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Likelihood ratios are extensively used to evaluate the performances of diagnostic tests
and to update prior odds of disease to posttest  odds. Since few tests are truly 100%
accurate, including many used as “gold standards,” it is important to be able to esti-
mate likelihood ratios in cases where no such standard is available. In this paper,
methods to calculate point and interval estimates for likelihood ratios are described.
The results numerically coincide with those reviewed by Centor  when a “gold standard”
is assumed available, but typically provide wider interval estimates when such a stan-
dard is not available, reflecting the increased uncertainty inherent in such situations.
Unlike previous techniques, the methods do not require normal approximations or log-
arithmic transformations, and hence provide accurate estimates even when parameter
distributions are highly skewed. The methods are illustrated using the results of two
different diagnostic tests for the presence of an intestinal parasitic infection. Key words:
Bayesian analysis; diagnostic tests; epidemiologic methods: likelihood ratios; Monte
Carlo methods; statistical models. (Med Decis Making 1990;16:412-417)

Consider two tests, where Test 1 is a “gold stan-
dard” for detection of a disease or condition, and
Test 2 is an imperfect, but more convenient,
cheaper, or easier test for that disease or condition.
Estimating likelihood ratios for Test 2 can help as-
sess its diagnostic@. Interval as well as point esti-
mates for likelihood ratios can be useful. Interval
estimates such as 95% confidence intervals (CIs) de-
scribe the accuracy of point estimates, and in pro-
viding a range of plausible values for likelihood ra-
tios aid the clinician in interpreting diagnostic tests
(e.g., tests with narrower CIs provide more precise
posttest  odds of disease than do those with wider
CIs). As a result, use of interval rather than point
estimates has been increasing rapidly in recent
years.l Gart and Nam2 provide a review of statistical
methods for point and interval estimation of the
likelihood ratio.

The standard estimation techniques for diagnostic
test parameters from 2 X 2 table data such as those
given in table 1 cannot be used when Test 1 is not
a “gold standard.” The sensitivity of Test 2, a/(a +
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Table 1 l Observed Data from Two Diagnostic Tests

Test 1

Test 2

bl, cannot be determined, as the number of dis-
eased subjects is unknown in the absence of a “gold
standard.” Similarly, the usual point estimates of the
specificity and hence of the positive and negative
likelihood ratios (denoted here by LR+ and LR-,
respectively) do not hold. Walter and Irwig3 sum-
marize the standard frequentist  or classic literature
for statistical inferences for diagnostic test parame-
ters in the absence of a “gold standard.” Under this
framework, unless there are data from three or
more tests (for example, three or more different
tests are applied to each subject, or the same test is
applied on three or more independent instances),
simultaneous estimation of all unknown parameters
of the tests is not possible. Typically, some of the
unknown parameters must be assumed exactly
known in order to draw inferences about the re-
maining parameters. For example, the sensitivity
and specificity of Test 1 must be assumed exactly
known in order to estimate the disease prevalence
and the sensitivity and specificity of Test 2. When
Test 1 is a “gold standard,” its sensitivity and spec-
ificity are 100%. Otherwise, it is rare that the sensi-
tivity and specificity of Test 1 are exactly known. Fail-
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ure to account for this uncertainty can lead to mis-
leading point and interval estimates for likelihood
ratios. This is illustrated in the examples below.

However, by taking a Bayesian approach, Joseph
et al4 demonstrated that it is possible to estimate all
unknown parameters without imposing often-unjus-
tified constraints on a subset of the unknown pa-
rameters. The results from the Bayesian approach
reduce to those of the classical approach when sim-
ilar constraints are imposed, and thus the Bayesian
approach can be considered a generalization of the
classical methods. Like previous solutions that re-
quired a “gold standard,“‘,’ this numerical approach
proceeds iteratively. The calculations are performed
using a Markov chain Monte Carlo simulation tech-
nique called the Gibbs sampler,” which has recently
been applied to a wide variety of estimation prob-
lems in medicine.7-10

In this paper, the approach of Joseph et a1.4 is
used to obtain interval estimates for LR+ and LR-
from serologic testing and stool examination data,
used as diagnostic tests for Strongyloides infection.
Neither of these tests can be considered a “gold
standard” for the detection of Strongyloides. Exam-
ple 1 of Centor,5 which examines the use of creatine
kinase (CK)  as a diagnostic test for myocardial  in-
farction (MI), is used to illustrate that the interval
estimates given by the Bayesian approach match
those given by the standard approach when a “gold
standard” test is available.

Methods
In the Bayesian approach to statistical inference,

the information available before the experiment
about the parameters of interest is summarized in
a prior distribution. The data, through the likelihood
function, are then combined with the prior distri-
bution to derive posterior distributions using Bayes’
theorem. The posterior distributions contain up-
dated beliefs about the test parameters after consid-
ering the infermation provided by the data. Gelman
et al.10 provide an introduction to, and many exam-
ples of, Bayesian data analysis.

When two diagnostic tests are applied to each
subject in a given population, there are typically five
unknown parameters-the prevalence 03 and the
sensitivities @I,, Sn,)  and specificities (Spl, Sp& of
each diagnostic test. Prior distributions that sum-
marize the available information about these param-
eters must be formulated as inputs to the analysis.
For example, if Test 1 is considered to be a “gold
standard,” Sn, = Spl = 1, so that the prior proba-
bility distributions for these parameters consist of
point masses on the single number 1, and zero else-
where. At the other extreme, if no prior information

is considered to be available for P, Sn2, and SpZ, then
uniform distributions covering the interval EO,ll  (the
range of possible values) could be used. Standard
methods as reviewed by Centor’  are approximately
numerically equivalent to a Bayesian approach that
assumes these five prior distributions. However,
since “gold standards” are rarely available, and di-
agnostic tests would not be used unless at least
some information was known about their properties
a priori, most prior distributions should fall in be-
tween these extremes.

When no “gold standard” is available, the calcu-
lations required by Bayes’ theorem are analytically .
intractable, and therefore Monte Carlo algorithms
such as the Gibbs sampler are employed. The output
of the Gibbs sampler consists of random samples
from the joint posterior density of all parameters of
interest. These random samples can then be used
to reconstruct the marginal densities of each param-
eter, or more simply, to provide summaries of these
densities, such as the means, standard deviations,
and interval estimates.’ Since any density shape can
be reconstructed in this way, assumptions concern-
ing normality or log-normality of the distributions
are not necessary. Joseph et a1.4 provided details of
the Gibbs-sampler algorithm that is required to pro-
vide random samples from the sensitivity, specificity,
and positive and negative predictive values of diag-
nostic tests using a Bayesian approach when no
“gold standard” is assumed. This approach is sum-
marized in the appendix. Since likelihood ratios are
functions of sensitivity (Sn)  and specificity (Sp), a ran-
dom sample from the marginal posterior density of
a likelihood ratio can be constructed directly from
a random sample of (Sn, Sp) pairs. Therefore, the
results in the next two sections were obtained by
using the Gibbs-sampler algorithm to obtain ran-
dom (Sn, SpJ pairs, i = 1, . . . , M, where M is the
size of the Monte Carlo sample. A sample from the
posterior density of each likelihood ratio can then
be constructed by calculating the quantities

LR+i =
Sni

1 - Sp(
i = 1, . . ..A4

and

1 - Sni
LR-i= -

@i ’
i = 1, . . ..M

These samples are then used to obtain mean, me-
dian, and interval estimates for the likelihood ratios.
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Table 2 l Results of Serologic and Stool Testing for
Strongyloides infection of 162 Cambodian
Refugees Arriving in Montreal, Canada, between
July 1962 and February 1983*

Stool Examination

+ -

+ 36 87 125
Serology

2 35 37

40 122 182
*Based on data from Gyorkos et al.11,12

Table 3 0 Equally-tailed 95% Probability Ranges and
Coefficients of the Beta Prior Densities for the
Test Parameters in the Diagnosis of
Strongyloides infection*

Sensitivity Specificity

Stool examination
Range 5% to 45% 90% to 100%
Beta coefficients (Y = 4.44, 8 = 13.31 (Y = 71.25, 8 = 3.75

Serology
Range 65% to 95% 35% to 100%
Beta coefficients a = 21.96, 8 = 5.49 CY = 4.1, 6 = 1.76

*A uniform density over the range [0, I] was used for the prior distri-
bution for the prevalence of Strongyloides infection in the refugee pop-
ulation.

Estimation of Likelihood Ratios in the
Absence of a “Gold Standard”

Consider the data in table 2, collected from a sur-
vey of all Cambodian refugees who arrived in Mon-
treal between July 1982 and February 1983.11,12 Al-
though both the serologic test and the stool
examination are standard tools for determining the
presence of Strongyloides infection, neither can be
considered a “gold standard.” This is because se-
rologic testing generally has low specificity due to
cross reactivityz3 or persistence of reactivity follow-
ing cure,144 and stool examination has low sensitiv-
ity.“’ Furthermore, the sensitivities and specificities
of these two diaghostic  tests for Strongyloides are
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not known with high precision. Nevertheless, the
likelihood ratios for both tests can be estimated
from the data presented in table 2 and the available
prior information about the sensitivities and speci-
ficities of the two tests.

In consultation with a panel of experienced par-
asitologists from the McGill University Centre for
Tropical Diseases, 95% prior credible intervals
(Bayesian analogs of CIs) were elicited by consensus.
Beta distributions are commonly used to represent
prior distributions when the data are dichoto-
mous.16 Therefore, the credible intervals were con-
verted to beta distributions by matching the mid-
points of the intervals to prior means, and four
times the standard deviations to the credible set
ranges. Using this method of moments gave close-
fitting beta prior densities. The original intervals and
associated beta densities are given in table 3. The
mean of a beta distribution with parameters IX and
p is given by or/to + pl. For example, the mean of
the prior distribution for the sensitivity of stool ex-
amination is 4.44/(4.44 + 13.311  = 0.25, as desired.

Likelihood ratio estimates from the results of the
analysis for each test alone and the combination of
the two tests are given in table 4. Another option
would be to perform serial testing, which would im-
prove the sensitivity of stool examinations, for ex-
ample, although possibly at the expense of de-
creased specificity. As is evident from comparing the
means and medians in table 4, the distributions can
be highly skewed.

Estimation of Likelihood Ratios ‘in the
Presence of a “Gold Standard”

Consider the data in table 5, first presented by
Radack et a1.l7 Using the methods described by Gart
and Nam,2 Centor5 reports point estimates of 1.58
(95% CI 1.17-2.00)  and 0.69 (95% CI 0.49-0.90) for
LR + and LR-, respectively. Applying the Bayesian
approach described above and assuming MI to be a
“gold standard” also yields point estimates (means
of the marginal posterior densities1 of 1.58 and 0.69

Table 4 l Means, Medians, and Lower and Upper 95% Credible Interval Limits (CILs) of the Posterior Densities for Serologic
Testing (Test 1) and Stool Examinations (Test 2), Alone and in Combination

Likelihood Ratio Mean Median Lower 95% CIL Upper 95% CIL

LR+ (test 1 positive) 4.57 2.73 1.36 18.17
LR- (test 1 negative) 0.19 0.17 0.06 0.43
LR+ (test 2 positive) 9.87 7.91 3.05 28.41
LR- (test 2 negative) 0.72 0.72 0.59 0.82
LR+ + (both tests positive) 44.19 23.92 8.60 188.82
LR+- (test 1 positive, test 2 negative) 3.34 1.98 0.88 13.51
LR-+ (test 1 negative, test 2 positive) 1.86 1.32 0.34 6.45
LR- - (both tests negative) 0.13 0.12 0.05 0.30
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Table 5 s Observed Data for Evaluating Serum Creatine
Kinase (CK) as a Diagnostic Test for Myocardial
Infarction (MI)*

MI

+ -

CK> 120 26 2 5 1  2 7 9

CK< 120 23 4 7 1  4 9 4

51 7 2 2  7 7 3
*Based on data from Radack et al.17

for the LR+ and LR-, respectively. Ninety-five per-
cent equal-tailed credible sets are (1.17-2.00)  and
(0.49-0.91)  for LR+ and LR-, respectively. These in-

 tervals very closely match those given by Centor.5

Although assuming that MI is a “gold standard”

When a “gold standard” is not available, it’ is still
possible to provide point and interval estimates for
likelihood ratios, using Bayesian methods. These
methods calculate the best possible estimates of test
parameters given the data and the available prior
information. Since in a Bayesian analysis final infer-
ences depend on the prior distributions, providing
several analyses  starting from a range of reasonable
prior distributions is usually desirable.4,18 In addi-
tion, different laboratories may have different test
sensitivities and specificities, depending on the avail-
able equipment and level of expertise.

for this data set is reasonable, it is instructive to note
the effects on the likelihood ratios induced by vari-
ations in this assumption. For example, if the sen-
sitivity  and specificity of MI are known exactly to be
only 95% (as may occur if misclassification is possi-
ble and the exact degree to which misclassification
occurs is known), then the point estimates for the
positive and negative likelihood ratios change dra-
matically to 2.39 (95% credible interval 1.32-2.97)
and 0.25 (95% credible interval 0.01-0.82), respec-
tively.

The methods used to produce the results of the
previous sections can be easily extended to include
inferences about likelihood ratios from tests with
more than two outcome categories. Correlated tests
can also be considered by using Dirichelet prior
densities over all test parameters and multinomial
likelihoods rather than independent binomial like-
lihoods. Correlated tests may provide less informa-
tion than the same number of independent tests,
leading to likelihood ratios that are closer to one.
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APPENDIX

Let data be collected as in table 1. Define unobserved
“latent data” Y1, Yz, Y3, and Y4 to represent the unknown
numbers of true-positive subjects out of the observed cell
values a, b, c, and d, respectively. Any subject, whether
truly possessing the disease in question or not, can test
positively or negatively on each test. Therefore, there are
eight possible combinations, as summarized in table 6.
Table 6 also provides the likelihood of the data assuming
the tests are conditionally independent, that is, the tests
are independent conditional on Y,, Yz, Y3, and Y4. Accord-
ing to Bayes’ theorem, the posterior distribution is pro-
portional to the likelihood of the data times the prior dis-
tribution. Assume that independent beta distributions can
be used to represent the prior information for the .un-
known parameters, as in table 3. In particular, denote the
prior beta parameters for the prevalence 7~ by o, and j3,,,
and similarly denote the sensitivities &I,, Sn,) and speci-
ficities (spl, Spz).  Random samples from the appropriate
marginal posterior densities can then be obtained by us-
ing the Gibbs sampler. In this case, the algorithm reduces
to sampling in turn from the distributions below:

Table 6 0 Likelihood Contributions of All Possible
Combinations of Observed and Latent Data for
the Case of Two Diagnostic Tests*

No. of Test 1 Test 2 Likelihood
Subjects Truth Result Result Contribution

v, + + + &n, Sn,

K + + - &n,(l  - Sn,)

v, + - + / ~(1 - Sn,)Sn,

v, + - - ~(1 - Sn,)(l  - SfQ

a-Y, - + + (1 - rr)(l - So,)(l  - SP2)

b-Y, - + - (1’ - Ir)(l - SP,)SPz

c-Y3 - - + (1 - 4SP,U - SPA

d-Y, - - - (1 - n)SP*Sh

*The complete likelihood is proportional to the product of each entry
in the last column of the table raised to the power of the corresponding
entry in the first column of the table.

Y, la, IT, Sn,, Spa, Snz,  Spa  - binomial
MnSn,  \

a,
IrSn,Sn,  +  (1 - ~r)(l - Sp,M - Spz)

Y21 b, IT, Sn,, Spl,  Sn, Spz - binomial
(

b,
rSn,(l  - Sn,)

7rSn,(l  - Sn,) +  (1 - 7~10 - SpJSpz >

’ Ys lc, TT, Sn,, Spl, Sn,, Spz - binomial
(

41 - SnJSn,
c,

41 - SnJSn,  +  (1 - ‘TF)S~~O  - SpJ )

Y41d, nTT, Sn,, Sp,, Sn,, Spz - binomial
dl - Sn,)(l - Sn,)

d, 7F(l _  Sn )(l
1 - Sn,) +  (1 - ‘ii)Sp$p, >

n (a, b, cl 4 Yl, Yz, Ys, Y4, amI Pn - beta(Y,  + Y2 + Y3 + Y4 + OL,,  N - (Y1 + Yz + Y3 + Y4) + j$,)

SnIIYI,  Yz, Y3, Y4, as”,,  Psnl  - beta(Y,  -I- Yz + cl,,,, Y3 -I- Y4 + Pd

Sp, la, b, c, d, Ya, Yz, Y,, Y4, c+, pspl - beta(c  + d  - (Ys + Y,) + asp,,  a + b - (Y, + Y2) + f%,,)

Sn,IY,,  Yu Ys, Y4, asn2,  L, - beta@‘,  + Y3 + as,,,  Yz + Y4 + I%)

Spz  la, b, c, d, Y1, Yz, Y3, Y4, ospz,  Pspz - beta(b  + d - (Yz + Y,) + o~spz, a + c - (Y, + Y,) + &,I

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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To start the algorithm, Y,, Yz, Ys, and Y4 are randomly
generated from binomial distributions 1 through 4, rer
spectively, given arbitrary starting values for the other
parameters. Then IT is generated from the beta density 5
conditional on the YI through Y4 variates just sampled.
Drawing Sn,, Spl, Sn,, and Spz from beta densities given
in expressions 6 through 9, respectively, using the same
values of Y3 through Y4,  completes the first iteration of the
Gibbs sampler algorithm. The next iteration begins with
drawing Y, from equation 1, using the new values for Sn,,
Spl, SnZ, and Spz, and so on. The random samples gen-
erated by repeating the above cycle a large number of
times are then used to reconstruct the marginal posterior

densities of each parameter, and to find credible intervals,
marginal posterior means or medians, or other infer-
ences. To obtain the results in this paper, the algorithm
was run for 20,000 iterations. The results from the first
500 iterations were used to assess convergence of the al-
gorithm, and the remaining 19,500 were used for infer-
ences. Similar methdds can be derived for the cases when
only one test or three or more tests are applied. Full de-
tails are available in Joseph et al.5 A computer program
written in the S-PLUS statistical programming language for
the cases of one, two, and three diagnostic tests is avail-
able upon request from the authors.

DECISION TREE
. CONSTRUCTION:

Guidelines for authors

Authors are requested to use the
following guidelines in the construction
of decision trees.

1. Standard notation:

0 = chance node

u= choice node

El100 = quantitative outcome
(utilities) inside rectangle

2.

3.

Use right angles at nodes

Analogous events should line up
vertically l

4. If the tree is complicated, subtrees
may be used

5. A decision tree should be oriented
horizontally on an MDM page:
available space is 7 inches wide by
9.5 inches long

6. Letters on the tree must be legible
when it is printed on a single page;
minimum point size 6 points; make
lettering uniform in size and weight
(legend will be set by the publisher)
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An example of a well-constructed tree


