Comparison of transradial and femoral approaches for percutaneous coronary interventions: A systematic review and hierarchical Bayesian meta-analysis

Olivier F. Bertrand, MD, PhD, ^{a,b} Patrick Bélisle, MSc, ^b Dominique Joyal, MD, ^b Olivier Costerousse, PhD, ^a Sunil V. Rao, MD, ^c Sanjit S. Jolly, MD, MSc, ^d David Meerkin, MBBS, ^e and Lawrence Joseph, PhD ^b Quebec, Ontario, Canada; Durbam, NC; and Jerusalem, Israel

Background Despite lower risks of access site-related complications with transradial approach (TRA), its clinical benefit for percutaneous coronary intervention (PCI) is uncertain. We conducted a systematic review and meta-analysis of clinical studies comparing TRA and transfemoral approach (TFA) for PCI.

Methods Randomized trials and observational studies (1993-2011) comparing TRA with TFA for PCI with reports of ischemic and bleeding outcomes were included. Crude and adjusted (for age and sex) odds ratios (OR) were estimated by a hierarchical Bayesian random-effects model with prespecified stratification for observational and randomized designs. The primary outcomes were rates of death, combined incidence of death or myocardial infarction, bleeding, and transfusions, early (≤30 days) and late after PCI.

Results We collected data from 76 studies (15 randomized, 61 observational) involving a total of 761,919 patients. Compared with TFA, TRA was associated with a 78% reduction in bleeding (OR 0.22, 95% credible interval [CrI] 0.16-0.29) and 80% in transfusions (OR 0.20, 95% CrI 0.11-0.32). These findings were consistent in both randomized and observational studies. Early after PCI, there was a 44% reduction of mortality with TRA (OR 0.56, 95% CrI 0.45-0.67), although the effect was mainly due to observational studies (OR 0.52, 95% CrI 0.40-0.63, adjusted OR 0.49 [95% CrI 0.37-0.60]), with an OR of 0.80 (95% CrI 0.49-1.23) in randomized trials.

Conclusion Our results combining observational and randomized studies show that PCI performed by TRA is associated with substantially less risks of bleeding and transfusions compared with TFA. Benefit on the incidence of death or combined death or myocardial infarction is found in observational studies but remains inconclusive in randomized trials. (Am Heart J 2012;163:632-48.)

The transradial approach (TRA) for coronary angiography was initially described by Campeau¹ in 1989 and for percutaneous coronary interventions (PCIs) by Kiemeneij and Laarman² in the early 90s. Although the technique was rapidly adopted by a few groups in Europe, Canada, United States, and Asia, widespread application has not occurred. The obvious advantage of the radial artery compared with the femoral artery is the superficiality of the vessel with no adjacent structures susceptible to be

David P. Faxon, MD served as guest editor for this article.

© 2012, Mosby, Inc. All rights reserved.

doi:10.1016/j.ahj.2012.01.015

damaged during percutaneous procedures. Hence, despite the use of aggressive antithrombotic regimens required for PCI, the artery is readily compressible, and introducer sheaths can be immediately removed upon completion of procedures. Hemostasis can be achieved safely and rapidly using simple compressive hemostatic devices. Two previous meta-analyses reviewing randomized trials comparing TRA with the traditional transfemoral approach (TFA) for diagnostic coronary angiography or interventions estimated a 73% reduction in the risk of access site-related bleeding and an 80% risk reduction of major bleeding.^{3,4} These benefits are associated with earlier ambulation, increased patient comfort, and reduced hospitalization duration with substantial cost containment. However, smaller caliber of the radial artery as well as the greater anatomical variability of vascular course and distribution in the arm has been associated with a steep learning curve resulting in an increase in procedural failure and a higher rate of cross-over to femoral route.⁴

From the ^aQuebec Heart and Lung Institute, Quebec City, Quebec, Canada, ^bMcGill University, Montreal, Quebec, Canada, ^cDuke Clinical Research Institute, Durham, NC, ^dHamilton General Hospital, McMaster University, Hamilton, Ontario, Canada, and ^eShaare Zedek Medical Center, Jerusalem. Israel.

Submitted November 21, 2011; accepted January 18, 2012.

Reprint requests: Olivier F. Bertrand, MD, PhD, Institut Universitaire De Cardiologie et De Pneumologie De Québec, 2725 Chemin Sainte-Foy, Québec (Qc) Canada, G1V 4G5. E-mail: olivier.bertrand@criucpq.ulaval.ca

^{0002-8703/\$ -} see front matter

Conference proceedings: American College of Cardiology (1994-2011), American Heart Association (1994-2010), European Society of Cardiology (1994-2010), and Transcatheter Cardiovascular Therapeutics (2000-2010) annual scientific sessions.

Flow diagram of trials selection.

Multiple studies have identified the incidence of major bleeding (using several definitions) as a strong independent predictor of increased risks of early and late death or major adverse cardiovascular events (MACE) in patients presenting with acute coronary syndromes (ACSs) and undergoing invasive procedures.⁵ More recently, a few pharmacologic trials in ACSs have demonstrated important reductions in the incidence of major bleeding with new agents compared with standard therapies. This impact on bleeding is, in turn, associated with a reduction in the periprocedural risk of mortality. In previous PCI trials, access site bleeding represented 50% to 80% of all major bleeding, and thus, it is possible that TRA through its association with lower bleeding risk could favorably influence the risk of death and MACE after PCI. We, therefore, undertook a systematic review and meta-analysis of all available data comparing TRA with TFA in PCI studies to estimate the potential benefits of TRA on clinical outcomes.

Methods

Search strategy and data collection

We carried out this review and meta-analysis with standard protocols recommended by the PRISMA group for randomized trials and MOOSE group for observational studies.^{6,7} We

searched the PubMed database, EMBASE, and the Cochrane Library, using the terms radial, trans-radial, and coronary (last update: June 30, 2011). We restricted our selection to publication in English, French, or Spanish. References of selected studies and all abstracts from international cardiology meeting programs (European Society of Cardiology, American College of Cardiology, American Heart Association, Transcatheter Cardiovascular Therapeutics [TCT], and Euro-PCR) were searched for relevant data. To be included, the studies needed to report clinical outcomes in TRA and TFA groups. When study results were reported in abstract form and subsequently in a full article, only results from the published manuscript were considered. When only abstracts data were available, authors were directly contacted to provide more complete data and/or full manuscript. Only abstracts with complete data were included. Three evaluators (O.C., D.J., and O.B.) performed literature searches, and 2 (O.C. and O.B.) extracted data independently. Discrepancies between data sets were resolved by consensus, if necessary after contact with authors.

Classification of studies and outcome definitions

We classified the studies based on randomized or observational design. Because the objective was to determine the clinical impact of TRA compared with TFA after PCI, only studies with ≥50% PCI rate were included. The clinical outcomes investigated both ischemic and bleeding outcomes. Ischemic outcomes included rates of all-cause mortality and the combined incidence of death or myocardial infarction (MI), early (within 30 days after PCI) and at late follow-up (>1 month). In those studies, MI was most commonly defined as a new increase in creatine phosphokinase-MB \geq 3 times the upper limit of the normal reference range with or without electrocardiographic changes. Rates of nonfatal MI were not provided separately in some reports, so the reported rates of MI may have included a number of fatal MI. Bleeding complications included both standardized and study-specific definitions. Most major bleeding definitions involved fatal bleeding, intracranial bleeding, bleeding associated with either hemoglobin level drop ≥ 3 g/dL or ≥ 5 g/dL, or access-related bleeding/complications requiring transfusion or surgery. Transfusion rates were also compared.

Statistical analysis

Differences in study methods, patients' characteristics and practice patterns mean that the true effect from each study is likely to vary and a fixed-effects meta-analysis model would not account for this between-study variation. We, therefore, used a Bayesian hierarchical random-effects model to synthesize the results.^{8,9} In this model, the probability of an event is allowed to vary both between the TRA and TFA groups within each study and between each study included in the meta-analysis. To model the between-study variability, the logarithm of the odds ratio (OR) of each outcome variable is assumed to follow a normal distribution. The mean of the normal distribution of log ORs across studies, therefore, represents the average effect in the studies, and the variance represents the variability in log ORs across studies. Bayesian analysis allows for the combination of existing knowledge with new information according to the existing rules of probability. Substantive prior knowledge can thereby be included into any Bayesian analysis by choice of initial (predata) distribution. However, because we

Table I. Characteristics of included studies

Author	Year	Rand	TRA, n	TFA, n	TRA male, n	TFA male, n	TRA age, y	TFA age, y	Heparin %	GPI , %	Bival, %	Bleeding definition
Kiemeneij et al ¹⁰	1995	No	35	25	30	21	62	57	100	0	0	Requiring additional diagnostic or
Mann et al ¹¹	1995	No	50	100	39	N/A	60	N/A	100	0	0	Hematoma delaying hospital discharge, retroperitoneal bleed, pseudoaneurysm
Mann et al ¹²	1996	Yes	73	75	53	52	64	62	100	0	0	Requiring transfusion, hematoma delaying discharae, surgical repair
Mann et al ¹³	1996	No	175	202	128	139	63	60	100	0	0	Retroperitoneal bleed, AV fistula, pseudoaneurysm, large hematoma, delaving discharge
Benit et al ¹⁴	1997	yes	56	56	56	56	58	58	100	0	0	Fatal bleeding, requiring blood transfusion or vascular surgery, Hb drop >3 a/dL intracranial hemorrhage
Kiemeneij et al ¹⁵	1997	Yes	300	300	221	220	61	62	100	0	0	Hb drop ≥2 mmol/L, blood transfusion, vascular repair
Mann et al ¹⁶	1998	Yes	65	77	42	52	63	62	100	13	0	Access site bleeding delaying discharge
Saito et al ¹⁷	1999	No	1360	793	987	559	65	68	N/A	N/A	N/A	Access site bleeding, hematoma or pseudoaneurysm requiring blood transfusion and/or surgical repair
Choussat et al ¹⁸	2000	No	83	67	75	59	65	64	100	89	0	Access site bleeding: Hb drop $\geq 2 \text{ mmol/L}$, blood transfusion, vascular repair, or propaged basesitelization
Kim et al ¹⁹	2000	No	30	26	25	18	56	59	100	18	0	Access site bleeding complications
Mann et al ²⁰	2000	Yes	109	109	70	61	65	60	100	21	õ	Access site bleeding delaying discharge
Morice et al ²¹	2000	No	376	580	N/A	N/A	N/A	N/A	100	5.1	0	Access site complication: hematoma delaying discharge, hematoma requiring transfusion. suraical repair
Chugh et al ²²	2002	Yes	45	98	N/A	N/A	64	62	100	5.6	N/A	Hb drop ≥2 g/dL, blood transfusions, need for vascular repair
Louvard et al ²³	2002	No	267	947	223	725	60	62	100	13	0	Hb drop >3 g/dL
Galli et al ²⁴	2003	No	390	100	292	71	62	64	100	0	0	Access site complication: hematoma small and large
Saito et al ²⁵	2003	Yes	77	72	62	59	66	67	100	0	0	Requiring transfusion, surgical repair, or cerebral bleeding
Valsecchi et al ²⁶	2003	No	163	563	126	426	62	62	100	21	0	Intracranial hemorrhage, cardiac tamponade, Hb drop >5g/dL
Yang et al ²⁷	2003	No	153	24	127	15	64	62	100	0	0	-
Ziakas et al ²⁸	2003	No	100	67	80	39	59	67	N/A	64	0	Hb drop >3 g/dL, blood transfusion, surgical repair
Diaz et al ²⁹	2004	No	103	59	93	45	55	61	100	67	0	Access site–related hemorrhage (Hb drop ≥4g/dL) requiring transfusion, surgical repair, or hematoma delaying discharge
Kassam et al ³⁰	2004	No	47	64	39	49	56	56	100	100	0	Intracranial or retroperitoneal bleeding, drop in Hb >5 g/dL or Ht \geq 15%, or transfusion
Louvard et al ³¹	2004	Yes	192	185	106	94	83	83	N/A	29	0	Vascular surgery, blood transfusion, delaying discharge, Hb drop ≥3 g/dL, Ht drop ≥10%, acute arm/leg ischemia, forgerm compartment syndrome
Philippe et al ³²	2004	No	64	55	48	40	59	60	100	100	0	Hb drop ≥ 2 mmol/l, blood transfusion, vascular repair, or prolonged bospitalization
Yip et al ³³	2004	No	42	101	31	80	62	61	N/A	30	N/A	Hb drop >3 g/dL, requiring blood transfusion
Ziakas et al ³⁴	2004	No	27	53	23	37	75	71	100	35	0	Vascular access complications requiring transfusion or surgical repair
Cantor et al ³⁵	2005	Yes	25	25	19	25	52	58	100	94	0	Intracranial or retroperitoneal bleeding, Hb drop >5 g/dL or Ht \geq 15%, transfusion
Kim et al ³⁶	2005	No	220	132	147	82	62	64	N/A	N/A	0	Access site bleeding: Hb drop ≥2 mmol/L, blood transfusion, vascular repair, and prolonged hospitalization

Author	Year	Rand	TRA, n	TFA, n	TRA male, n	TFA male, n	TRA age, y	TFA age, y	Heparin %	GPI, %	Bival, %	Bleeding definition
Slagboom	2005	Yes	322	322	241	249	60	60	100		0	Access site bleeding complications
Ziakas et al ³⁸	2005	No	132	202	116	167	71	69	100	31	0	Vascular complication requiring transfusion
Brasselet et al ³⁹	2007	Yes	57	57	49	47	60	58	N/A	N/A	0	TIMI major bleeding
Cantor et al ⁴⁰	2007	No	413	8922	297	5889	66	67	50	N/A	0	TIMI major bleeding
Cruden et al ⁴¹	2007	No	44	243	32	206	59	59	100	39	0	Access site bleeding, digital ischemia, hematoma, pseudoaneurysm, or AV fistula
Jaffe et al ⁴²	2007	No	97	131	65	70	82	83	100	57	0	Bleeding, large hematoma, transfusion, vascular repair
Yang et al ⁴³	2007	No	60	74	58	60	56	58	100		0	-
Ziakas et al ⁴⁴	2007	No	87	68	56	43	76	78	100	67	0	Blood transfusion, surgical repair, Hb drop >3g/dL
Chase et al ⁴⁵	2008	No	7972	30900	6003	22464	65	64	N/A	N/A		Requiring transfusion
Eichhofer et al ⁴⁶	2008	No	3214	10285	2494	7251	63	63	100	84	0	Hematoma delaying discharge, pseudoaneurysm, fistula, thrombosis, cellulites, limb ischemia, transfusion due to access site blood loss, retroperitoneal bleed
Hsueh et al ⁴⁷	2008	No	116	15	89	8	67	66	100	0	0	TIMI major bleeding
Montalescot et al ⁴⁸	2008	No	841	7059	N/A	N/A	N/A	N/A	47	19	0.2	Fatal, intracranial, intraocular, retroperitoneal hemorrhage, clinically overt
Rao et al ⁴⁹	2008	No	7804	585290	5534	383891	64	65	53	40	39	Retroperitoneal, gastrointestinal, genitourinary, requiring transfusion, prolonged hospitalization, or Hb drop
Roberts et al ⁵⁰	2008	No	1212	112	902	74	62	64	N/A	N/A	N/A	>3 g/dL Hemodynamic instability, Hb drop, transfusion, large hematoma, retroperitoneal
Yan et al ⁵¹	2008	No	57	46	43	34	70	71	100	100	0	hematoma, pseudoaneurysm Hb drop ≥2 mmol/L, blood transfusion, vascular rapair, prolonged bospitalization
Badri et al ⁵²	2009	No	263	903	201	710	60	62	99	93	0	Requiring transfusion
Blicq et al ⁵³	2009	No	509	117	378	65	68	69	100	31	N/A	Gastrointestinal, Ht drop, hematoma (major or requiring surgical repair),
Chodor et al ⁵⁴	2009	Yes	50	50	35	33	60	59	100	43	0	transtusion, neurologic hemorrhage Fatal bleeding, requiring blood transfusion or operation, Hb drop >3 g/dL, interacregical benerghage
De Carlo et al ⁵⁵	2009	No	531	130	428	89	62	66	N/A	100	0	TIMI major bleeding
Hamon et al ⁵⁶	2009	No	798	11989	610	8332	61	63	33	67	67	TIMI major bleeding
Hetherington et al ⁵⁷	2009	No	571	480	428	319	62	65	100	92	0	Access site hemorrhage/hematoma requiring transfusion or delaying discharge or proved false aneurysm formation
Rathore et al ⁵⁸	2009	No	318	1 <i>5</i> 0	257	123	65	63	100	66	0	Access site hematoma small (<5 cm) and large (>5 cm)
Rathore et al ⁵⁹	2009	No	51	64	46	56	65	63	100	64	0	Access site hematoma small (<5 cm) and large (>5 cm)
Ruzsa et al ⁶⁰	2009	No	167	372	120	273	62	64	100	29	0	Hb drop ≥2 mmol/L, blood transfusion, vascular repair, and prolonged hospitalization
Sciahbasi et al ⁶¹	2009	No	307	863	223	566	65	68	31	39	0	Intracranial or retroperitoneal bleeding or other overt bleeding with Hb drop $\geq\!\!3$ g/dL
Watt and Oldroyd ⁶²	2009	No	75	76	55	45	68	68	100	46	0	Hemodynamic compromise and/or blood transfusion
Yip et al ⁶³	2009	No	506	810	413	682	61	62	100	12	0	Hb drop >3 g/dL requiring blood transfusion
Zimmermann et al ⁶⁴	2009	No	218	286	N/A	N/A	N/A	N/A	100	76	N/A	Substantial hemodynamic compromise requiring treatment

Table I. (continued)

(continued on next page)

Table I. (continued)

Author	Year	Rand	TRA, n	TFA, n	TRA male, n	TFA male, n	TRA age, y	TFA age, y	Heparin %	GPI, %	Bival, %	Bleeding definition
Arzamendi et al ⁶⁵	2010	No	238	251	192	147	59	64	97	81	0	Intracranial, intraocular, access site bleed requiring intervention, hematoma \geq 5 cm, Hb drop \geq 4 g/dL without overt bleed or \geq 3 g/dL with overt bleed, requiring transfuring or parenting
Bertrand et al ⁶⁶	2010	No	90	13	51	5	85	82	89	32	11	Requiring transfusion
Caixeta et al ⁶⁷ Hou ⁶⁸	2010 2010	No Yes	200 100	3134 100	146 72	2426 69	59 65	60 66	71 100	52 48	50 0	TIMI major bleeding Hb drop ≥2 mmol/L, blood transfusion, requiring vascular repair
Jones et al ⁶⁹ Koutouzis et al ⁷⁰	2010 2010	No No	1472 40	6562 301	1137 15	4730 171	64 84	64 84	95 63	40 45	0 37	Requiring transfusion Hb drop >2 mmol/L, blood transfusion, requiring vascular repair or delaying discharae
Pancholy et al ⁷¹	2010	No	109	204	77	125	64	66	100	98	N/A	Requiring transfusion
Rao et al ⁷² Siudak et al ⁷³	2010 2010	No No	339 169	10578 917	234 128	6907 688	64 63	64 64	N/A 94	36 100	N/A 0.1	Requiring transfusion Requiring transfusion, intracranial hemorrhaae
Tizon-Marcos et al ⁷⁴	2010	No	779	112	N/A	N/A	N/A	N/A	N/A	33	N/A	TIMI major bleeding
Vazquez Rodriguez ⁷⁵	2010	No	217	222	184	186	60	62	N/A	60	N/A	Fatal bleeding, intracranial hemorrhage, Hb drop ≥3 g/dL, requiring transfusion or vascular surgery
Weaver et al ⁷⁶	2010	No	124	116	102	92	60	61	N/A	N/A	N/A	TIMI major bleeding
Yang et al ⁷⁷ Yang et al ⁷⁸ Cayla et al ⁷⁹	2010 2011 2011	No No No	400 353 296	19 468 54	341 275 218	17 360 78	62 59 66	61 61 66	100 100 30	N/A 8 61	N/A N/A N/A	Requiring transfusion TIMI major and minor bleeding Fatal, retroperitoneal, intracranial, intraocular; requiring treatment or surgery or decompression, transfusion,
Deftereos	2011	No	65	33	48	25	65	63	100	56	N/A	Hb drop ≥3 g/dL with overt bleed Blood transfusion, vascular repair, prolonged bospitalization
Hamon et al ⁸¹	2011	No	872	7013	N/A	N/A	64	65	N/A	25	N/A	Clinically overt bleeding either fatal, intracranial, intraocular, retroperitoneal,
Jen et al ⁸²	2011	No	85	37	70	20	60	68	100	30	N/A	Requiring transfusion, vascular access
Jolly et al ⁸³	2011	Yes	3507	3514	2599	2561	62	62	32	25	2.6	Fatal; requiring transfusion, treatment, or surgery; intracranial; intracoular; Hb drop >5 a/dl
Olivecrona ⁸⁴	2011	No	6049	15290	4396	10797	66	66	N/A	65	20	Intracranial or other bleeding with Hb drop >5 g/dl
Wu et al ⁸⁵	2011	No	462	625	367	414	62	63	80	68	N/A	Entry site, retroperitoneal, gastrointestinal, and genital-urinary bleeding, requiring transfusion or prolonged hospitalization, Hb dron >3 α/dl

N/A, Not available; Rand, randomized, GPI, glycoprotein IIb-IIIa inhibitors; Bival, bivalirudin; Hb, hemoglobin; AV, arteriovenous; Ht, hematocrit.

incorporated all relevant past studies, we wanted our final (posterior) distributions to reflect the information in our data set only and not to be influenced by our choice of initial (prior) distribution. Therefore, low-information prior distributions were used throughout, so that the data from the studies dominated the final inferences. In particular, we used normal (mean 0, SD 1000) prior distributions for all means and uniform prior distributions on the range from 0 to 10 for all SD parameters. Therefore, our estimates of ORs and their

associated 95% credible intervals (CrI) (which are the Bayesian equivalent of standard CIs) were not unduly affected by our choice of prior distribution. As most of our studies were observational, there is a risk of selection bias in our estimated treatment effect. We, therefore, adjusted for between-treatment differences in age and sex via a Bayesian hierarchical metaregression model. The structure of the model was identical to that described above, except that the treatment effect on the log-odds scale was allowed to depend on age and

Effects of TRA versus TFA in clinical outcomes. Graph with OR and 95% 95% Crls for all studies for bleeding complication and transfusion, early death and early death or MI.

sex linear regression coefficients. Similar diffuse normal prior distributions were used for the regression coefficients. All inferences were carried out using WinBUGS software (version 1.4; MRC Biostatistics Unit, Cambridge, UK). Forest plots were produced to display the ORs and 95% CrIs for all major outcomes both for the individual trials and for the pooled results from our meta-analysis. Separate analyses were carried out for randomized and observational studies to compare effect sizes, and a third analysis combined all information from all studies regardless of design.

No extramural funding was used to support this work. The authors are solely responsible for the design and conduct of this study, all study analyses, the drafting and editing of the manuscript, and its final contents.

Results

From our literature search, we identified 852 articles using TRA for coronary interventions. From these articles, we selected 72 articles comparing clinical outcomes between TRA and TFA in randomized trials (n = 14) or observational studies (n = 58). Over the same period, we also scrutinized abstracts from meetings of the European Society of Cardiology, American Heart Association, American College of Cardiology, TCT, and Euro-PCR. From this source of information, we retained only 4 abstracts with complete data comparing TRA and TFA, 1 randomized trial, and 3 observational studies (Figure 1).

Baseline characteristics

Characteristics of study populations are shown in Table I. Our comprehensive review involved a total of

761,919 patients with 47,385 treated by TRA and 714,534 treated by TFA. Patients in randomized trials included 5,195 and 5,262 treated by TRA and TFA, respectively. Studies were single center (n = 55), dual center (n = 4), or multicenter (n = 17). Sixteen studies were conducted in the United States, 39 in Europe, and 19 in Asia. The mean age of TRA patients was 64 years and 65 years for TFA patients. Patients in randomized trials were slightly younger (63 vs 65 years) and more often male (75% vs 74%) than in the observational studies. Most studies involved heparin only or heparin ± platelet glycoproteins IIb-IIIa inhibitors with only 12 studies using bivalirudin. The mean rates of cross-over were higher for TRA to TFA (4.5%) compared with TFA to TRA (0.6%). Most studies evaluated in-hospital (n =56) or 30-day outcomes (n = 23) with 21 studies reporting clinical outcomes between 6 months and 5 years (only a single randomized trial reported long-term follow-up). Twenty-three studies excluded patients with cardiogenic shock.

Clinical outcomes. There was a major reduction in bleeding complications with TRA compared with TFA (OR 0.22 [95% CrI 0.16-0.29]) (Figure 2). The point estimate was similar in randomized trials (OR 0.27 [95% CrI 0.08-0.47]) and in observational studies (OR 0.21 [95% CrI 0.15-0.28]) (Figure 3). Furthermore, there was also a major reduction in transfusion rates associated with TRA compared with TFA (OR 0.20 [95% CrI 0.11-0.32]), with similar effects found in randomized (OR 0.25 [95% CrI 0.01-1.07]) and observational studies (OR 0.19 [95% CrI 0.09-0.30]) (Figure 4). Accordingly, we estimated that the number needed to treat (NNT) to prevent 1 major bleeding complication is 67 patients, and the NNT to prevent 1 transfusion is 47 patients.

The composite outcome of death or MI was also lower after TRA compared with TFA (OR 0.69 [95% CrI 0.55-0.84]) early after PCI. The effect was substantial in observational studies (OR 0.62 [95% CrI 0.47-0.80], adjusted OR for age and sex 0.62 [95% CrI 0.45-0.81]) and remained inconclusive in randomized trials (OR 0.94 [95% CrI 0.65-1.33]) (Figure 5). At late follow-up, the association between TRA and death or MI reduction was lower (OR 0.65 [95% CrI 0.35-1.02]). This analysis relied mainly on observational data (adjusted OR 0.62 [95% CrI 0.21-1.56]) because only 1 randomized study provided long-term data (Figure 6).

Considering all trials, the mortality rate was reduced by 44% after TRA compared with TFA (OR 0.56 [95% CrI 0.45-0.67]) early after intervention and at late follow-up (OR 0.56 [95% CrI 0.42-0.71]) (Figure 7). Early after intervention, this effect was mainly due to observational studies (OR 0.52 [95% CrI 0.40-0.63]), even after adjustment for age and sex differences (OR 0.49 [95% CrI 0.37-0.60]) compared with an OR of 0.80 (95% CrI 0.49-1.23) in randomized trials. We estimated an NNT of 230 patients to prevent 1 death.

А Radial Femoral n/N n/N Trial Odds Ratio (95% Crl) Odds Ratio (95% Crl) Mann T (1996) 3/75 0/73 0.14 (0.00 to 1.16) Benit E (1997) 0.36 (0.00 to 6.42) 0/50 1/55 Kiemeneij F (1997) 0/300 0.08 (0.00 to 0.48) 6/300 Mann T (1998) 0.16 (0.00 to 1.34) 3/77 0/65 Mann T (2000) 4/109 0/109 0.11 (0.00 to 0.80) Chugh SK (2002) 30/98 4/45 0.24 (0.07 to 0.62) Saito S (2003) 0.18 (0.00 to 1.82) 2/72 0/77 Louvard Y (2004) 0.26 (0.06 to 0.75) 12/185 3/192 Cantor WJ (2005) 1.04 (0.00 to 745) 0/250/24 Slagboom T (2005) 9/322 0.42 (0.18 to 0.89) 21/322 Brasselet C (2007) 1.00 (0.19 to 5.22) 3/57 3/57 Chodor P (2009) 0.43 (0.09 to 1.52) 7/50 3/50 Hou L (2010) 3/100 0/100 0.14 (0.00 to 1.16) VazquezRodriguez JM (2010) 11/222 4/217 0.39 (0.11 to 1.07) Jolly SS (2011) 0.73 (0.43 to 1.23) 33/3514 24/3507 Total 139/5261 50/5188 0.27 (0.08 to 0.47) 0.01 1 10

Favors Radial Favors Femoral

Incidence of bleeding complication. Forest plot for bleeding complication in randomized (**A**) and observational studies (**B**). White circles are individual studies OR, and the black square is meta-analytic OR; horizontal lines are 95% CrI.

At late follow-up, the mortality benefit could only be inferred from observational studies (adjusted OR 0.53 [95% CrI 0.40-0.68]), as only 1 randomized trial provided long-term data (Figure 8).

Discussion

This comprehensive and systematic review of clinical data and large meta-analysis involving >760,000 patients demonstrates that there is a substantial reduction in the risks of periprocedural major bleeding and transfusion with PCI performed by TRA compared with TFA in both observational studies and randomized trials. Although observational studies seem to indicate a substantial and clinically relevant reduction in the risks of early and late death or combined incidence of death or MI, the same analysis applied to randomized trials remains inconclusive.

Two previous meta-analyses have compared TRA and TFA in randomized diagnostic angiography and coronary interventions studies.^{3,4} Although both analyses found >70% reduction in entry site complications and major bleeding, sensitivity analyses suggested that this effect was maximal with PCI studies. Furthermore, although the first analysis in 2004 involving 1,155 PCI patients did not suggest a clinical benefit for TRA in terms of MACE (death, MI, stroke, urgent PCI, or coronary artery bypass graft) (OR 1.14, 95% CI 0.66-1.96), the second analysis performed in 2009 and involving 4,461 patients suggested a possible advantage for TRA in terms of the composite end point of death, MI, or stroke (OR 0.71 [95% CI 0.49-1.01]). Because these studies did not have sufficient sample size to accurately estimate effects on death and ischemic outcomes and included diagnostic procedures as well as PCI studies, we performed a comprehensive review of all clinical evidence generated

since the initial description of TRA and focusing on PCI studies. Using this considerable amount of patient data, we estimated a large benefit, with 78% reduction of bleeding complications and 80% reduction of transfusions. This effect is also of similar amplitude to the reduction of major bleeding found in a recent metaanalysis of observational and randomized studies in patients undergoing primary PCI.⁸⁶

During PCI, it remains critical to control both ischemic and bleeding risks. Current antithrombotic and antiplatelet agents have been developed to prevent ischemic complications. Although peri-PCI ischemic risk has been better controlled with combinations of antithrombotic therapies, they are associated with a relative increase in bleeding complications. Although periprocedural bleeding has traditionally been considered as an acceptable risk of PCI, a large body of evidence has been accumulated showing the detrimental association between major bleeding and subsequent adverse outcomes.⁸⁷⁻⁹⁰ Furthermore, related events such as anemia and transfusions have also been shown to be predictive of poorer outcomes in ACS or after PCI.⁹¹

In PCI trials, major bleeding can be categorized as access site-related and non-access site-related bleeding. Depending on the clinical setting (ACS vs non-ACS) and background antithrombotic regimen, access site-related bleeding accounts for 30% to 80% of major bleeding. New antithrombotic strategies using fondaparinux before PCI or bivalirudin during PCI have aimed to reduce bleeding risk while maintaining adequate anticoagulation to minimize ischemic complications. In ACS and high-risk patients, studies of these novel pharmacologic compounds have shown a significant reduction in the incidence of major bleeding, which has been associated

Incidence of transfusion. Forest plot for transfusions in randomized (A) and observational studies (B). Abbreviations as in Figure 3.

with a reduction in MACE.^{88,92} However, much of the benefit has been attributed to a reduction in access site-related bleeding in patients treated by TFA.⁵⁶ Another approach to reduce access site bleeding is TRA. Although several bleeding definitions have been used across the clinical studies, there is strong evidence of a substantial reduction in bleeding complications and transfusion rates after TRA PCI. As shown in a study with TRA PCI and maximal antiplatelet therapy, it is likely that TRA minimizes the risks of access site-related bleeding even in the context of potent antithrombotic therapy.⁸⁷

The mechanism by which a reduction in major bleeding and transfusion could impact survival directly or indirectly remains an open question. Major bleeding can lead to death through direct (eg, retroperitoneal hemorrhage) or indirect (eg, cessation of antithrombotic therapy with subsequent increase in thrombotic risk) mechanisms. It may also affect longer term mortality because patients having periprocedural bleeding may have transient or permanent interruption of recommended antithrombotic agents, hence leading to higher risk of recurrent ischemic events. Liberal use of blood transfusion has been associated with increased mortality risk after PCI.⁹¹ Beyond traditional risks of contaminants or pathogen transmission, transfusion may be associated with impaired oxygen delivery to vital organs and tissues as well as promoting prothrombotic status and adverse inflammatory and immunomodulatory reactions.⁵ In this regard, TRA seems an elegant yet simple technique to minimize both risks. Moreover, it has been surmised recently that TRA could reduce the risks of periprocedural incidence of kidney failure, hence indirectly influence post-PCI survival.⁹³

In the recently completed and largest, to date, RIVAL randomized trial, the authors found no significant mortality benefit in the overall population but a statistically significant reduction in mortality with TRA in patients undergoing primary PCI for acute ST-segment elevation MI.⁸³ Thus, it may well be that maximum benefit for TRA can be found in higher risk population (with high

В	Femoral	Radial		
Trial	n/N	n/N	Odds Ratio (95% Crl)	Odds Ratio (95% Crl)
Trial Kiemeneij F (1995) Mann T (1996) Choussat R (2000) Valsecchi O (2003) DiazDeLaLlera LS (2004) Kassam S (2004) Philippe F (2004) Yip HK (2004) Ziakas A (2005) Cantor WJ (2007) Cruden NL (2007) Cruden NL (2007) Cruden NL (2007) Cruden VJ (2009) Baberts EB (2008) Badri M (2009) Decarlo M (2009) Hamon M (2009) Rathore S (2009) Rutsa Z (2009) Watt J (2009) Yip HK (2009) Zimmermann S (2009) Caixeta AM (2010) Jones DA (2010) Siudak Z (2010) Siudak Z (2011) Deftereos S (2011) Deftereos S (2011)	Femoral n/N 4/25 3/202 1/67 2/563 2/59 12/64 3/55 4/101 1/53 1/202 428/8922 6/243 6/131 859/30900 22/10285 1/112 10/903 10/130 276/11989 1/150 0/64 10/372 4/76 10/810 14/286 100/3134 10/6562 16/204 201/10578 20/917 27/112 0/19 5/54 4/33 2073/88377	Radial n/N 0/35 0/175 0/83 0/163 0/103 2/47 0/64 0/42 0/27 1/132 4/413 1/44 1/97 108/7972 0/3214 0/1212 2/263 4/531 12/798 0/318 0/51 0/167 0/755 0/506 3/218 3/200 0/1472 0/109 2/339 2/169 69/779 2/400 11/296 0/65	Odds Ratio (95% Crl)	Odds Ratio (95% Crl) 0.07 (0.00 to 0.51) 0.16 (0.00 to 1.33) 0.27 (0.00 to 4.79) 0.69 (0.00 to 6.92) 0.11 (0.00 to 1.13) 0.23 (0.03 to 0.77) 0.12 (0.00 to 1.91) 0.55 (0.00 to 1.91) 0.55 (0.00 to 1.91) 0.53 (0.10 to 23.3) 0.22 (0.07 to 0.47) 1.26 (0.09 to 5.76) 0.30 (0.02 to 1.33) 0.48 (0.39 to 0.59) 0.07 (0.00 to 0.39) 0.03 (0.00 to 0.54) 0.48 (0.39 to 0.59) 0.03 (0.00 to 0.54) 0.10 (0.03 to 0.28) 0.67 (0.35 to 1.12) 0.16 (0.00 to 2.77) 1.25 (0.00 to 879) 0.10 (0.00 to 0.61) 0.11 (0.00 to 1.22) 0.55 (0.00 to 0.44) 0.31 (0.07 to 0.86) 0.54 (0.13 to 1.27) 0.21 (0.00 to 1.22) 0.38 (0.06 to 1.00) 0.55 (0.11 to 1.92) 0.30 (0.19 to 0.51) 0.24 (0.02 to 217) 0.36 (0.13 to 1.20) 0.55 (0.00 to 0.38) 0.19 (0.09 to 0.30)
			0.001 1 10	
			Favors Radial Favors	Femoral

(continued)

rate of PCD. In the RIFLE-STEACS trial Romagnoli et al (Late-Breaking Clinical Trial Session, TCT 2011, San Francisco, CA) reported a significant reduction in cardiac death from 9.2% in the TFA group to 5.2% in the TRA group (P = .020). A recent meta-analysis of 10 randomized trials in patients with ST-segment elevation MI (n = 3,347) found a 47% relative reduction in mortality with TRA (OR 0.53, 95% CI 0.33-0.84).⁹⁴ Because the benefit for TRA seems also linked to the experience of the centers, it appears logical from a health perspective to continue promoting education in TRA to expand the number of sites proficient with TRA techniques.⁹⁵

There are several ongoing randomized trials comparing TRA with TFA. The RADIAL-CABG study (NCT 01446263) will randomize 128 patients after coronary artery bypass for diagnostic angiography and possible PCI. The STEMI-RADIAL (NCT 0113687) and SAFARI-STEMI trials (NCT 01398254) will randomize 700 patients and 1,274 patients in acute MI, respectively. The MATRIX trial (NCT 01433627) will randomize 6800 patients in ACSs. In the United States, the SAFE-PCI for WOMEN trial (NCT 01406236) will randomize 3,000 women referred for diagnostic angiography and possible PCI.

Several limitations of this meta-analysis should be acknowledged. The inclusion of observational studies may involve selection bias. To reduce this bias, we used 2 strategies: First, separate analyses for randomized trials and observational studies were conducted. Second, adjustment to take into account differences in age and sex was made. However, we cannot exclude that other selection bias or confounding variables such as differences in catheter sizes were present in observational studies and could not be taken into account in this analysis. In this study level meta-analysis, definitions for bleeding complications varied between studies. Whenever possible, data with the most

Favors Radial Favors Femoral

Incidence of early death or MI. Forest plot for composite of early death or MI in randomized (**A**) and observational studies (**B**). Abbreviations as in Figure 3.

conservative and standard definitions were used. Furthermore, although the threshold for transfusions may have varied among studies, it likely represented an objective way of comparing blood loss between TRA and TFA practices.

Acknowledgements

Dr OF. Bertrand and Dr L. Joseph are research scholars of the Quebec Foundation for Health Research. We are also most grateful to Dr R. Carere, Dr G Cayla, Dr JP. Déry, Dr A. De Labriolle, Dr P. Généreux, Dr G. Montalescot, Dr G. Stone, and Dr A. Wragg for their assistance in collecting data from previously published abstracts and/or articles.

Disclosures

There is no conflict of interest to disclose.

References

- 1. Campeau L. Percutaneous radial artery approach for coronary angiography. Cathet Cardiovasc Diagn 1989;16:3-7.
- Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for coronary stent implantation. Cathet Cardiovasc Diagn 1993;30:173-8.
- Agostoni P, Biondi-Zoccai GG, de Benedictis ML, et al. Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol 2004;44:349-56.
- Jolly SS, Amlani S, Hamon M, et al. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J 2009;157:132-40.
- Doyle BJ, Rihal CS, Gastineau DA, et al. Bleeding, blood transfusion, and increased mortality after percutaneous coronary intervention: implications for contemporary practice. J Am Coll Cardiol 2009;53:2019-27.
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006-12.

В	Femoral	Badial		
Trial	n/N	n/N	Odde Patio (95% Crl)	Odds Patio (05% Crl)
IIIai			Odds Hallo (95% CH)	Odus Hallo (95% OH)
Choussat R (2000)	4/67	5/83		0.99 (0.26 to 4.01)
Galli M (2003)	2/100	6/390		0.67 (0.17 to 4.41)
Valsecchi O (2003)	12/563	1/163		0.41 (0.03 to 1.53)
Yang CH (2003)	1/24	2/153		0.26 (0.03 to 3.93)
Ziakas A (2003)	2/67	1/100		0.39 (0.03 to 3.13)
DiazDeLaLlera LS (2004)	3/59	4/103	— •	0.73 (0.17 to 3.64)
Philippe F (2004)	2/55	1/64	0	0.51 (0.03 to 4.02)
Yip HK (2004)	11/101	2/42	— • 	0.49 (0.07 to 1.66)
Ziakas A (2004)	3/53	2/27	—— — ——	1.41 (0.20 to 8.04)
Kim JY (2005)	9/132	8/220		0.52 (0.19 to 1.38)
Ziakas A (2005)	8/202	5/132	—•—	0.99 (0.30 to 2.91)
Jaffe R (2007)	31/131	21/97	_ 	0.90 (0.47 to 1.66)
Ziakas A (2007)	2/68	1/87		0.46 (0.03 to 3.67)
Hsueh SK (2008)	4/15	8/116		0.20 (0.05 to 0.82)
Roberts EB (2008)	12/112	35/1212	- 0 -	0.24 (0.13 to 0.50)
Yan ZX (2008)	3/46	3/57	o	0.80 (0.15 to 4.20)
Badri M (2009)	41/903	4/263	— —	0.36 (0.10 to 0.83)
Hamon M (2009)	719/11989	57/798	Ð	1.21 (0.91 to 1.59)
Rathore S (2009)	6/150	12/318	_ _	0.91 (0.36 to 2.67)
Rathore S (2009)	8/64	2/51	— ———	0.34 (0.05 to 1.23)
Ruzsa Z (2009)	31/372	5/167		0.37 (0.12 to 0.83)
Sciahbasi A (2009)	25/863	8/307		0.93 (0.39 to 1.94)
Watt J (2009)	6/76	1/75	— •	0.22 (0.01 to 0.98)
Caixeta AM (2010)	133/3134	2/200		0.28 (0.05 to 0.75)
Jones DA (2010)	72/6562	13/1472	- - -	0.83 (0.43 to 1.42)
Rao SV (2010)	370/10578	9/339		0.79 (0.37 to 1.40)
TizonMarcos H (2010)	14/112	52/779	- 0 -	0.49 (0.27 to 0.96)
Yang CH (2010)	0/19	3/400	\rightarrow	0.34 (0.04 to 322)
Cayla G (2011)	3/54	25/296	- 0	1.38 (0.52 to 6.08)
Deftereos S (2011)	3/33	3/65		0.49 (0.09 to 2.58)
Yang YJ (2011)	10/468	12/353		1.60 (0.70 to 3.78)
Total	1550/37172	313/8929	-	0.62 (0.47 to 0.80)
			0.01 1 10	

Favors Radial Favors Femoral

(continued)

- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA: J Am Med Assoc 2000;283:2008-12.
- Babapulle MN, Joseph L, Belisle P, et al. A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 2004;364:583-91.
- Carlin JB. Meta-analysis for 2 x 2 tables: a Bayesian approach. Stat Med 1992;11:141-58.
- Kiemeneij F, Hofland J, Laarman GJ, et al. Cost comparison between two modes of Palmaz Schatz coronary stent implantation: transradial bare stent technique vs. transfemoral sheath-protected stent technique. Cathet Cardiovasc Diagn 1995;35:301-8 [discussion 309].
- Mann III JT, Arrowood M, Cubeddu G. PTCA using the right radial artery access site. J Invasive Cardiol 1995;7:142-7.
- Mann III JT, Cubeddu G, Schneider JE, et al. Clinical evaluation of current stent deployment strategies. J Invasive Cardiol 1996;8(Suppl D):30D-5D.
- Mann III JT, Cubeddu MG, Schneider JE, et al. Right radial access for PTCA: a prospective study demonstrates reduced complications and hospital charges. J Invasive Cardiol 1996;8(Suppl D):40D-4D.

- Benit E, Missault L, Eeman T, et al. Brachial, radial, or femoral approach for elective Palmaz-Schatz stent implantation: a randomized comparison. Cathet Cardiovasc Diagn 1997;41:124-30.
- Kiemeneij F, Laarman GJ, Odekerken D, et al. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol 1997;29:1269-75.
- Mann T, Cubeddu G, Bowen J, et al. Stenting in acute coronary syndromes: a comparison of radial versus femoral access sites. J Am Coll Cardiol 1998;32:572-6.
- Saito S, Miyake S, Hosokawa G, et al. Transradial coronary intervention in Japanese patients. Catheter Cardiovasc Interv 1999; 46:37-41 [discussion 42].
- Choussat R, Black A, Bossi I, et al. Vascular complications and clinical outcome after coronary angioplasty with platelet IIb/IIIa receptor blockade. Comparison of transradial vs transfemoral arterial access. Eur Heart J 2000;21:662-7.
- Kim MH, Cha KS, Kim HJ, et al. Primary stenting for acute myocardial infarction via the transradial approach: a safe and useful alternative to the transfemoral approach. J Invasive Cardiol 2000;12:292-6.

Incidence of late death or MI. Forest plot for late death or MI. Abbreviations as in Figure 3.

- Mann T, Cowper PA, Peterson ED, et al. Transradial coronary stenting: comparison with femoral access closed with an arterial suture device. Catheter Cardiovasc Interv 2000;49: 150-6.
- Morice MC, Dumas P, Lefevre T, et al. Systematic use of transradial approach or suture of the femoral artery after angioplasty: attempt at achieving zero access site complications. Catheter Cardiovasc Interv 2000;51:417-21.
- Chugh SK, Solankhi N, Webb JG, et al. Randomized comparison of transradial coronary intervention with transfemoral access combined with arteriotomy closure devices: the EMPIRE study. Am J Cardiol 2002;90(Suppl):166H.
- Louvard Y, Ludwig J, Lefevre T, et al. Transradial approach for coronary angioplasty in the setting of acute myocardial infarction: a dual-center registry. Catheter Cardiovasc Interv 2002;55:206-11.
- Galli M, Di Tano G, Mameli S, et al. Ad hoc transradial coronary angioplasty strategy: experience and results in a single centre. Int J Cardiol 2003;92:275-80.
- 25. Saito S, Tanaka S, Hiroe Y, et al. Comparative study on transradial approach vs. transfemoral approach in primary stent implantation for patients with acute myocardial infarction: results of the test for myocardial

infarction by prospective unicenter randomization for access sites (TEMPURA) trial. Catheter Cardiovasc Interv 2003;59:26-33.

- Valsecchi O, Musumeci G, Vassileva A, et al. Safety, feasibility and efficacy of transradial primary angioplasty in patients with acute myocardial infarction. Ital Heart J 2003;4:329-34.
- Yang CH, Guo GB, Chang HW, et al. The safety and feasibility of transradial cutting balloon angioplasty: immediate results, benefits, and limitations. Jpn Heart J 2003;44:51-60.
- Ziakas A, Klinke P, Mildenberger R, et al. Comparison of the radial and the femoral approaches in percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol 2003;91:598-600.
- Diaz de la Llera LS, Fournier Andray JA, Gomez Moreno S, et al. Transradial approach for percutaneous coronary stenting in the treatment of acute myocardial infarction. Rev Esp Cardiol 2004;57:732-6.
- Kassam S, Cantor WJ, Patel D, et al. Radial versus femoral access for rescue percutaneous coronary intervention with adjuvant glycoprotein IIb/IIIa inhibitor use. Can J Cardiol 2004;20:1439-42.
- Louvard Y, Benamer H, Garot P, et al. Comparison of transradial and transfemoral approaches for coronary angiography and angioplasty in octogenarians (the OCTOPLUS study). Am J Cardiol 2004;94: 1177-80.

A	Femoral n/N	Radial n/N	Odds Ratio (95% Crl)	Odds Ratio (95% Crl)
Mann T (1996)	0/75	0/73	\longleftrightarrow	1.03 (0.00 to 673)
Benit E (1997)	0/55	0/50	\longleftrightarrow	1.10 (0.00 to 747)
Kiemeneij F (1997)	0/300	1/300	$\rightarrow \rightarrow$	3.01 (0.17 to 2512)
Mann T (1998)	0/77	0/65	\longleftrightarrow	1.18 (0.00 to 762)
Mann T (2000)	1/109	0/109	← •	0.33 (0.00 to 5.98)
Chugh SK (2002)	0/98	0/45	$\leftarrow \rightarrow$	2.16 (0.00 to 1536)
Saito S (2003)	6/72	4/77		0.63 (0.16 to 2.18)
Louvard Y (2004)	3/185	2/192		0.68 (0.10 to 3.67)
Cantor WJ (2005)	1/25	0/24	$\leftarrow \bullet \vdash$	0.33 (0.00 to 6.11)
Slagboom T (2005)	2/322	3/322	— •—	1.40 (0.26 to 9.67)
Brasselet C (2007)	3/57	3/57	_	1.00 (0.19 to 5.18)
Chodor P (2009)	1/50	0/50	← •	0.33 (0.00 to 5.93)
Hou L (2010)	5/100	4/100	— •	0.81 (0.20 to 2.99)
VazquezRodriguez JM (2010)	9/222	8/217	_ _	0.91 (0.34 to 2.39)
Jolly SS (2011)	51/3514	44/3507	+	0.86 (0.57 to 1.29)
Total	82/5261	69/5188		0.80 (0.49 to 1.23)
			0.01 1 10	

Favors Radial Favors Femoral

Incidence of early death. Forest plots for all-cause death in randomized (A) and observational studies (B). Abbreviations as in Figure 3.

- Philippe F, Larrazet F, Meziane T, et al. Comparison of transradial vs. transfemoral approach in the treatment of acute myocardial infarction with primary angioplasty and abciximab. Catheter Cardiovasc Interv 2004;61:67-73.
- Yip HK, Chung SY, Chai HT, et al. Safety and efficacy of transradial vs transfemoral arterial primary coronary angioplasty for acute myocardial infarction: single-center experience. Circ J 2009;73:2050-5.
- Ziakas A, Klinke P, Mildenberger R, et al. Comparison of the radial and femoral approaches in left main PCI: a retrospective study. J Invasive Cardiol 2004;16:129-32.
- Cantor WJ, Puley G, Natarajan MK, et al. Radial versus femoral access for emergent percutaneous coronary intervention with adjunct glycoprotein IIb/IIIa inhibition in acute myocardial infarction—the RADIAL-AMI pilot randomized trial. Am Heart J 2005;150:543-9.
- Kim JY, Yoon J, Jung HS, et al. Feasibility of the radial artery as a vascular access route in performing primary percutaneous coronary intervention. Yonsei Med J 2005;46:503-10.
- Slagboom T, Kiemeneij F, Laarman GJ, et al. Outpatient coronary angioplasty: feasible and safe. Catheter Cardiovasc Interv 2005;64: 421-7.

- Ziakas A, Klinke P, Mildenberger R, et al. A comparison of the radial and the femoral approach in vein graft PCI. A retrospective study. Int J Cardiovasc Interv 2005;7:93-6.
- Brasselet C, Tassan S, Nazeyrollas P, et al. Randomised comparison of femoral versus radial approach for percutaneous coronary intervention using abciximab in acute myocardial infarction: results of the FARMI trial. Heart 2007;93:1556-61.
- Cantor WJ, Mahaffey KW, Huang Z, et al. Bleeding complications in patients with acute coronary syndrome undergoing early invasive management can be reduced with radial access, smaller sheath sizes, and timely sheath removal. Catheter Cardiovasc Interv 2007; 69:73-83.
- Cruden NL, Teh CH, Starkey IR, et al. Reduced vascular complications and length of stay with transradial rescue angioplasty for acute myocardial infarction. Catheter Cardiovasc Interv 2007;70:670-5.
- Jaffe R, Hong T, Sharieff W, et al. Comparison of radial versus femoral approach for percutaneous coronary interventions in octogenarians. Catheter Cardiovasc Interv 2007;69:815-20.
- 43. Yang YJ, Xu B, Chen JL, et al. Comparison of immediate and followup results between transradial and transfermoral approach for

	romora			
Trial	n/N	n/N	Odds Ratio (95% Crl)	Odds Ratio (
Kiemeneii F (1995)	0/25	0/35	$ \longrightarrow $	0.72 (0.00 to
Mann T (1995)	0/100	0/50	<u>× 1. ×</u>	1 99 (0 00 to
Soite S (1000)	0/100	0/50		0.42 (0.06 to
Sallo S (1999)	3//93	2/1360		0.42 (0.00 10
Choussat H (2000)	2/67	0/83	\leftarrow	0.16 (0.00 to
KIM MH (2000)	1/26	1/30	\rightarrow	0.86 (0.05 to
Galli M (2003)	0/100	2/390	\rightarrow	1.29 (0.13 to
Valsecchi O (2003)	10/563	1/163		0.49 (0.03 to
Yang CH (2003)	1/24	1/153	\leftarrow	0.15 (0.01 to
Ziakas A (2003)	2/67	1/100		0.39 (0.03 to
DiazDel al lera I S (2004)	3/59	4/103		0.73 (0.17 to
Kassam S (2004)	0/05	4/103		0.57 (0.04 to
Rassall 5 (2004)	3/64	1/4/		0.57 (0.04 to
Fillippe F (2004)	0/55	0/64		0.00 (0.00 to
YID HK (2004)	9/101	2/42		0.60 (0.09 to
Ziakas A (2004)	2/53	0/27	\leftarrow	0.37 (0.00 to
Kim JY (2005)	9/132	8/220	·	0.52 (0.19 to
Ziakas A (2005)	1/202	0/132	\leftarrow	0.51 (0.00 to
Cruden NL (2007)	14/243	1/44	`	0.55 (0.04 to
laffe B (2007)	0/131	0/97	$\langle $	1.35 (0.00 to
Yang X I (2007)	0/131	0/60	× Ľ×	1.00 (0.00 to
Ziekee A (2007)	0/74	0/00		0.46 (0.00 to
21akas A (2007)	2/08	1/8/		0.40 (0.03 10
Chase AJ (2008)	520/30900	78/7972	•	0.58 (0.45 to
Eichhofer J (2008)	149/10285	16/3214	→	0.35 (0.20 to
Hsueh SK (2008)	2/15	1/116	~~	0.07 (0.00 to
Montalescot G (2008)	24/7059	0/841	~ •	0.17 (0.00 to
Roberts EB (2008)	2/112	4/1212		0.16 (0.04 to
Yan ZX (2008)	3/46	3/57		0.80 (0.15 to
Badri M (2009)	28/903	3/263		0.41 (0.10 to
Hamon M (2009)	169/11090	14/709	·	1 30 (0 70 to
Hetherington SL (2009)	100/11909	7/571		0.46 (0.17 to
Dethem Q (0000)	13/460	7/5/1		0.40 (0.17 10
Hathore S (2009)	1/150	0/318		0.16 (0.00 to
Hathore S (2009)	1/64	0/51	\leftarrow	0.41 (0.00 to
Ruzsa Z (2009)	15/372	2/167		0.35 (0.06 to
Sciahbasi A (2009)	13/863	3/307		0.72 (0.17 to
Watt J (2009)	1/76	0/75	\leftarrow	0.33 (0.00 to
Yip HK (2009)	40/810	19/506	` _	0.76 (0.42 to
Bertrand OF (2010)	2/13	5/90		0.30 (0.06 to
Caixeta AM (2010)	79/3134	2/200		0.48 (0.08 to
lones DA (2010)	22/6562	E/1472		1 04 (0 34 to
Koutouzis M (2010)	23/0302	5/14/2		1.00 (0.16 to
	18/301	2/40		1.00 (0.10 to
Pancholy 5 (2010)	6/204	3/109		1.00 (0.21 10
Rao SV (2010)	127/10578	1/339		0.36 (0.03 to
Siudak Z (2010)	48/917	7/169		0.83 (0.33 to
TizonMarcos H (2010)	11/112	24/779		0.29 (0.14 to
Weaver AN (2010)	11/116	4/124		0.34 (0.09 to
Yang CH (2010)	0/19	3/400		0.34 (0.04 to
Cavla G (2011)	1/54	6/296	×	0.80 (0.18 to
Deftereos S (2011)	0/22	0/65		0.50 (0.07 to
Homon M (2011)	2/33	2/05		0.30 (0.07 10
	128//013	12/8/2		0.76 (0.40 10
Jen HL (2011)	5/37	1/85		0.10 (0.01 to
Olivecrona G (2011)	667/15290	193/6049	•	0.72 (0.61 to
Wu C (2011)	14/625	4/462	→	0.41 (0.12 to
Yang YJ (2011)	3/468	2/353		0.95 (0.14 to
Total	2187/112547	451/31659		0.52 (0.40 to
			0.01 1 10	
			0.01 1 10	

Favors Radial Favors Femoral

(continued)

percutaneous coronary intervention in true bifurcational lesions. Chin Med J (Engl) 2007;120:539-44.

- 44. Ziakas A, Gomma A, McDonald J, et al. A comparison of the radial and the femoral approaches in primary or rescue percutaneous coronary intervention for acute myocardial infarction in the elderly. Acute Card Care 2007;9:93-6.
- 45. Chase AJ, Fretz EB, Warburton WP, et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (Mortality benefit Of Reduced Transfusion after percutaneous coronary intervention via the Arm or Leg). Heart 2008; 94:1019-25.
- 46. Eichhofer J, Horlick E, Ivanov J, et al. Decreased complication rates using the transradial compared to the transfemoral approach in percutaneous coronary intervention in the era of routine stenting and glycoprotein platelet IIb/IIIa inhibitor use: a large single-center experience. Am Heart J 2008;156:864-70.
- 47. Hsueh SK, Hsieh YK, Wu CJ, et al. Immediate results of percutaneous coronary intervention for unprotected left main coronary artery

stenoses: transradial versus transfemoral approach. Chang Gung Med J 2008;31:190-200.

- Montalescot G, Ongen Z, Guindy R, et al. Predictors of outcome in patients undergoing PCI. Results of the RIVIERA study. Int J Cardiol 2008;129:379-87.
- Rao SV, Ou FS, Wang TY, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the national cardiovascular data registry. JACC Cardiovasc Interv 2008;1:379-86.
- Roberts EB, Rathore S, Beaumont A, et al. Lesion complexity and angiographic outcomes in radial access percutaneous coronary intervention. J Interv Cardiol 2008;21:555-61.
- Yan ZX, Zhou YJ, Zhao YX, et al. Safety and feasibility of transradial approach for primary percutaneous coronary intervention in elderly patients with acute myocardial infarction. Chin Med J (Engl) 2008;121:782-6.
- 52. Badri M, Jones DA, Rathod KS, et al. Radial access for primary PCI is associated with excellent long-term outcome and when undertaken

	~
FIGURE	×
Igoic	•

Trial	Femoral n/N	Radial n/N	Odds Ratio (95% Crl)	Odds Ratio (95% Crl)
Bandomized trial				
Saito S (2003)	7/72	4/77		0.53 (0.14 to 1.75)
Observational studies				,
Ziakas A (2004)	3/53	0/27	$\leftarrow \rightarrow$	0.26 (0.00 to 2.23)
Chase AJ (2008)	1213/30900	224/7972	Ð	0.71 (0.61 to 0.82)
Hsueh SK (2008)	3/15	5/114		0.18 (0.04 to 0.91)
Badri M (2009)	90/903	7/263	———	0.26 (0.11 to 0.51)
Blicq E (2009)	7/117	9/509	— —	0.28 (0.10 to 0.79)
Decarlo M (2009)	13/130	25/531	-0	0.44 (0.22 to 0.91)
Hamon M (2009)	432/11989	30/798	+	1.06 (0.71 to 1.50)
Sciahbasi A (2009)	41/863	9/307		0.63 (0.28 to 1.21)
Arzamendi D (2010)	26/251	3/238		0.13 (0.03 to 0.33)
Caixeta AM (2010)	126/3134	7/200		0.92 (0.37 to 1.77)
Jones DA (2010)	481/6562	72/1472	÷	0.65 (0.50 to 0.84)
Koutouzis M (2010)	59/301	8/40	_ _	1.07 (0.43 to 2.26)
Pancholy S (2010)	11/204	6/109		1.06 (0.36 to 2.75)
Rao SV (2010)	508/10578	10/339	-0-	0.63 (0.31 to 1.09)
Siudak Z (2010)	76/917	10/169	- 0 -	0.72 (0.34 to 1.33)
TizonMarcos H (2010)	27/110	81/769	-0-	0.36 (0.22 to 0.60)
Hamon M (2011)	235/7013	20/872	- 0	0.69 (0.42 to 1.05)
Jen HL (2011)	6/37	3/85	0	0.21 (0.04 to 0.75)
Olivecrona G (2011)	982/13446	260/4175	e	0.84 (0.73 to 0.97)
Yang YJ (2011)	8/468	5/353	— c —	0.86 (0.26 to 2.49)
īotal	4354/88063	798/19419		0.56 (0.42 to 0.71)
			0.01 1 10	

Favors Radial Favors Femoral

Incidence of late death. Forest plot for all-cause death at late follow-up. Abbreviations as in Figure 3.

selects for low risk cases compared to the femoral approach. Am J Cardiol 2009;104(Suppl):86D.

- Blicq E, Pacouret G, Quilliet L, et al. Prognostic impact of transradial access in PCI for acute coronary syndromes. Am J Cardiol 2009; 104(Suppl):85D.
- Chodor P, Krupa H, Kurek T, et al. RADIal versus femoral approach for percutaneous coronary interventions in patients with Acute Myocardial Infarction (RADIAMI): a prospective, randomized, singlecenter clinical trial. Cardiol J 2009;16:332-40.
- 55. De Carlo M, Borelli G, Gistri R, et al. Effectiveness of the transradial approach to reduce bleedings in patients undergoing urgent coronary angioplasty with GPIIb/IIIa inhibitors for acute coronary syndromes. Catheter Cardiovasc Interv 2009;74: 408-15.
- Hamon M, Rasmussen LH, Manoukian SV, et al. Choice of arterial access site and outcomes in patients with acute coronary syndromes managed with an early invasive strategy: the ACUITY trial. Eurointervention 2009;5:115-20.
- Hetherington SL, Adam Z, Morley R, et al. Primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: changing patterns of vascular access, radial versus femoral artery. Heart 2009;95:1612-8.

- Rathore S, Hakeem A, Pauriah M, et al. A comparison of the transradial and the transfermoral approach in chronic total occlusion percutaneous coronary intervention. Catheter Cardiovasc Interv 2009;73:883-7.
- Rathore S, Roberts E, Hakeem AR, et al. The feasibility of percutaneous transradial coronary intervention for saphenous vein graft lesions and comparison with transfemoral route. J Interv Cardiol 2009;22:336-40.
- Ruzsa Z, Ungi I, Horvath T, et al. Five-year experience with transradial coronary angioplasty in ST-segment-elevation myocardial infarction. Cardiovasc Revasc Med 2009;10:73-9.
- 61. Sciahbasi A, Pristipino C, Ambrosio G, et al. Arterial access-siterelated outcomes of patients undergoing invasive coronary procedures for acute coronary syndromes (from the ComPaRison of Early Invasive and Conservative Treatment in Patients With Non–ST-ElevatiOn Acute Coronary Syndromes [PRESTO-ACS] Vascular Substudy). Am J Cardiol 2009;103:796-800.
- Watt J, Oldroyd KG. Radial versus femoral approach for high-speed rotational atherectomy. Catheter Cardiovasc Interv 2009;74:550-4.
- 63. Yip HK, Chen MC, Chang HW, et al. Transradial application of PercuSurge GuardWire device during primary percutaneous intervention of infarct-related artery with high-burden thrombus formation. Catheter Cardiovasc Interv 2004;61:503-11.

- Zimmermann S, Ruthrof S, Nowak K, et al. Outcomes of contemporary interventional therapy of ST elevation infarction in patients older than 75 years. Clin Cardiol 2009;32:87-93.
- 65. Arzamendi D, Ly HQ, Tanguay JF, et al. Effect on bleeding, time to revascularization, and one-year clinical outcomes of the radial approach during primary percutaneous coronary intervention in patients with STsegment elevation myocardial infarction. Am J Cardiol 2010;106:148-54.
- Bertrand OF, Bagur R, Costerousse O, et al. Transradial vs femoral percutaneous coronary intervention for left main disease in octogenarians. Indian Heart J 2010;62:234-7.
- 67. Généreux P, Mehran R, Palmerini T, et al, HORIZONS-AMI Trial Investigators. Radial access in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty in acute myocardial infarction: the HORIZONS-AMI trial. EuroIntervention 2011;7:905-16.
- Hou L, Wei YD, Li WM, et al. Comparative study on transradial versus transfemoral approach for primary percutaneous coronary intervention in Chinese patients with acute myocardial infarction. Saudi Med J 2010;31:158-62.
- Jones DA, Rathod KS, Jain A, et al. Percutaneous coronary intervention via the radial and femoral route have similar outcomes in both the emergency and elective setting. Eurointervention 2010;6(Suppl):H143.
- Koutouzis M, Matejka G, Olivecrona G, et al. Radial vs. femoral approach for primary percutaneous coronary intervention in octogenarians. Cardiovasc Revasc Med 2010;11:79-83.
- Pancholy S, Patel T, Sanghvi K, et al. Comparison of door-to-balloon times for primary PCI using transradial versus transfemoral approach. Catheter Cardiovasc Interv 2010;75:991-5.
- Rao SV, Selzer F, Peterson ED, et al. Comparative effectiveness of radial and femoral approaches to percutaneous coronary intervention on long-term outcomes: a report from the NHLBI dynamic registry. J Am Coll Cardiol 2010;55(Suppl):E2024.
- 73. Siudak Z, Zawislak B, Dziewierz A, et al. Transradial approach in patients with ST-elevation myocardial infarction treated with abciximab results in fewer bleeding complications: data from EURO-TRANSFER registry. Coron Artery Dis 2010;21:292-7.
- Dery JP, Tizon-Marcos H, Barbeau G, et al. Reduced bleeding rates and improved clinical outcomes with the use of radial access in octogenarians undergoing percutaneous coronary intervention. Circulation 2010;122(Suppl):A17173.
- 75. Vazquez-Rodriguez JM. Comparacion del acceso radial frente al acceso femoral en la revascularizacion percutanea durante la fase aguda del infarto agudo de miocardio con elevacion del segmento ST. Coruna: Universidade da Coruna; 2010 [Doctorate's thesis].
- Weaver AN, Henderson RA, Gilchrist IC, et al. Arterial access and door-to-balloon times for primary percutaneous coronary intervention in patients presenting with acute ST-elevation myocardial infarction. Catheter Cardiovasc Interv 2010;75:695-9.
- Yang CH, Guo GB, Chen SM, et al. Feasibility and safety of a transradial approach in intervention for chronic total occlusion of coronary arteries: a single-center experience. Chang Gung Med J 2010;33:639-45.
- 78. Yang YJ, Kandzari DE, Gao Z, et al. Transradial versus transfemoral method of percutaneous coronary revascularization for unprotected left main coronary artery disease: comparison of procedural and lateterm outcomes. JACC Cardiovasc Interv 2010;3:1035-42.
- Cayla G, Silvain J, Barthelemy O, et al. Trans-radial approach for catheterisation in non-ST segment elevation acute coronary syndrome: an analysis of major bleeding complications in the ABOARD Study. Heart 2011;97:887-91.

- Deftereos S, Giannopoulos G, Raisakis K, et al. Transradial access as first choice for primary percutaneous coronary interventions: experience from a tertiary hospital in athens. Hellenic J Cardiol 2011;52:111-7.
- Hamon M, Mehta S, Steg PG, et al. Impact of transradial and transfemoral coronary interventions on bleeding and net adverse clinical events in acute coronary syndromes. Eurointervention 2011;7:91-7.
- Jen HL, Yin WH, Chen KC, et al. Transradial approach in myocardial infarction. Acta Cardiol 2011;66:239-45.
- Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 2011;377:1409-20.
- Olivecrona GK. Lower mortality with transradial PCI compared to transfemoral PCI in 21,000 patients with acute myocardial infarction: results from the SCAAR database. Presented at: EuroPCR; May 20, 2011; Paris, France (Ms in revision); 2011.
- Wu C, Liao D, Dyer AM, et al. The transradial approach is associated with lower risk of adverse outcomes following percutaneous coronary intervention: a single-center experience. J Invasive Cardiol 2011;23: 88-92.
- Vorobcsuk A, Konyi A, Aradi D, et al. Transradial versus transfemoral percutaneous coronary intervention in acute myocardial infarction systematic overview and meta-analysis. Am Heart J 2009;158:814-21.
- Bertrand OF, Larose E, Rodes-Cabau J, et al. Incidence, predictors, and clinical impact of bleeding after transradial coronary stenting and maximal antiplatelet therapy. Am Heart J 2009;157:164-9.
- Manoukian SV, Feit F, Mehran R, et al. Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: an analysis from the ACUITY Trial. J Am Coll Cardiol 2007;49:1362-8.
- Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). Eur Heart J 2003;24:1815-23.
- Rao SV, O'Grady K, Pieper KS, et al. Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes. Am J Cardiol 2005;96:1200-6.
- Rao SV, Jollis JG, Harrington RA, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA: J Am Med Assoc 2004;292:1555-62.
- Hamon M, Mehta S, Steg G, et al. Major bleeding in patients with acute coronary syndrome undergoing early invasive management can be reduced by fondaparinux, even in the context of trans-radial coronary intervention: insights from OASIS-5 trial. Circulation 2006; 114(18 Suppl):II-552.
- Vuurmans T, Byrne J, Fretz E, et al. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia Cardiac and Renal Registries). Heart 2010;96:1538-42.
- Joyal D, Bertrand OF, Rinfret S, et al. Meta-analysis of ten trials on the effectiveness of the radial versus the femoral approach in primary percutaneous coronary intervention. Am J Cardiol 2011 In press: http://dx.doi.org/10.1016/j.amjcard.2011.11.007.
- Caputo RP, Tremmel JA, Rao S, et al. Transradial arterial access for coronary and peripheral procedures: executive summary by the transradial committee of the SCAI. Catheter Cardiovasc Interv 2011; 78:823-39.