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Background. Nonresponse bias is a concern in any epidemio-
logic survey in which a subset of selected individuals declines
to participate.
Methods. We reviewed multiple imputation, a widely applica-
ble and easy to implement Bayesian methodology to adjust for
nonresponse bias. To illustrate the method, we used data from
the Canadian Multicentre Osteoporosis Study, a large cohort
study of 9423 randomly selected Canadians, designed in part to
estimate the prevalence of osteoporosis. Although subjects
were randomly selected, only 42% of individuals who were
contacted agreed to participate fully in the study. The study
design included a brief questionnaire for those invitees who
declined further participation in order to collect information

on the major risk factors for osteoporosis. These risk factors
(which included age, sex, previous fractures, family history of
osteoporosis, and current smoking status) were then used to
estimate the missing osteoporosis status for nonparticipants
using multiple imputation. Both ignorable and nonignorable
imputation models are considered.
Results. Our results suggest that selection bias in the study is
of concern, but only slightly, in very elderly (age 80� years),
both women and men.
Conclusions. Epidemiologists should consider using multiple
imputation more often than is current practice.
(EPIDEMIOLOGY 2002;13:437–444)
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Virtually every large epidemiologic study has at
least some degree of missing data, arising from
either the refusal of some subjects to participate

in the study or missing items from subjects who other-
wise participate. Because participating subjects may dif-
fer in important ways from nonparticipants, parameter
estimates may be biased. For example, the Canadian
Multicentre Osteoporosis Study (CaMos) is a randomly

selected, prospective cohort study, with a total of 9423
full participants enrolled between 1995 and 1997.1 One
of the major objectives of CaMos is to estimate the
prevalence of osteoporosis in Canada. Because the study
design was a random selection of Canadians, a simple
estimate would be the observed proportion of partici-
pants (or subgroups thereof) with osteoporosis. How-
ever, only 42% of individuals who were contacted agreed
to fully participate in CaMos, creating the potential for
nonresponse bias. For example, people with direct con-
cerns about osteoporosis may be more likely to partici-
pate, which would imply that nonrespondents would be
less likely to have osteoporosis compared with respon-
dents. Alternatively, less well individuals, especially
among the elderly, may refuse to participate, as they may
remain home more than healthier persons. This implies
the possibility of higher rates of osteoporosis among the
nonrespondents. Therefore, it is interesting to note that
even the expected direction of potential nonresponse
bias was not clear when CaMos was being designed.

We used CaMOS data to illustrate a Bayesian approach
to account for missing data, called multiple imputation.
Originally proposed by Rubin,2 multiple imputation is
based on forming “complete” datasets by simulating the
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unknown missing data from each nonresponding subject,
given a model that relates observed data about the subjects
to the missing data items. The “complete” data sets are
then analyzed using standard methods that would have
been used had there been no missing data. Several “com-
plete” data sets are simulated and analyzed concurrently, so
that the uncertainty in predicting the missing data for each
subject is included in the final inferences.

Although the initial motivation was Bayesian, papers
by Little and Rubin3 and by Rubin4 have extensively
evaluated the frequentist properties of multiple imputa-
tion. Most frequentist uses of multiple imputation simply
create two or more complete datasets, as discussed
above, and run the appropriate frequentist complete data
analysis on each. The results from each data set are then
combined, with overall point estimates taken as the
means of the individual point estimates in each data set,
and the variances of the point estimates taken to be the
sum of the within- and between-imputation variances.3,4

The above frequentist method is easy to implement, and
is often sufficient in practice. Bayesian methods of multiple
imputation, however, can offer several important advan-
tages, including the ability to incorporate prior information
into the estimation procedure, and to include the uncer-
tainty of the imputation model itself into the final esti-
mates. Many good introductions to Bayesian inference are
available.5–9 Briefly, Bayesian analysis operates as follows:
First, the parameter of interest, �, is identified. This param-
eter, which is usually vector valued, includes all unknown
quantities of interest, such as prevalences, odds ratios, a set
of regression coefficients, or missing data. Next, a prior
distribution for �, f(�), is specified. This distribution sum-
marizes what is known about � before the collection of new
data. If there is little prior information, diffuse or nonin-
formative prior distributions can be used, which in practice
means that the data drive the final inferences. The distri-
bution of the data, x, given the parameter value �, is then
specified in a likelihood function, f(x��). The posterior
distribution, f(��x), is determined via Bayes Theorem,
which states that f(��x) f(x��f(�), that is, the posterior
distribution is proportional to the prior times the likeli-
hood. The posterior distribution summarizes the knowledge
about the unknown parameter, �, given the information
contained in the data (as represented by the likelihood
function) and the prior information. Note that in a Bayes-
ian approach, all unknown quantities are given a probabil-
ity distribution, which represents the uncertainty about
their values. Therefore, in missing data problems, the miss-
ing data items are simply considered as additional unknown
parameters to be estimated.

In practice, the posterior distribution is usually a
complex multidimensional function that can be accu-
rately approximated by modern Bayesian Monte Carlo
algorithms such as the Gibbs sampler. Being an iterative
algorithm, the Gibbs sampler is ideally suited to estima-

tion in missing data problems, as it iterates between two
basic steps. First, the missing data is imputed, by drawing
from the predictive distribution for the missing data, y,
given the observed data, x, and the unknown parame-
ters. Next, given that the missing values have now been
“filled in”, the usual Bayesian complete data methods
can be applied to derive posterior estimates of the un-
known parameters of interest, such as the prevalence
and the parameters of the imputation model. The next
imputed dataset uses these updated estimates of the
model parameters, so that final inferences incorporate
the uncertainty in the parameter estimates as well.

Multiple imputation is a generic technique that can
be applied to virtually any missing data situation. Aside
from missing data in surveys, which we discuss in detail
here, recent examples have included missing covariate
data in regression,10,11 latent data,12 survival analysis,13

and interval censored data.14 Excellent introductions to
multiple imputation include Little and Rubin,3 Rubin,4

and Schafer.15

Methods
Participants in the CaMos study were recruited via

randomly selected, residential telephone listings for nine
urban centers. Determination of peak bone mass (PBM)
for the CaMos cohort is described by Tenenhouse et al.16

For our purposes, a CaMos participant was considered as
osteoporotic if she or he had osteoporosis at either the
femoral neck or lumbar spine (L1-L4) sites, defined by a
bone mineral density value at least 2.5 standard devia-
tions below PBM.

Missing data can be classified as either ignorable or
nonignorable for the estimation of a given parameter.
When the pattern of missing data, given the observed
data, does not supply any information about the param-
eters of interest, inferences can be made based solely on
the observed data. This condition is called missing at
random. If, in addition, the parameters that define the
missing data process are independent of the parameters
used to model the observed data, then the missing data
are ignorable.4 Very roughly speaking, this means that if
investigators are able to collect sufficient information
about nonresponders in order to model the missing data
in a reasonable way, multiple imputation would provide
valid inferences adjusted for nonresponse bias. Non-
ignorability implies a systematic difference between re-
sponders and nonresponders even after accounting for
all observed data. In this case, there is no choice but to
propose plausible differences between the missing data
items in the nonresponders and the observed data in the
respondents, and then to check the robustness of any
inferences made across a reasonable range of these mod-
eling assumptions. Given that in any real data situation
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one cannot empirically verify whether missing data are
ignorable or not, both possibilities are considered here.

To adjust the crude prevalence estimates for selection
bias using multiple imputation, one must be able to
estimate the probability that each nonrespondent has
osteoporosis. To enable prediction of osteoporosis, a
refusal questionnaire (RQ) was administered to those
individuals declining to participate fully. The RQ col-
lected information on major risk factors for osteoporosis,
including age, gender, race, fracture history (yes/no and,
if yes, before or after age 50), family history of osteopo-
rosis (yes/no, osteoporosis of family members including
the individual responding), and current cigarette smok-
ing status (yes/no). Information on subjects declining to
complete the RQ was limited to geographic location, the
number of telephone calls made to establish contact,
and, in some cases, age, gender, and number of house-
hold members older than 25 years of age. As a result
there were two main groups of nonrespondents, based on
their level of participation and available information:
the nonresponders who completed the RQ (hereafter
called the RQ group), and the total refusers, the TR
group, composed of those individuals who refused to
participate at all. The TR group was further subdivided
into two subgroups. The first group, TR1, comprises
those individuals who provided information on age, gen-
der, and number of household members older than 25
years of age. The second group, TR2, comprises those
individuals who provided no information at all, so that
the only information available was on urban center and
the number of telephone trials required to establish
initial contact. Up to 12 calls were made to each
household.

The monotone pattern4 of missing data implies that
multiple imputation could have easily been used
throughout. Because a number of the TR group were
missing data on age and gender, arguably the two most
important predictors of osteoporosis, it is difficult to
model osteoporosis prevalence accurately in this
group. Rather than discard these data records, a single
imputation was used to impute the missing demo-
graphic data, which, given the limited amount of
available information, was as effective as performing
multiple imputation on this variable. Gender was
imputed by making draws from a Bernoulli distribu-
tion for the probability of being female conditional on
the observed data, using logistic regression. Age was
then imputed via linear regression, including at least
study center and number of telephone trials. There-
fore, there are two levels of imputations for these
subjects, an initial single imputation for age and gen-
der, followed by multiple imputations for osteoporosis.
All analyses were stratified on gender.

Analysis Assuming Ignorable Nonresponse for Total
Refusers

Multivariate hierarchical logistic regression analyses8

were performed using the information available from the
full responders to determine the best predictors of osteo-
porosis among those variables available in the various
groups of nonrespondents. A random effects term was
used for the center variable, in order to “borrow
strength” from all centers in estimating the center-spe-
cific effects.8 Final imputation models were selected from
the list of all possible combinations of the potential
predictor variables listed in Table 1 using the Bayesian
Information Criterion (BIC).17 This criterion was se-
lected because of its optimality properties when predict-
ing the dependent variable in future subjects.18 These
final models were then used to create the imputed “com-
plete” data sets within each age and sex group. Different
models were used for each of these groups.

Analysis Assuming NonIgnorable Nonresponse for
Total Refusers

Several main risk factors for osteoporosis were col-
lected via the RQ, so that adjustments assuming ignor-
ability for the RQ group of nonresponders should be
reasonable. For example, if persons with close relatives
with osteoporosis chose to participate in higher propor-
tions compared with those without such relatives, then
the ignorable model should be able to adjust for this,
thus lowering the estimate of the prevalence of osteo-
porosis compared with the crude estimate. However,
there is more concern about the TR group, where infor-
mation on major risk factors for osteoporosis is missing,
so that nonignorable nonresponse cannot easily be ruled
out. Essentially, the missing data of interest (osteoporo-
sis status, in this case) may depend on items not ob-
served. In this situation, the estimation of osteoporosis
in the TR group is dominated by assumptions made
about the relation between osteoporosis prevalence in
the respondents and the nonrespondents. In general,
these assumptions can be based on findings from other
studies or the substantive knowledge of researchers fa-
miliar with the problem, and the pattern of nonresponse.
This knowledge is rarely precise, and it is important to
check the robustness of the conclusions across a range of
plausible assumptions. We begin by using the refusal
questionnaire to provide insight into the prevalence of
osteoporosis in the partial (RQ group) responders. The
extent of nonresponse bias attributable to this group was
estimated by considering the difference between the
prevalence in the full participants and the estimated
(imputed) prevalence in the RQ group.

We then considered three possibilities for the distri-
bution of the prevalence of osteoporosis in the TR
groups, depending on the calculated difference in mean
prevalence between the responders and the estimated
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mean prevalence in the RQ group. Our motivation for
the choices below was to create a plausible range of
possible degrees of bias, based on the estimated degree of
bias in the RQ group. For example, suppose the imputed
prevalence in the RQ group is 2% greater than the
prevalence in the full responders. The first possibility is
that the prevalence of the TR group is similar to that of
the RQ group. In this case, we assume that the mean of
the distribution of the prevalence of osteoporosis for the
TR group will also be 2% greater than the mean for the
full responders. The second possibility is that the TR
group differs from the full responders in the same direc-
tion as the RQ group, but with twice as large a nonre-
sponse bias. Under this assumption, the mean of the

distribution of the prevalence of osteoporosis for the TR
group will be 4% greater than the mean for the full
responders. The third possibility is that the TR group is
so dissimilar to the RQ group that the bias is in the
opposite direction. Here, the mean of the distribution of
the prevalence of osteoporosis for the TR group will be
2% less than the mean for the full responders. To sum-
marize, we assume that the bias in the TR group com-
pared with the bias in the RQ group is similar, twice as
large, or similar in magnitude but opposite in direction.
By calculating the overall prevalence of osteoporosis
across this range of assumptions, we can check the
sensitivity of the estimates to three plausible selection
biases in the TR group.

All inferences were carried out via Gibbs sampling
using BUGS software.19 In our analysis, 5000 iterations
of the sampling process were performed in BUGS result-
ing in 5000 imputed “complete” datasets. To ensure
convergence of the algorithm, we examined the criteria
of Raftery and Lewis20 and Gelman’s R statistic.21 Under
both ignorable and nonignorable assumptions, the im-
puted missing data were combined with the observed
data to estimate the prevalence of osteoporosis in each
sex/age grouping.

Results
As expected, the crude prevalence rates were lower in

the younger age groups, at just under 1%, and increased
to over 20% for men and over 40% for women in those
80 years of age and older (see Tables 2 and 3).

The concern is that the crude estimates may be
affected by nonresponse bias, especially because some of
the main risk factors for osteoporosis are differently
distributed in responders and nonresponders (Table 1).
Of all women contacted, 45% agreed to participate as
full responders, 30% agreed to complete the RQ, 12%
fell into the TR1 group, and 13% fell into the TR2
group. For men, the breakdown was 38%, 33%, 14% and
16%, respectively. In both men and women, the RQ
group is substantially less likely to have had a previous
bone fracture, to have a family history of osteoporosis, or
to be current smokers than the full responder group.
With fewer risk factors among nonresponders, one may
expect that the crude prevalence rates may overestimate
the true prevalence, but the degree of bias depends on
the strength of the risk factors and their distribution
across age/sex groupings. We used multiple imputation
to provide adjusted prevalence estimates.

Generally, similar variables were selected for predict-
ing osteoporosis in men and women. For RQ women, the
variables selected were age, race (as a Caucasian yes/no
variable, as per the original questionnaire), fracture his-
tory, family history of osteoporosis, the number of tele-
phone calls made to establish contact, and the study

FIGURE 1. Posterior distribution of prevalence of osteopo-
rosis for responders (crude), refusal questionnaire nonre-
sponders, total refusers, and overall (adjusted) in CaMos
women 80� years, assuming ignorable missing data.

FIGURE 2. Posterior distribution of prevalence of osteopo-
rosis adjusted assuming nonignorability of missing data. Three
models shown, based on the difference in prevalence between
responders and refusal questionnaire nonresponders. The over-
all (adjusted assuming ignorability) posterior distribution is
also shown for comparative purposes.

EPIDEMIOLOGY July 2002, Vol. 13 No. 4 MULTIPLE IMPUTATION FOR MISSING DATA 441



center. For the RQ group of men, all the same variables
were selected, with the exception of the race variable,
which was eliminated by the BIC criterion. For TR
groups of women and men, the variables selected were
the number of telephone calls made to establish contact,
the number of household members older than 25 years of
age, and the study center. The logistic regression coef-
ficients in all of the above models varied by sex and age
groups.

To illustrate the effect of adjusting for selection bias,
the results for women 80 years of age and older are
presented in Figures 1 and 2. The posterior distributions
for the prevalence of osteoporosis in the various groups
of responders and nonresponders, assuming ignorability,
are shown in Figure 1. The posterior density representing
the observed or crude prevalence of osteoporosis has a
mean of 0.413 (95% credible interval (CI) � 0.359–
0.467). The estimated prevalence in the RQ group has a
mean of 0.390 (95% CI � 0.309–0.474), which is
shifted approximately 2% to the left from the crude
estimate. The wider credible interval indicates the

greater degree of uncertainty regarding the imputed
prevalence in the RQ group compared with that in the
full participant group. The mean prevalences in the TR1
and TR2 groups are 0.398 (95% CI � 0.295–0.507) and
0.419 (95% CI � 0.298–0.545), respectively. The very
large credible intervals for the TR groups indicate the
lack of good risk factor information. The overall adjusted
prevalence distribution, obtained by combining the ob-
served and imputed posterior densities over all four re-
sponse groups, has a mean of 0.399 (95% CI � 0.352–
0.448). Thus, taking into account all groups of
nonresponders shows that selection bias may have a
small but noticeable effect in this age group, given that
the assumption of ignorability is valid. This assumption
is questionable, however, given the lack of good risk
factor information in the TR groups.

Figure 2 shows the adjusted prevalence of osteoporo-
sis, assuming nonignorability, in women 80 years of age
and older. Given that the crude prevalence of osteopo-
rosis is approximately 2% greater than that imputed in
the RQ group, we first assume that the bias in the TR

TABLE 2. Crude and Multiple Imputation Adjusted Prevalence of Osteoporosis in Female Participants in the Canadian
Multicentre Osteoporosis Study

Age Range (Years)

50–59 60–69 70–79 80� 50�* 25�*

Responder group
N 1273 1841 1356 313 4783 5699
Prevalence 0.060 0.183 0.269 0.413 0.188 0.082
95% CI 0.048–0.074 0.165–0.201 0.246–0.293 0.359–0.467 0.177–0.199 0.076–0.088

Refusal questionnaire group
N 497 1056 1228 654 3435 3859
Prevalence 0.064 0.185 0.253 0.390 0.183 0.080
95% CI 0.034–0.100 0.148–0.224 0.213–0.296 0.309–0.474 0.162–0.205 0.070–0.090

Total refuser group, model
1

N 226 435 320 231 1212 1518
Prevalence 0.064 0.178 0.266 0.398 0.185 0.081
95% CI 0.024–0.116 0.127–0.235 0.196–0.340 0.295–0.507 0.155–0.217 0.067–0.095

Total refuser group, model
2

N 473 520 323 153 1469 1691
Prevalence 0.062 0.182 0.271 0.419 0.189 0.082
95% CI 0.032–0.098 0.135–0.233 0.201–0.344 0.298–0.545 0.161–0.219 0.069–0.097

All contactees (ignorable)
N 2469 3852 3227 1351 10899 12767
Prevalence 0.062 0.182 0.262 0.399 0.185 0.080
95% CI 0.050–0.075 0.166–0.199 0.241–0.284 0.352–0.448 0.175–0.195 0.075–0.086

All contactees
(nonignorable � �)

N 2469 3852 3227 1351 10899 12767
Prevalence 0.061 0.184 0.260 0.395 0.184 0.080
95% CI 0.050–0.075 0.167–0.201 0.238–0.281 0.347–0.445 0.174–0.195 0.075–0.086

All contactees
(nonignorable � 2�)

N 2469 3852 3227 1351 10899 12767
Prevalence 0.062 0.184 0.256 0.389 0.183 0.080
95% CI 0.050–0.075 0.168–0.201 0.235–0.278 0.341–0.439 0.173–0.193 0.075–0.085

All contactees
(nonignorable � �)

N 2469 3852 3227 1351 10899 12767
Prevalence 0.060 0.183 0.266 0.408 0.186 0.081
95% CI 0.048–0.072 0.166–0.200 0.244–0.287 0.360–0.458 0.176–0.197 0.076–0.087

* Weighted to the 1996 Canadian Census.
95% CI � 95% credible interval.
� � the mean difference in observed and imputed prevalence in the RQ group.
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group is either 2% or 4% in the same direction. This
results in estimates slightly less than the crude preva-
lence, with adjusted estimates of 0.395 (95% CI �
0.347–0.445) and 0.389 (95% CI � 0.341–0.439), re-
spectively. The third option, assuming that the bias in
the TR group is similar in magnitude but opposite in
direction compared with the RQ group, yields an ad-
justed prevalence of 0.408 (95% CI � 0.360–0.458),
very similar to the crude estimate. For comparative pur-
poses, the adjusted prevalence distribution, assuming
ignorability, is also shown in Figure 2. This figure sug-
gests that, although some nonresponse bias is present
regardless of the ignorability assumption, the overall
effect remains small.

Tables 2 and 3 present the crude and adjusted prev-
alence rates of osteoporosis, assuming ignorability and
the various nonignorability models, for men and women
of all age groups across the different groups of partici-
pants and nonparticipants. The degree of selection bias
ranges from negligible in the younger age groups to a
small but noticeable effect in the older age groups for

both men and women. For both men and women, non-
response bias is very slight when collapsing the age
groups into those 25 years and older and those 50 years
and older, each weighted by the 1996 Canadian census
data.

Discussion
Application of multiple imputation to the CaMos

data suggests little nonresponse bias, except perhaps in
the very elderly. It seems that contacts decided to par-
ticipate in CaMos for reasons largely unrelated to their
osteoporosis status, or at least that differences in known
major risk factors were not large enough to seriously
affect the estimates of the prevalence of osteoporosis.

Nevertheless, our estimates depend largely on having
collected all of the important risk factor differences for
osteoporosis in the RQ. It is possible that there are other
osteoporosis-related differences not captured by the
questionnaire. Furthermore, our nonignorability assump-
tions also depend on the RQ, because the magnitude of

TABLE 3. Crude and Multiple Imputation Adjusted Prevalence of Osteoporosis in Male Participants in the Canadian
Multicentre Osteoporosis Study

Age Range (Years)

50–59 60–69 70–79 80� 50�* 25�*

Responder group
N 568 699 522 123 1912 2565
Prevalence 0.046 0.046 0.095 0.208 0.068 0.035
95% CI 0.030–0.065 0.031–0.062 0.072–0.122 0.142–0.284 0.057–0.080 0.028–0.045

Refusal questionnaire group
N 375 516 527 262 1680 2212
Prevalence 0.036 0.040 0.084 0.160 0.056 0.031
95% CI 0.012–0.070 0.016–0.072 0.046–0.129 0.084–0.255 0.040–0.076 0.021–0.042

Total refuser group, model
1

N 270 154 170 102 696 922
Prevalence 0.049 0.043 0.091 0.203 0.067 0.035
95% CI 0.016–0.095 0.008–0.098 0.035–0.162 0.092–0.333 0.042–0.096 0.022–0.051

Total refuser group, model
2

N 294 306 170 86 856 1089
Prevalence 0.043 0.041 0.090 0.170 0.061 0.033
95% CI 0.013–0.084 0.013–0.079 0.034–0.161 0.062–0.308 0.039–0.087 0.021–0.047

All contactees (ignorable)
N 1507 1675 1389 573 5144 6788
Prevalence 0.042 0.041 0.088 0.176 0.061 0.033
95% CI 0.029–0.057 0.029–0.055 0.068–0.111 0.128–0.231 0.052–0.070 0.026–0.040

All contactees
(nonignorable � �)

N 1507 1675 1389 573 5144 6788
Prevalence 0.039 0.042 0.088 0.169 0.060 0.032
95% CI 0.026–0.054 0.030–0.056 0.067–0.110 0.119–0.226 0.051–0.069 0.026–0.040

All contactees
(nonignorable � 2�)

N 1507 1675 1389 573 5144 6788
Prevalence 0.036 0.040 0.085 0.154 0.056 0.031
95% CI 0.023–0.051 0.028–0.055 0.065–0.107 0.104–0.210 0.047–0.066 0.025–0.038

All contactees
(nonignorable � �)

N 1507 1675 1389 573 5144 6788
Prevalence 0.046 0.045 0.093 0.201 0.067 0.035
95% CI 0.032–0.063 0.032–0.060 0.072–0.117 0.148–0.260 0.057–0.077 0.029–0.043

* Weighted to the 1996 Canadian Census.
95% CI � 95% credible interval.
� � the mean difference in observed and imputed prevalence in the RQ group.
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nonresponse bias assumed in the TR groups depends on
the adjustment in the RQ group.

Multiple imputation has at least four main advantages
over other missing data techniques. First, once the missing
values have been imputed, standard complete data analysis
techniques can be used rather than more complex missing
data techniques. Therefore, there is no need to derive a
new methodology for each type of analysis. This is an
important factor in CaMos, given multiple investigators in
this multicenter study with interest in analyzing the data.
Second, “complete” datasets can be distributed to other
users. If two or more data sets with different imputed values
are distributed, then the simple addition of between- and
within-dataset variations provide nonexpert users with a
means to adjust for nonresponse in a valid way.4 Third,
multiple levels of missing data, as exist here, can easily be
accommodated. Finally, the methodology is relatively easy
to implement, as all that is required is a model for the
missing data items, a random number generator to impute
the missing items according to the model, and a calculation
of the within- and between-imputation variances. Further,
freely available software such as BUGS can be used, which
largely automates the procedure.22 Other commercial pack-
ages, such as SAS22 and SPSS,23 have also recently added
versions of multiple imputation algorithms to their
software.
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