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Summary

We investigate the sample size problem when a binomial parameter is to be estimated, but some
degree of misclassification is possible. The problem is especially challenging when the degree
to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the
prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is
desired that a marginal posterior credible interval for the prevalence of width w has coverage
(1 − α), using a Bayesian sample size criterion. The degree to which the misclassification
probabilities are known a priori can have a very large effect on sample size requirements, and
in some cases achieving a coverage of (1 − α) is impossible, even with an infinite sample size.
Therefore, investigators must carefully evaluate the degree to which misclassification can occur
when estimating sample size requirements.

Key words: Average Coverage Criterion; Bayesian; Binomial distribution, Diagnostic test,
Misclassification; Prevalence; Sample size.

1 Introduction

Sample size determination is one of the most frequently occurring applied problems, and a vast
literature is available on the subject. In many sampling situations encountered in practice,
however, specific methodology is lacking. For example, while standard formulae are available
for calculating sample size requirements for binomial parameters, it is less clear how to adjust
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the sample sizes for the presence of misclassification errors. Consider the following prototypic
example, which motivated the development of our methodology.

Accurate estimation of the prevalence of the microscopic parasite Toxoplasma gondii is
critical for making informed decisions about whether to initiate a prenatal screening program.
A study is being planned to estimate the prevalence of this parasite among pregnant women in
the province of Quebec, Canada. Suppose one would like to determine the sample size needed
such that a 95% interval will be of total width w = 0.10. A serological kit that detects the
presence of antibodies will be used as the diagnostic test. If the diagnostic test is error-free, and
therefore the number of infected women in the sample is equal to the number who test positive,
then the well known sample size formula based on the normal approximation to the binomial
distribution can be used. This gives

n =
(2Zα/2

w

)2

θ(1− θ), (1)

where θ is the prevalence, Zα/2 is the upper 100(1−α/2)% percentile of the normal distribution,
and n is the required sample size. For example, using (1) with Zα/2 = 1.96, θ = 0.5 and w = 0.1
gives n = 384. The conservative value of θ = 0.5 was used, since very little is currently known
about the rate of Toxoplasma gondii among pregnant women in Quebec, and a rate of 50% is
not impossible.

Although the diagnostic test which will be used in the study is among the best available, the
assumption of perfect sensitivity (probability of a positive test result in truly positive subjects)
and specificity (probability of a negative test result in truly negative subjects) is unrealistic,
so that some misclassification is expected. In a previous study using the same diagnostic kit,
65 out of 68 women who had Toxoplasma gondii tested positive, while all 22 women who did
not have the disease tested negative (Wilson and Ware 1991). Suppose that the sensitivity is
exactly 65/68 = 95.5% and the specificity is 22/22 = 100%. Let p be the probability of testing
positive for a test with sensitivity s and specificity c. Since each positive test is either a true
positive or a false positive result,

p = θs+ (1− θ)(1− c). (2)

From (2), it is easy to show (Rahme and Joseph 1998) that knowing p to within a width of
w(s + c − 1) is equivalent to knowing θ to within a width of w. The sample size can then be
derived by a small modification to the standard formula (1), giving

nadj =
( 2Zα/2
w(s+ c− 1)

)2

p(1− p). (3)

Using this formula with s = 0.955, c = 1 and p = 0.5 raises the sample size to 422. In this
case, the values of s and c were both equal to or near 1, so the modification causes only a small
increase in sample size compared to the standard formula. Smaller s+c values will lead to larger
increases, however, and in the extreme case of a completely uninformative test (s+ c = 1) even
an infinite sample size cannot estimate the prevalence to the desired accuracy.
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Equation (3) requires point estimates of θ (or p), s and c. The conservative value of θ
or p equal to 0.5 may lead to unnecessarily large sizes for rare conditions, making the choice
of θ problematic. Another concern is that the normal approximations implied in (1) and (3)
may not hold for rare conditions. Moreover, the values for s and c were in fact only estimates
from relatively small samples, and in general, the sensitivity and specificity of a test are only
rarely known exactly. Properly accounting for the uncertainties in s and c can have a very
substantial effect on the sample size requirements. Consider, for example, a sample size of 384,
and suppose one were to observe 100 positive tests. From the usual binomial considerations,
assuming perfect tests (s = c = 1) gives a prevalence estimate of 100/384 = 0.26, with a 95%
equally-tailed credible interval (CI) of (0.22, 0.31). If we instead assume that s = 0.955 and
c = 1, we now estimate the prevalence to be 0.27, with a 95% CI of (0.23, 0.32). Taking into
account the uncertainty in the s and c values by using Beta prior densities based on the data
from Wilson and Ware (1991), however, gives a point estimate of 0.25, with a considerably
wider 95% CI of (0.13, 0.31). See Section 3 for the origin of these Beta prior densities.

A final problem with both (1) and (3) is that they fail to consider that the data are unknown
at the planning stage of the study, which produces a further random component. Even if s and
c are fixed constants, different data sets will produce different estimates of p and θ, leading to
reports of different interval widths.

In this paper we will discuss a solution to this problem that combines recent research from
two different areas. In particular, Bayesian sample size criteria for interval widths (Adcock 1988,
Adcock 1997, Gould 1993, Joseph, du Berger and Bélisle 1997) will be integrated with methods
for estimating the prevalence of a disease using data from an imperfect diagnostic test (Joseph,
Gyorkos and Coupal 1995). Starting from a prior distribution on θ, s and c that summarizes
what is known about the prevalence and the test properties at the time of study planning, we
will calculate the smallest sample size for which a (1 − α) posterior credible interval for the
prevalence will have total width w with high probability.

Various Bayesian sample size criteria and methods to estimate disease prevalence are re-
viewed in Section 2, before presenting the methodology to determine sample sizes for diagnostic
test studies. An important conclusion is that even small uncertainties about the sensitivity and
the specificity of a diagnostic test may lead to a large increase in the sample size needed to
reach the desired accuracy, and that in certain cases this accuracy cannot be reached even when
s+ c > 1. Section 3 illustrates the methods by returning to the Toxoplasmosis study discussed
above, and the paper concludes with a discussion.

Although we present our methodology in terms of the diagnostic testing application for
which it was developed, the ideas presented here can be directly applied to any situation where
misclassified binomial data arise.
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2 Methods

2.1 Bayesian sample size criteria

Let θ belonging to the space Θ denote the parameter of interest, f(θ) the prior density on θ,
and x the observed data from data space X . Let the likelihood function be given by l(x|θ),
and the posterior distribution for θ given x of sample size n be given by f(θ|x, n). In general,
we are looking for the minimum n such that the posterior credible set of width w has coverage
probability of at least (1−α). For example, letting d = w/2, we might like to find the smallest
n such that ∫ θ̂+d

θ̂−d
f(θ|x, n)dθ ≥ 1− α,

where θ̂ is the posterior mean. For any given n, however, θ̂ and the coverage probability of
the credible interval [θ̂ − d, θ̂ + d] depend on the data x, which are unknown at the planning
stage of the study. To sidestep this problem, we can select n such that the expected posterior
coverage probability is at least 1 − α, where the expectation is over the marginal distribution
of x induced by the prior distribution, given by

m(x) =
∫

Θ
l(x|θ)f(θ)dθ. (4)

Therefore, Adcock (1988) suggested seeking the smallest n satisfying∫
X

(∫ θ̂+d

θ̂−d
f(θ|x, n)dθ

)
m(x)dx ≥ 1− α, (5)

where the integral becomes a sum if the space X is discrete. This criterion involves a weighted
average of coverage probabilities of fixed length credible intervals, with weights given by m(x),
and hence has been termed an average coverage criterion (ACC) by Joseph, Wolfson and du
Berger (1995) and Adcock (1997). If θ is univariate, then use of (5) is straightforward. Although
closed form solutions are often not available, the left hand side of (5) may be calculated for any
given n, and a bisectional search over n may be used to find the minimum sample size satisfying
(5).

The parameter of interest, θ, may often be one component from a vector, in which case
further integration is necessary to find the marginal posterior density of the component of
interest. This occurs in diagnostic testing situations whenever the sensitivity and specificity
of the test are not exactly known, which is almost always the case. In the next section, we
describe a simple but efficient method to approximate these integrals. Efficiency is important,
since the integral will typically be calculated hundreds or thousands of times for each sample
size problem.

Although in the sequel we will use the ACC, other criteria could also be examined. For
example, an average length criterion (ALC) can be defined (Joseph, du Berger and Bélisle
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1997) that, conversely to the ACC, averages variable interval lengths of fixed coverage intervals.
The ALC and the ACC often produce similar sample sizes. In some situations, one may prefer
a conservative sample size, which instead of averaging over X , guarantees the desired coverage
and interval length over all possible x that can arise. While here we have defined the ACC in
terms of posterior credible intervals of the form θ̂±d, highest posterior density (HPD) intervals
could also be used. See Joseph, Wolfson, and du Berger (1995) for a comparison of sample
sizes from HPD and symmetric intervals in the context of simple binomial sampling. Decision
theoretic criteria (Lindley 1997) and sample sizes based on average power of hypothesis tests
(Spiegelhalter and Freedman 1986) have also been considered. See Chaloner and Verdinelli
(1995) for a recent review of Bayesian optimal design, and Adcock (1997) for an up to date
review of both frequentist and Bayesian sample size criteria.

2.2 Bayesian estimation of disease prevalence when the sensitivity and the
specificity are unknown

If x positive tests are observed in n subjects, then from (2), the likelihood function is propor-
tional to

l(x|θ, s, c) ∝ [θs+ (1− θ)(1− c)]x [θ(1− s) + (1− θ)c]n−x .
From Bayes Theorem, if the joint prior distribution of θ, S, and C is given by f(θ, s, c), the
joint posterior density becomes

f(θ, s, c|x) =
f(θ, s, c, x)
m(x)

=
f(θ, s, c)l(x|θ, s, c)

m(x)
,

where the marginal (predictive) distribution of x is

m(x) =
∫ 1

0

∫ 1

0

∫ 1

0
f(θ, s, c, x)dsdcdθ.

The marginal posterior density of θ is then

f(θ|x) =
∫ 1

0

∫ 1

0
f(θ, s, c|x)dsdc. (6)

It will often be reasonable that θ, S, and C are a priori independent, given that the test
methodology (for example, the cutoff values for continuous tests) remains fixed. This is because
the performance of the test within positive and negative subgroups of patients may not be
affected by the disease prevalence in the population, and prior knowledge about the sensitivity
and specificity given any fixed cutoff usually is gained by independently applying the test to
known positive and negative subjects, as in Wilson and Ware (1991). If independent, Beta
densities may be conveniently used as prior distributions of θ, S and C, which are restricted to
a [0, 1] range, although the usual advantage of conjugacy does not apply. A parameter θ follows
a Beta density with parameters j and k if

f(θ) =

{
1

B(j,k)θ
j−1(1− θ)k−1, 0 ≤ θ ≤ 1, j, k > 0, and

0, otherwise,
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where B(j, k) is the Beta function evaluated at (j, k). The mean of this density is j
j+k , while the

variance is jk
(j+k)2(j+k+1)

. If the prior parameters for θ, S and C are given by (jθ, kθ), (jS , kS),
and (jC , kC), respectively, then the marginal posterior density for θ (6) becomes

f(θ|x) ∝ [θs+ (1− θ)(1− c)]x [θ(1− s) + (1− θ)c]n−x

× θjθ(1− θ)kθsjS (1− s)kScjC (1− c)kC . (7)

Since in general there is no closed form solution to (6) or even (7), Joseph, Gyorkos and
Coupal (1995) used the Gibbs sampler (Gilks, Richardson and Spiegelhalter 1996) to estimate
the marginal posterior density of the prevalence given Beta prior distributions for θ, S and
C. This method is computationally intensive, however, and not suitable for use in algorithms
that require repeated use. For example, n + 1 applications of the Gibbs sampler would be
required here to estimate the average posterior coverage for each step with sample size n in the
bisectional search. Below we describe a more efficient algorithm.

2.3 Bayesian Sample size determination for prevalence studies

We used the non-iterative Monte Carlo algorithm recently described by Ross (1996) to estimate
the posterior average coverages. The algorithm proceeds as follows: First, a random sample
of size k is drawn from the joint prior density of (θ, S, C), where k is typically of size 1,000
or greater. Label these points (θi, Si, Ci), for i = 1, 2, . . . , k. A weight function, ωi(x), i =
1, 2, . . . , k is attached to each sampled point, where ωi(x) is proportional to the right hand side
of (7). The posterior mean given x is then estimated by

θ̂(x) ≈
∑k
i=1 θi × ωi∑k
i=1 ωi

.

The coverage for each x, coverage(x; d), is then estimated by the total normalized weights of
points

∑
θiωi, where the summation is over points i with values θi that fall within the interval

[θ̂ − d, θ̂ + d]. Finally, the average coverage is approximated by the weighted average of the
above coverage probabilities

coverage(d) ≈
n∑
x=0

coverage(x; d)m(x),

where the marginal probability function of x is estimated by

m(x) ≈
k∑
i=1

ωi
k
.

The ACC sample size is given by the smallest n such that coverage(d) is at least 1−α. Software
written in the Splus language that implements this algorithm to calculate average coverages
given Beta prior distributions for θ, S, and C is available from the authors.
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n s c coverage

1 1473 0.9 0.9 0.950
2 1473 U[0.85,0.95] 0.9 0.947
3 1473 U[0.9,1] U[0.9,1] 0.618
4 1473 U[0.85,0.95] U[0.9,1] 0.595
5 1473 U[0.85,0.95] U[0.85,0.95] 0.589

Table 1: Variation of the average coverage probabilities with increasing uncertainty in the
estimation of the sensitivity (s) and specificity (c), for d = 0.02. The prior distribution on θ is
U [0, 0.1].

The above algorithm can also be applied when the sensitivity and specificity are known, by
simply fixing the sampled points Si and Ci at their true values in each (θi, Si, Ci) triplet. This
gives the Bayesian analogue to the frequentist sample size given by (3).

While instances with exactly known S and C are rare in practice, it is instructive to examine
the effect that less than perfect knowledge about the sensitivity and specificity of a test has
on average coverage probabilities. To illustrate this effect, consider a Uniform prior density on
the range [0, 0.1] for θ, which would be appropriate for a rare condition known to occur in less
than 10% of the population. For w = 0.04 and fixed s = c = 0.9, a sample size of n = 1473 is
required such that the average coverage probability is 0.95. Keeping this sample size fixed, we
then investigated the effects on the average coverage probability of using Uniform prior densities
on S and C with varying support.

The results are displayed in Table 1. As expected (see the example in Section 1), uncertainty
about the values of S and C can substantially reduce the coverage probabilities. It is especially
interesting to note that if the prior information implies that the sensitivity and the specificity
of the diagnostic test must be larger than a given fixed value (here 0.9), but the exact values
are not known, then the coverage probability still substantially decreases even though one is
averaging over tests with better properties. This is seen by comparing line 1 to line 3 in Table 1.
To gain an intuitive understanding as to why the uncertainty about the test properties has a
larger effect than the values of the properties themselves, consider the following two extreme
cases:

Extreme Case I: Suppose that s = c = 0, so that the test is guaranteed to never provide the
correct diagnosis. While this test is as poor as can be, since we assume that we know its
properties exactly, equation (2) reduces to p = (1 − θ), so in fact this test provides as
much information as a perfect test with s = c = 1.

Extreme Case II: Now consider a near perfect test, where s ∈ [0.99, 1.0] and c ∈ [0.99, 1.0]
but the exact values are unknown. This test is superior by a wide margin compared to
the test in Case I, but clearly provides less information, since some uncertainty is added

7



by the slight lack of precision in s and c. Hence it is easy to see how tests exactly known
to be bad can “outperform” excellent tests whose properties are inexactly known.

For low prevalences (here less than 10%), the uncertainty about the specificity has more
effect on the coverage probabilities than the uncertainty about the sensitivity. The reason for
this is found in equation (2). Since S is multiplied by θ, when θ is small the effect of changing
values of S is also small, and therefore the effect of the uncertainty about C is larger.

3 Estimating the prevalence of toxoplasmosis

Consider again the prevalence study of Toxoplasma gondii discussed in the introduction. A
Uniform prior density on the interval [0,1] (equivalent to a Beta(1,1) density) was considered
appropriate for θ, since there had been no recent or representative data from Quebec, and
expert opinion varied widely. If we fix s = 65/68 = 0.955 and c = 22/22 = 1, then a sample
size of 309 is adequate to attain 95% average coverage for intervals of width w = 0.1. The
ACC ensures the desired coverage only on average, and so provides a sample size that is less
than those given by either (1) or (3). This is because θ = 0.5 is the most conservative value
leading to the smallest coverage probability, while the ACC averages coverage probabilities over
prevalence values across the interval [0,1]. A conservative Bayesian criterion (see Joseph, du
Berger and Bélisle 1997) that ensures the desired coverage over all data which may arise in this
case will provide a sample size estimate similar to that produced by (3).

Owing to the conjugacy of the Beta family of densities with the binomial likelihood function,
the j and k prior parameter values from a Beta density (see Section 2.2) can be considered as
equivalent to a previously observed number of successes and failures, respectively. See, Gelman
et al (1995, page 40). Therefore, from Wilson and Ware (1991), reasonable prior densities for
the sensitivity and specificity of this test may be S ∼ Beta(65.1, 3.1) and C ∼ Beta(22.1, 0.1),
respectively. These arise from disturbing each count in the observed data by the equivalent of
one-tenth of an extra observation, avoiding the Beta(22, 0) density, which is degenerate. By the
algorithm of Section 2, a sample size of approximately 580 is needed for the average posterior
coverage probability of credible intervals of width 0.1 to be at least 0.95. Therefore, taking
into account even the relatively small uncertainties about the values of S and C leads to a
substantially larger sample size, compared to any of the other methods that ignore this source
of uncertainty.

Accurately determining what is known about the test properties is crucial, as the final
sample sizes (and reported prevalence estimates) can greatly depend on this exercise. For
example, suppose that S ∼ Beta(66, 4) and C ∼ Beta(23, 1) were used instead of the prior
densities given above. These would also be a reasonable choice, since they arise from updating
initial uniform prior densities with the data available at the time of the study. For w = 0.1, and
again assuming a uniform prior density for θ, we computed the average coverage probability
for values of n ranging from 100 to 2000 with increments of 100, and with Monte Carlo size of
k = 1000.
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Figure 1: Posterior average coverage probabilities for w = 0.10, from n = 100 to n = 2000.
The solid line provides the values of the average coverage probabilities predicted by a logistic
regression model.

The results, presented in Figure 1, indicate that the posterior average coverage probability
does not reach 0.95 even with a sample size of 2000. This is because while increasing the
sample size always improves the precision in estimating p, past a certain point, larger sample
sizes do not provide improved estimates of the sensitivity and the specificity of the diagnostic
test, essentially because the problem is non-identifiable. While some updating of the prior
distributions for S and C is possible even in the presence of misclassification, these will not
converge to a single point even with an infinite sample size (Joseph 1997). Since estimating
θ depends on knowledge about S and C, increasing the sample size does not always provide
increased accuracy in estimating θ. While there are three parameters to estimate (θ, S, and C),
there is only one degree of freedom available when x positive tests are observed in a sample size
of n subjects. Walter and Irwig (1988) and others have suggested using several independent
tests, and when three or more tests are used, all parameters can be simultaneously estimated
without constraints. Increasing the number of diagnostic tests used may not always be feasible,
however, and if only one or two tests are used, Bayesian estimation provides the best possible
estimates which use all of the available prior information and correctly accounts for all inherent
uncertainty (Joseph, Gyorkos and Coupal 1995, Neath and Samaniego 1997). The marginal
posterior density for θ does not necessarily converge to a point mass as the sample size increases,
however, unless S and C are a priori exactly known (Joseph 1997). Kuha (1997) has discussed
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the problem of how many subjects should be verified with a gold standard test in order to
validate the test.

The sample size beyond which further sampling provides little additional precision in esti-
mating θ is a complex function of the prior information available on θ, S and C. Given data
such as that presented in Figure 1, however, it may be possible to construct a regression model
to estimate the sample size beyond which further sampling does not substantially improve es-
timation of θ, as well as the maximum possible average coverage probability. As the average
coverage probabilities must be between 0 and 1, a generalized linear model with logit link may
be appropriate. Since the average coverage probability, as a function of n, seems to have an
asymptote with value smaller than 1, we looked for a model of the form

log

(
µ

1− µ

)
= u+ v/

√
n, (8)

where µ is the average posterior coverage probability minus the prior coverage probability of
an interval of width w, and where u and v are estimated from the data.

We considered a quasi likelihood model (McCullagh and Nelder 1989) with logit link and
constant variance. The latter was considered appropriate, since we hypothesized that a large
component of the residual error in this model arises from using the Monte Carlo approximation,
whose error varies more with k than with n. Of course, the Monte Carlo error can be made as
small as desired simply by increasing k.

Let n0 be the sample size after which the average coverage probability will not improve by
more than a given ε > 0, even if the sample size were to increase to infinity. From (8) simple
algebra leads to

n0 ≥
(
v/log

(
exp(u)− ε(1 + exp(u))

exp(u) + ε(1 + exp(u)) exp(u)

))2

. (9)

Since the prior distribution on θ was uniform, the prior coverage probability of the interval
of width w = 0.1 is also 0.1. Using the data from Figure 1, the estimated coefficients were
u = 1.799 and v = −15.303, so that the upper limit of the average coverage probability is
approximately

exp(1.799)/(1 + exp(1.799)) + 0.1 = 0.958.

From (9), the sample size needed for the posterior average coverage probability to be within
ε = 0.008 of this upper limit, that is, to reach an average coverage of 0.950, is 56506. We also
calculated the posterior average coverage probability predicted by the model for n = 3000, 4000,
and 5000. These values were 0.920, 0.926, 0.930 respectively, while the corresponding values
given by the Monte Carlo approximation were 0.920, 0.920, and 0.921, respectively. Therefore,
the model still seems to predict reasonably well, even far outside of the range of the data from
which it was estimated.

The main difference between the two sets of prior distributions is the lower limit of the
specificity of the test. With data on only 22 subjects, the choice of “noninformative” prior
distribution plays a large role. Of course, one cannot be certain of the accuracy of the upper
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limit of 0.958 given by the logistic regression model, but it is clear that if the second set of prior
densities are used, a very large sample size is needed to achieve the desired accuracy. In the
end, a sample size near n = 580 subjects was selected, but a main conclusion was that it will
be very worthwhile to gather more data on the properties of the test. For example, if twice as
much prior data had been collected on the test properties, then assuming the same proportions
were observed, S ∼ Beta(130.1, 6.1) and C ∼ (44.1, 0.1) prior densities could have been used,
leading to a sample size of only 385. If twice the prior information is combined with uniform
prior distributions (S ∼ Beta(131, 7), C ∼ (45, 1) and θ ∼ Beta(1, 1)), the sample size is 605, a
substantial reduction from 56506 obtained earlier. Prior knowledge about the prevalence, when
available, can also be useful. For example, if the prevalence is known a priori to be between
10% and 50%, so that a Beta(6, 14) prior density on θ is appropriate, then the sample size
further reduces to 348 from 385.

4 Discussion

Estimating a binomial parameter is the aim of many studies. When no misclassification is
possible, standard binomial formulae can be used to determine the sample size required to
estimate the parameter to any desired accuracy. Unfortunately, misclassification often occurs,
and in general, one does not know the exact magnitude of the errors so that simple formulae like
(3) cannot be applied. In this case, a Bayesian approach can be used to determine sample size
requirements. In particular, we show that it is important when planning a study to estimate the
magnitude of misclassification errors as accurately as possible, since the sample size estimates
are highly sensitive to uncertainty about their values. In many cases, it may not be possible to
estimate a parameter to the desired accuracy with the information currently available, when all
uncertainty is fully accounted for. Copas (1988) investigated misclassification errors in binary
regression models.

While in this paper we considered data from diagnostic tests, the methods can easily be
applied to any similar situation. For example, suppose a political election poll is being planned,
but it is suspected that not everyone polled will in fact give their true voting intentions. If one
is willing to specify prior distributions on the error rates, the correct sample size for the desired
precision can be calculated.
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