n1, x, y, T ′) = x(1−x)
g + y(1 − y),

limn1→∞ un1 (x, k, kψe ,a′,b′) = xk/2(1 − x)kψe−3k/2, and
limn1→∞ cn1 (k, kψe ,T ′) = 1. Therefore, limn1→∞ hn1(x, y) =
xk/2(1−y)k/2(1−x)kψe−3k/2ykψe−3k/2[ x(1−x)

g +y(1−y)]k/2 =
h(x, y).

3. This step involves showing that the sequence of functions
hn1(x, y) is uniformly bounded. Thus the sequence of random
variables hn1 (Xn1,T� ,Yn1,T� ) is uniformly integrable accord-
ing to an obvious extension of exercise 25.8 of Billingsley
(1995, p. 340) to more than one argument. First, note that

‖un1 (x, k, kψe , e, f )‖ ≤ ( e
n1

+1)k/2
√

f−kψe
n1

+ 1 and ‖cn1 (k, kψe ,

T ′)‖ ≤ 1. Second, it is also easily seen that the function
Q(n1, x, y,T ′) is uniformly bounded. Therefore, the functions
hn1(x, y) are uniformly bounded.

Hence

lim
n1→∞

nk/2
1 ET [lkψe

(T ′′)]
2kzk

1−α/2

= B(a′,b′ − kψe)B(c′ − kψe ,d′)
B(a′,b′)B(c′,d′)

∫ 1

0

∫ 1

0
h(x, y)p(x, y)dx dy,

which completes the proof.

[Received September 2003. Revised July 2005.]
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