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Odds ratios are frequently used for estimating the effect of an exposure on the probability of disease in case-
control studies. In planning such studies, methods for sample size determination are required to ensure sufficient
accuracy in estimating odds ratios once the data are collected. Often, the exposure used in epidemiologic studies
is not perfectly ascertained. This can arise from recall bias, the use of a proxy exposure measurement, uncertain
work exposure history, and laboratory or other errors. The resulting misclassification can have large impacts on
the accuracy and precision of estimators, and specialized estimation techniques have been developed to adjust
for these biases. However, much less work has been done to account for the anticipated decrease in the precision
of estimators at the design stage. Here, we develop methods for sample size determination for odds ratios in the
presence of exposure misclassification by using several interval-based Bayesian criteria. By using a series of proto-
typical examples, we compare sample size requirements after adjustment for misclassification with those required
when this problem is ignored. We illustrate the methods by planning a case-control study of the effect of late intro-
duction of peanut to the diet of children to the subsequent development of peanut allergy.

Bayesian methods; case-control study; misclassification error; sample size determination; study design

Abbreviations: ACC, average coverage criterion; ALC, average length criterion; Cl, credible interval; HPD, highest posterior

density; MWOC, modified worst outcome criterion; OR, odds ratio.

Statistical techniques that adjust for possible biases in obser-
vational studies are increasingly common in epidemiology
(1-4). Methods for designing studies that will eventually need
to be adjusted for such biases, however, have lagged behind.
We address this gap by presenting a method for adjusting sam-
ple size requirements for case-control studies with possible
misclassification bias.

As discussed in the classic text by Schlesselman (5), case-
control designs can be used to estimate the effect of an expo-
sure on the probability of a disease or condition. For example,
it is hypothesized that the late introduction of peanut to the
diet may increase the probability of peanut allergy in children
(6). Suppose that a case-control study is to be conducted to
estimate the effect of introduction of the food prior to 1 year of
age compared with later introduction. Groups of children with
and without peanut allergy will be surveyed, with their parents
providing information about when their children were first

introduced to peanut or products containing peanut. Expo-
sure misclassification may arise from the inaccurate recall of
exposure information, which may also differ in magnitude
between cases and controls. Under these circumstances, what
sample size is required for accurate estimation of the odds ratio
once statistical methods, which adjust for the misclassifica-
tion due to recall bias, are applied?

Ignoring misclassification, Wickramaratne (7) and Leme-
show et al. (8) reviewed classical sample size methods for hypoth-
esis testing and interval estimation for odds ratios. Frequentist
sample size methods depend on accurate point estimates of
the required inputs, which here include not only the expo-
sure rates, but also the rates of misclassification within each
disease class. As we will show, the estimated sample sizes can
be very sensitive to minor changes to these inputs. It is there-
fore advantageous to consider Bayesian methods, where prior
densities not only allow for uncertainty in the inputs, but
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Table 1. Two-by-Two Table of Observed Data

Disease + Disease — Total
Exposure + a c a+c
Exposure — b d b+d
Total a+b c+d N

incorporate this uncertainty into the sample size requirements.
This is especially important in the presence of misclassification,
which induces a nonidentified model. As discussed by various
authors (9-12), the calculation of sample sizes within nonidenti-
fied models is inherently different from regular problems, because
the posterior density does not converge to a single point as the
sample size increases. Therefore, even infinite sample sizes may
not guarantee sufficient accuracy.

From a Bayesian viewpoint, sample size for case-control
studies, including examination of the optimal case-to-control
ratio, was addressed by De Santis et al. (13) and M’Lan et al.
(14). Neither, however, considered the change in sample size
resulting from possible exposure misclassification. Devine and
Smith (15) addressed the change in sample size requirements
induced by misclassification by using frequentist power-based
criteria. Gustafson (16) reviewed general Bayesian methods to
adjust for misclassified exposure data, and Stamey and Gerlach
(17) considered misclassification for case-control studies, but
their method requires a validation sample that is not always
available.

SAMPLE SIZE DETERMINATION FOR ODDS RATIOS
IN THE PRESENCE OF MISCLASSIFICATION

We begin by describing a model for adjusting odds ratios for
exposure misclassification, similar to that used by Gustafson
et al. (18). We then define several Bayesian sample size cri-
teria and indicate how they can be applied to help design
studies with bias-adjusted odds ratios. Technical details and
numerical algorithms are given in the Appendix.

Leti=1, 2 index the case and control populations, respec-
tively. For any given sample size N, we observe the 2-by-2
layout given in Table 1. Let the true probability of exposure
among cases be given by p; and the true probability of expo-
sure among controls be given by p,. Let p| and p) be the
observed probabilities in the presence of misclassification.
The 2 sets of probabilities are related by the equations

Pi=pixS1+(1—-p)x(1—-Cy) and
Ph=p2xSa+ (1 —p2)x (1 —C),

where §;, and C; are correct classification rates within case
(i=1) or control (i = 2) populations, defined by

S; = Pr{classified as exposed|truly exposed}  and

C; = Pr{classified as not exposed|truly not exposed}.

If § =S, and C, = C,, then there are 2 correct classifica-
tion rate parameters to estimate; otherwise there are 4, giving

a total of m =4 or m = 6 unknown parameters when added to
p1 and p,. Because all parameters have range [0,1], B densi-
ties may be used as prior distributions. The available data in
Table 1 provide only 3 degrees of freedom, meaning that, in
practice, the problem is nonidentifiable, and that informative
prior distributions need to be placed over a subset of parame-
ters to obtain reasonable inferences. Typically, one supposes
some knowledge or limits about the classification rates, after
which one can use less informative priors over p; and p,.

The likelihood function for the observed data is a product
of 2 binomial functions, and using the notation from Table 1
is proportional to

(P (1 =P (P (1 = py)™. (2)

The posterior density function is proportional to the product
of the likelihood function and the prior density over the
unknown parameters py, p», S, Sz, C1, C,. The odds ratio is
then estimated by integrating the full posterior density to elim-
inate the nuisance parameters Sy, S», C;, C, and introducing
the change of variable odds ratio = (p1/(1 —p1))/(p2/
1 — p,)). Because there is no closed form solution, inference
proceeds by Markov chain Monte Carlo methods. We used
WinBUGS, version 1.2, software (MRC Biostatistics Unit,
Cambridge, United Kingdom) to implement a Gibbs sampler
algorithm.

The marginal posterior density of the odds ratio is typically
summarized by a highest posterior density (HPD) credible inter-
val. In planning a study, suppose we desire an interval of length
[ that includes the odds ratio with probability 1 — o.. For exam-
ple, we may wish to estimate the odds ratio to an accuracy of
[=0.5 witha 1 — o.=95% interval. The marginal posterior den-
sity of the odds ratio depends on the data, which are, of course,
unknown at the planning stage. We can account for this uncer-
tainty in different ways, leading to different sample size cri-
teria. We consider 3 such criteria as follows: the average coverage
criterion (ACC), the average length criterion (ALC), and the
modified worst outcome criterion IMWOC), defined in detail
in M’Lan et al. (14).

Allowing the posterior probability 1 — a to vary with each
potential data set while holding the credible interval length [
fixed leads to a sample size that guarantees the desired poste-
rior probability on average, that is, the ACC sample size. The
average is taken over the set of all possible data sets, weighted
by the probability that each data set may arise, as determined
by the prior densities over all parameters.

Conversely, we can allow the HPD interval length [ to vary
while fixing the posterior probability at 1 — o.. This ALC sam-
ple size averages the lengths of fixed probability HPD inter-
vals over all possible data sets, again weighted by the prior
distributions.

Rather than averaging over potential data sets, a conserva-
tive approach would be to ensure a maximum length of / and
a minimum probability of 1 — o, regardless of the data set
that occurs, termed the worst outcome criterion sample size.
In practice, there is often at least 1 data set that leads to very
poor accuracy, so that the worst outcome criterion sample size
is infinite. For example, this is always the case when sampling
from the posterior density of an odds ratio in which the rate
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in the denominator might be close to 0, causing instability in
the odds ratio estimate. Therefore, in this article we use the
MWOC, where the desired length and posterior probability
are guaranteed over a subset of all data sets with a given proba-
bility. For example, we might choose the sample size such that
the desired / and 1 — o are guaranteed over 95% of all data
sets. We denote this by MWOC[95] or, more generally,
MWOCI100 x (1 — )], where y represents the probability that
arandomly selected data set will not satisfy the length and/or
posterior probability requirements. The use of the MWOC avoids
the situation of having to select an unnecessarily large sample
size to guard against highly improbable data.

Because there are no closed form solutions, we used the
numerical algorithm detailed in the Appendix to estimate the
optimal sample size. A user-friendly program called SSCOR
(Sample Size Calculations for Odds Ratios), which implements
all of the above methods, is available at www.medicine.mcgill.
ca/epidemiology/Joseph/. We next use this software to deter-
mine sample sizes for various scenarios that may occur in the
planning of case-control studies, comparing situations with and
without misclassification.

SAMPLE SIZES FOR PROTOTYPICAL SCENARIOS

The misclassification of exposure and the subsequent need
to adjust the odds ratio to account for these errors has impor-
tant implications for the design of case-control studies. In gen-
eral, the larger the misclassification error and the more uncertain
one is of the magnitude of this error, the more uncertainty there
will be in the final odds ratio estimate, and consequently, the
larger the sample size requirements will be. In this section, we
present some prototypical scenarios that illustrate the degree
to which sample sizes must increase with increasing amounts
of misclassification.

Throughout, we will assume that a 95% HPD interval is
desired. We will consider 3 values for the true odds ratio, approx-
imately centered on odds ratio values of 0.7, 1, and 1.5, with
desired total HPD interval lengths of 0.4, 0.2, and 0.8,
respectively. The latter were chosen to be sufficiently small,
such that definitive inferences can be made. For example, if
the true odds ratio is 0.7 and the length of the HPD interval
is 0.4, then a 95% credible interval close to (0.5, 0.9) can be
expected, which is sufficiently far from the null value to con-
vincingly demonstrate a protective effect. On the other hand,
if the odds ratio is 1, then a total length of 0.2 will result in
an interval similar to (0.9, 1.1), which will often be close
enough to the null value to conclude no clinically important
effect. Similarly, when the odds ratio is 1.5, the interval will
be approximately (1.1, 1.9), which we assume is far enough
from the null value to conclude a positive effect.

We assumed a B(10, 90) prior for the exposure rate within
the case group. This density provides a mean rate of 10%,
which is typical of many exposures, and the parameters sum
to 100, providing knowledge equivalent to 100 prior obser-
vations. To obtain odds ratios of 0.7, 1, and 1.5, we modeled
the exposure rate among controls by B(13.7, 86.3), B(10, 90)
and B(6.9, 93.1) densities, respectively. These provide median
odds ratios of 0.694 (95% prior credible interval (CI): 0.281,

1.65), 1 (95% CI: 0.387, 2.58), and 1.52 (95% CI: 0.550,
4.47) centered close to the target values.

For each of these scenarios, we calculated sample sizes
assuming no misclassification, as well as low, moderate, and
high degrees of misclassification. For moderate and high
degrees of misclassification, we also considered narrower
and wider prior densities around the central value, because
knowledge about the misclassification rate can have as much
of an effect on the sample size as the misclassification rate
itself. Low misclassification was defined by a B(681.5, 13)
prior probability of correct classification and a density with
95% range from 0.97 to 0.99, implying a misclassification
rate between 1% and 3%. We used B(116, 12) and B(214.35,
70.8) densities to represent the moderate and high misclassi-
fication rates with wider prior ranges, respectively, implying
error rates between 5% and 15% and between 20% to 30%,
respectively. For narrower prior ranges, we used misclassifi-
cation rates between 9% and 11% for the moderate error rate
and between 24% and 26% for high rates, corresponding to
B(3103.9, 344) and B(5400.3, 1799.5) densities for correct
classification, respectively.

For each of the above 3 x 6 = 18 scenarios, we considered
the following 4 criteria: the ACC, ALC, MWOC[50], and
MWOC[90]. We calculated 2 sample sizes for each scenario
(except no misclassification), depending on whether one
assumes the same or allows for different misclassification
rates within the diseased and nondiseased populations. This
determines whether there are 4 or 6 unknown parameters to
estimate. Thus, we considered a total of 132 different scenar-
i0s. An upper limit of 100,000 subjects per group was set,
because larger studies would usually not be practical.

Although any joint density over py, p», Sy, S2, C;, C> can
be used, aside from the 4-parameter model that sets S; =S,
and C = C,, we have chosen independent priors for each param-
eter. Although equation 1 exposes the relationship between
p} and p) and the parameters from which they are derived,
there is no particular reason to suspect that the correct classi-
fication probabilities are dependent on p, and p,. Neverthe-
less, should this be the case, our methods can be easily modified
by using a different joint prior over the parameter space.

Table 2 presents the resulting sample sizes assuming g = 1.
When there is no misclassification, the sample sizes range
from a low of 813 for the MWOC][50] criterion when the odds
ratio is 0.7 to a high of 32,072 for the most strict criterion, the
MWOC[90], with an odds ratio of 1. The ACC and ALC sample
sizes are intermediate to these extremes. In general, the sample
sizes were largest for the narrowest interval around an odds ratio
of 1 and smallest for an odds ratio of 0.7 with an interval length
of 0.4.

Under the m =4 parameter model, even low rates of mis-
classification greatly increase the desired sample sizes. For
example, there was an approximately 20% increase in sample
sizes when the odds ratio was 0.7 but often more than a dou-
bling of the sample size when the odds ratio was 1, including
2 cases in which the 100,000 ceiling was reached, under the
MWOCI[90]. As expected, moderate and high levels of mis-
classification require even larger sample sizes, and having a
better knowledge of the misclassification rate decreases the
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Table2. Sample Sizes per Group for the Prototypical Scenarios, Assuming a Case-to-Control Ratio of g=1

Identical misclassification

parameters (4-parameter

model)
ACC 0.7 0.4 1,341 1,665 3,422 3,698 12,326 14,223
ALC 0.7 0.4 1,016 1,254 2,588 3,053 9,567 12,519
MWOCI50]? 0.7 0.4 813 1,004 2,055 2,344 7,495 9,210
MWOC[90]° 0.7 0.4 2,696 3,288 6,688 7,288 25,018 28,721
ACC 1 0.2 15,992 40,760 >100,000 >100,000 >100,000 >100,000
ALC 1 0.2 11,427 20,690 53,802 >100,000 >100,000 >100,000
MWOCI[50] 1 0.2 8,595 10,745 23,454 57,437 92,838 >100,000
MWOCI[90] 1 0.2 32,072 >100,000 >100,000 >100,000 >100,000 >100,000
ACC 1.5 0.8 3,514 8,936 41,237 >100,000 >100,000 >100,000
ALC 1.5 0.8 2,176 3,920 10,862 >100,000 72,435 >100,000
MWOCI[50] 1.5 0.8 1,434 1,962 4,751 9,273 20,604 47,454
MWOCI[90] 1.5 0.8 7,353 >100,000 >100,000 >100,000 >100,000 >100,000

Distinct misclassification

parameters (6-parameter

model)
ACC 0.7 0.4 1,341 2,391 6,226 >100,000 >100,000 >100,000
ALC 0.7 0.4 1,016 1,653 3,957 >100,000 >100,000 >100,000
MWOCI[50] 0.7 0.4 813 1,234 2,797 >100,000 24,810 >100,000
MWOCI[90] 0.7 0.4 2,696 9,793 >100,000 >100,000 >100,000 >100,000
ACC 1 0.2 15,992 >100,000 >100,000 >100,000 >100,000 >100,000
ALC 1 0.2 11,427 >100,000 >100,000 >100,000 >100,000 >100,000
WMOCI50] 1 0.2 8,595 >100,000 >100,000 >100,000 >100,000 >100,000
MWOCI[90] 1 0.2 32,072 >100,000 >100,000 >100,000 >100,000 >100,000
ACC 1.5 0.8 3,514 >100,000 >100,000 >100,000 >100,000 >100,000
ALC 1.5 0.8 2,176 >100,000 >100,000 >100,000 >100,000 >100,000
MWOCI[50] 1.5 0.8 1,434 4,095 17,569 >100,000 >100,000 >100,000
MWOCI[90] 1.5 0.8 7,353 >100,000 >100,000 >100,000 >100,000 >100,000

Abbreviations: ACC, average coverage criterion; ALC, average length criterion; g, case-to-control ratio; MWOC, modified worst outcome criterion; OR, odds ratio.
& MWOCI50] denotes the MWOC at the 50% probability level, that is, guaranteeing the desired credible interval length and coverage over 50% of all data sets.
b MWOC[90] denotes the MWOC at the 90% probability level, that is, guaranteeing the desired credible interval length and coverage over 90% of all data sets.
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Table 3. Sample Sizes for Both Groups Combined for Planning a
Study Concerning the Early Introduction of Peanut to the Diet

Criterion
by Case-to- No Low Moderate
Control Misc ification Misclassification Misclassification
Ratio
ACC
2,908 3,242 4,918
2 3,078 3,441 5,160
3 3,468 3,876 5,848
ALC
1 2,758 3,056 4,600
2 2,925 3,249 4,914
3 3,280 3,664 5,516
MWOC[50]?
1 2,654 2,958 4,440
2 2,843 3,141 4,734
3 3,196 3,564 5,336
MWOCI95]°
1 5,014 5,784 8,912
2 5,427 6,159 9,468
3 6,200 7,048 10,868

Abbreviations: ACC, average coverage criterion; ALC, average
length criterion; MWOC, modified worst outcome criterion.

& MWOCTI50] denotes the MWOC at the 50% probability level, that
is, guaranteeing the desired credible interval length and coverage
over 50% of all data sets.

b MWOC[95] denotes the MWOC at the 95% probability level, that
is, guaranteeing the desired credible interval length and coverage
over 95% of all data sets.

sample size compared with when this rate is less well known,
a priori.

The situation is considerably worse when the misclassifi-
cation rates are not assumed to be identical across groups,
that is, when m = 6. Indeed, even low degrees of misclassifi-
cation often create sample sizes above 100,000, except for the
scenarios with an odds ratio of 0.7. High degrees of misclas-
sification almost always lead to very large sample sizes.

Gustafson et al. (18) derived the posterior density of the odds
ratio under misclassification by assuming an infinite sample size.
Typically, the posterior density of the odds ratio narrows sub-
stantially up to a certain sample size, past which there are dimin-
ishing returns. When combined with the Monte Carlo methods
given in the appendix of Dendukuri et al. (10), it is possible
to determine whether an infinite sample size will satisfy a given
criterion. For example, Table 2 indicates that the ACC sample
size for an odds ratio of 1 for moderate misclassification with
a narrow prior is greater than 100,000, but a sample size of just
under 200,000 per group (400,000 in total ) is sufficient to satisty
the ACC, reaching an average posterior probability of 0.952 at
200,000. On the other hand, even an infinite sample size is not
sufficient for this same situation under high misclassification
with a wide prior.

SAMPLE SIZE REQUIRED TO ACCURATELY ESTIMATE
THE EFFECT OF LATE INTRODUCTION TO PEANUT ON
PEANUT ALLERGY

The overall prevalence of peanut allergy among children in
Montreal, Canada, is approximately 1.5% (19). Suppose we
anticipate that 60% of cases have late exposure (95% prior
interval from 55% to 65%, represented by a B(229.8, 153.2)
density) compared with 30% of controls with late exposure
(95% prior interval from 25% to 35%, represented by a $(100.5,
234.5)density), giving an oddsratio close to 3.5 (95% CI: 2.58,
4.80)). If a case-control study is being planned, what should
the sample size be so that the odds ratio is estimated to within
a total HPD interval length of 1?

The sample size will depend on many factors, including
which sample size criterion will be used, how many controls
will be selected for each case, whether one allows for possi-
ble misclassification errors in parental information about the
timing of first introduction to peanut in the diet, and the degree
to which this misclassification is assumed to be known.

Table 3 provides the required sample sizes under a wide
variety of possible design choices. Somewhat unrealistically,
if no misclassification is assumed, for a case-to-control ratio
of g =1, the sample sizes range from less than 3,000 to more
than 6,000, depending on the criterion selected. If one is content
to ensure a posterior HPD length of 1 only on average (or median),
sample sizes close to 3,000 are needed. If one wants to be 95%
certain of obtaining an HPD interval of 1 or less, then sample sizes
in the 5,000 to 6,000 range are required. The final choice can be
based on the trade-off between the certainty of obtaining
an HPD interval of length 1 versus the costs associated with the
larger sample sizes. The effect of the case-to-control ratio can
also be gleaned from Table 3, in which higher values of g raise
the total sample size requirements by a few percentage points.
Althougharatioof g = 1 isoptimal, difficulties in finding cases,
which are relatively rare, may lead to other choices.

If one more realistically assumes a low misclassification
rate of 1%—3%, input as a (681.5, 13) density for the correct
classification probability, and assumes the rate to be equal in
the 2 groups (m =4), then sample sizes rise by roughly 10%
across all criteria. Under a moderate rate of misclassification
of 9%—11%, represented by a f(3103.852, 344.0302) density
for the correct classification probability, the sample sizes rise
by about 60% compared with the no misclassification scenario,
although they may remain feasible.

It is interesting to consider what may happen if one plans
asample size for a study ignoring measurement error, but later
analyzes the data considering measurement error. For example,
if there are equal numbers of cases and controls (g = 1), the
MWOCI50] from Table 3 suggests atotal sample size of 2,654,
assuming no measurement error. If this size is used for the
study, which is subsequently analyzed by using a moderate rate
of misclassification of between 9% and 11%, then the length
of an HPD interval of probability 0.95 will be 1.2, which is
about 20% wider than the original planned length.

We can also evaluate the effect of the m =6 parameter
model. If we use a moderate rate of misclassification of 9%—
11% in both groups but allow distinct parameters for these
rates, the ALC sample size under g =1 and an HPD length
of 1 is 5,248. Howeyver, it is also reasonable to assume that
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misclassification rates are lower in the peanut allergic group
(cases) compared with the nonallergic group (controls), because
cases may make more effort to recall or may remember the
history more accurately, given the likely reaction that would
have occurred in the child upon early ingestion. For example,
we might assume a moderate misclassification rate of 9%-—
11% for cases and a larger misclassification rate of 15%—25%
for controls. Although the latter interval is wide, it remains
plausible that many controls might not accurately remember
this history, and the exact recall rate would typically not be
accurately known. With g = 1 and using the ALC criterion with
atotal HPD interval length of 1, the total sample size is greater
than 200,000 (more than 100,000 per group). Under these
conditions, obtaining HPD lengths of 1 may not be feasible,
even though the inputs are entirely plausible. Because an odds
ratio of 3.5 is far from the null value of 1, a study with lower
accuracy is still informative. Doubling the width from 1 to 2
reduces the sample size considerably, to a manageable 362.

All of the above sample sizes are fully Bayesian, in the
sense that relatively strong prior information is assumed for
each parameter and is used not only for the purposes of
planning the study, but also within the eventual analysis. One
cannot use noninformative (e.g., B(1,1) or uniform prior den-
sities) across all parameters, because the problem is noniden-
tifiable. However, it is possible to use relatively weak prior
information for the exposure prevalence values within the
case and control groups, provided good prior information is
available for the misclassification parameters. This strategy
can be used by researchers who prefer to “let the data speak
for themselves” at the analysis stage, while still planning their
studies to accommodate possible misclassification errors.

Forexample, we can consider the prior densities used above,
but divide each parameter by 10, reducing the prior effective
sample size. Thus, the B density for the probability of expo-
sure in cases changes from (229.8, 153.2) to (22.98, 15.32),
and the B density for the controls changes from B(100.5,
234.5)t0 B(10.05,23.45). Summing across B parameters gives
a prior effective sample size of 71.8 compared with the pre-
vious size of 718. With g =1, an ALC sample size of 5,202
is required to attain a total HPD length of 1, even in the
absence of misclassification. Under moderate misclassifica-
tion of 9%—11%, the sample size roughly doubles to 9,626.
Reduction of the effective prior sample size by another factor
of 10 to 7.18 returns sample sizes that are larger than 200,000,
even with no misclassification.

Another strategy is to separate the “design priors” used to
generate the data from the “analysis priors” used at the anal-
ysis stage (20). Although the nonidentified nature of our prob-
lem requires at least some informative priors at both design
and analysis stages, one can place uniform priors on p; and
P> at the analysis stage. This will provide sample sizes for
researchers wanting to use minimal prior information for the
odds ratio at the analysis stage. Under this strategy, the ALC
sample sizes under moderate misclassification are 5,908, 6,483,
and 7,564 for g =1, 2, and 3, respectively.

DISCUSSION

The vast majority of case-control studies ignore misclassi-
fication, and even those that might consider this possibility

ignore the uncertainty in a priori knowledge of these mis-
classification rates. This is true both at the design and analy-
sis phases, leading to sample sizes that are typically much too
small and final estimates with credible intervals that are much
too narrow. The methods presented here are important to the
planning of such studies and serve as a warning that ignoring
misclassification in study planning and analysis may lead to
wildly optimistic interval estimates.

We have discussed different sample size criteria, which
lead to different sample sizes for any given problem. A natural
question, therefore, is which one to use. Clearly, the MWOC
for low values of y is more conservative than either the ACC
or ALC, which guarantee the target values for posterior prob-
ability and length only on average. As we have done in Tables 2
and 3 here, we have found it useful to calculate the sample
sizes that result from all criteria, including the MWOC[1 —vy]
for various values of vy, to develop a fuller understanding of the
inherent tradeoffs between sample size and the risk of not
meeting target values for interval length and posterior proba-
bility. On the basis of this information, a final sample size may
be selected that balances statistical rigor with practical con-
cerns. Itis especially important for study designers to appreciate
that, in many cases, the desired estimation accuracy cannot be
attained even with an infinite sample size. Clearly, designing
studies to have the lowest possible misclassification rates is
important, if possible. In some cases, it must be admitted that
no study design will result in misclassification rates low enough
to derive sufficiently accurate estimates.

Although we have applied our methods to the design of
case-control studies with exposure misclassification, similar
methods can be developed for other study designs and dif-
ferent sources of bias. As bias adjustment methods gain in
popularity at the analysis stage (1-4), methods for designing
such studies will also increase in importance.
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APPENDIX

We now present the details of our numerical algorithm

that determines the required sample sizes for estimating odds
ratios in the presence of exposure misclassification. The
algorithm is illustrated for the most general case in which
S1 # S, and C; # C,, but similar steps can be followed when
the exposure classification probabilities are equal within case
and control populations.

1. Sample M, random values from the joint prior density of
P1, P2, S1, 82, Cy, Cy. This involves selecting values from
a B density for each parameter.

2. For each of the M, sets of parameters sampled in step 1,
use equations (1) and (2) to calculate the probabilities of
falling into each of the 4 cells defined by Table 1.

3. Select a tentative value for the sample size N, keeping in
mind that a case-to-control ratio other than g =1 may be
selected. For each of the M, random situations, draw M,
random 2-by-2 tables a, b, ¢, and d, by using the proba-
bilities calculated in step 2. This is equivalent to sampling
data from the marginal distribution of the data. In prac-
tice, M, = 1 is sufficient.

4. For each of the M, x M, data sets, run the Gibbs sampler
algorithm via WinBUGS (15) to derive samples from the
posterior densities for p; and p,. By using these values,
calculate odds ratio = (p; /(1 —p1))/(p2/(1 —p2)), a
sample from the posterior density of the odds ratio adjusted
for misclassification error.

5. Use the method of Chen and Shao (21) to calculate an HPD
interval from each posterior sample from step 4, and
hence calculate the length or posterior probability of each
sample, as required by the chosen criterion. This method
assumes unimodality of the posterior density, which, in
our experience, is satisfied. If not, symmetric intervals can
be substituted.

6. Toimplement the ACC criterion, compare the average cov-
erage of HPD intervals of length [ to the predetermined
value of the coverage 1 — o. If the average coverage is
greater (smaller) than the desired 1 — o, return to step 1
using a smaller (greater) sample size N. Continue until the
criterion is met, using, for example, a bisectional search
or model-based strategy to select the next N. A model-
based strategy can use the pairs of N and average cover-
age values to create a fitted curve to predict the most likely
value of N required, refining the model after each step. In
practice, we have found a model of the form

avgcov = a+ BD (M)
c

fits the data well, where o and P are regression parameters
to be estimated, | and ¢ are measures of central tendency
and spread of the logarithms of the sample sizes selected,
respectively, and ®(-) is the cumulative normal density.
To implement the ALC, compare the average length of the
HPD intervals with fixed coverage 1 — o.by using a similar
search strategy as for the ACC until the desired average
length is attained. Finally, to implement the MWOC, for
each N we must compare the proportion of samples that
satisfy both the desired length and coverage, stopping when
the proportion matches the desired 1 — .

The ratio of controls to cases is another important design choice.
Sample sizes can be calculated across a range of values for g,
selecting the value that leads to the smallest sample size that is
feasible in a given study, considering the availability of cases
and controls.
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