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SUMMARY. Absence of a perfect reference test is an acknowledged source of bias in diagnostic studies. In the case of tubercu-
lous pleuritis, standard reference tests such as smear microscopy, culture and biopsy have poor sensitivity. Yet meta-analyses
of new tests for this disease have always assumed the reference standard is perfect, leading to biased estimates of the new
test’s accuracy. We describe a method for joint meta-analysis of sensitivity and specificity of the diagnostic test under eval-
uation, while considering the imperfect nature of the reference standard. We use a Bayesian hierarchical model that takes
into account within- and between-study variability. We show how to obtain pooled estimates of sensitivity and specificity, and
how to plot a hierarchical summary receiver operating characteristic curve. We describe extensions of the model to situations
where multiple reference tests are used, and where index and reference tests are conditionally dependent. The performance of
the model is evaluated using simulations and illustrated using data from a meta-analysis of nucleic acid amplification tests
(NAATS) for tuberculous pleuritis. The estimate of NAAT specificity was higher and the sensitivity lower compared to a

model that assumed that the reference test was perfect.
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1. Introduction

Lackof a gold standard reference test is an acknowledged prob-
lem in studies of tuberculosis (TB) diagnostics (Pai et al.,
2004). Reference standards for latent TB infection do not ex-
ist, and extrapulmonary TB and childhood TB have imperfect
reference standards. Most studies resort to using composite
reference standards based on a mix of clinical data, microbi-
ological tests, or response to therapy. A recent review of over
40 meta-analyses published so far in the field of TB diagnos-
tics found that none of them adjusted for the bias due to an
imperfect reference standard (Pai et al., 2010).

Conveniently assuming the reference test is perfect leads
to biased estimates of sensitivity and specificity of the test
under evaluation. If the tests are independent conditional on
the disease status, the new test’s sensitivity and specificity
will be underestimated due to nondifferential misclassification
(Walter and Irwig, 1988). Conversely, if the tests are condi-
tionally dependent with positive correlation between them,
the new test’s properties may be overestimated (Dendukuri
and Joseph, 2001). Though approaches to correct for this bias
in individual studies have been discussed, there has been lim-
ited attention to the same problem in the context of a meta-
analysis. A further problem in meta-analyses is that different
primary studies may use different reference standards.

Models for meta-analysis of diagnostic tests have sought to
improve over naive univariate pooling of sensitivity or speci-
ficity (Macaskill et al., 2010). Moses, Shapiro, and Littenberg
(1993) described meta-analysis of the diagnostic odds ratio.
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The hierarchical summary receiver operating characteristic
(HSROC) model of Rutter and Gatsonis (2001) expressed
the sensitivity and false positive probability in each study as
functions of an underlying bivariate normal model, whereas
another bivariate model described by Reitsma et al. (2005) as-
sumed that the vector of (logit(sensitivity), logit(specificity))
itself follows a bivariate normal distribution. Harbord et al.
(2007) showed that in the absence of covariates, the likelihood
functions of both HSROC and bivariate models are alge-
braically equivalent, providing identical pooled sensitivity and
specificity and between study variance estimates from a fre-
quentist viewpoint. They note that the HSROC construction
leads more naturally to a summary receiver operating char-
acteristic curve (SROC), while the model of Reitsma et al.
(2005) leads to pooled sensitivity and specificity. The HSROC
model has been recommended in the absence of a standard
cut-off to define a positive result (Macaskill et al., 2010).

At least three articles have described meta-analysis models
for diagnostic tests in the absence of a perfect reference.
Walter, Irwig, and Glasziou (1999) proposed a latent class
model which assumes the test under evaluation and reference
test both measure the same unobservable (latent) variable,
the true disease status. They showed that the model is
identifiable when assuming sensitivity and specificity remain
identical but prevalence varies across studies. In practice, the
assumption of identical sensitivity and specificity in all stud-
ies is difficult to justify given the variability in population and
design aspects of individual studies. Chu, Chen, and Louis
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(2009) described a more general model where sensitivity and
specificity of both the test under evaluation and the reference
test, as well as the prevalence, are treated as random effects.
It allows for correlation between all four pairs of sensitivity
and specificity parameters. This model can be conceptualized
as an extension of the model in Reitsma et al. (2005) to the
case where there is no gold standard. Sadatsafavi et al. (2010)
described a model where one parameter (i.e., sensitivity or
specificity of one of the tests) varies across studies. So far,
none of the meta-analysis models adjusting for an imperfect
reference considered the situation when different reference
standards are used in the selected studies. Also, neither of
the hierarchical models (Chu et al., 2009; Sadatsafavi et al.,
2010), hypothesize the mechanism by which the variation
across studies may arise, and accordingly do not provide an
SROC. As discussed by Arends et al. (2008), the relation
between sensitivity and specificity estimates across studies
needs to be specified to determine an SROC.

We discuss here an extension of the HSROC model, which
assumes that variation in sensitivity and specificity across
studies arises due to use of different cut-off values for defin-
ing a positive test and/or differences in diagnostic accuracy,
to account for an imperfect reference. The HSROC model
is similar in concept to the receiver operating characteristic
(ROC) model of Tosteson and Begg (1988). The hierarchical
structure accounts for within- and between-study variability.

Section 2 introduces our motivating data set on in-house
nucleic acid amplification tests for TB pleuritis. In Section 3,
we describe our model and parameter estimation, including
how to extract summary statistics and plot an SROC. The
performance of the model is investigated through a series of
simulations in Section 4, and in Section 5, we apply the model
to the TB data. We conclude with a discussion.

2. Evaluating in-House Nucleic Acid Amplification
Tests for Tuberculous Pleuritis

Recognition of the global burden of TB has led to renewed
interest in combating the disease. Several bodies, including
the World Health Organization, have recognized the need for
improved diagnostic tests in order to successfully identify pa-
tients and prevent further cases (Pai, Ramsay and O’Brien,
2008, Pai et al., 2010). Development of new tests for TB has
in turn led to a need for appropriate statistical methods to
evaluate them.

Tuberculous pleuritis is an extrapulmonary form of TB that
affects the pleural lining of the lungs and causes fluid col-
lection (effusion). Standard tests for this disease are smear
microscopy, culture of the pleural fluid and pleural biopsy
(histopathological examination). Smear microscopy of the
pleural fluid has low sensitivity and is therefore rarely pos-
itive (<10%) in pleural TB cases, and culture of the pleu-
ral fluid is known to have poor sensitivity ranging from 25%
to 58% (Berger and Mejia, 1973; Bueno et al., 1990; Seibert
et al., 1991; Valdes et al., 1998; Light, 2010). A composite test
based on both biopsy and culture is believed to have nearly
80% sensitivity (Berger and Mejia, 1973; Bueno et al., 1990;
Seibert et al., 1991; Valdes et al., 1998; Light, 2010). However,
the invasive nature of biopsy and time delays with culture has
led to interest in other types of tests. Nucleic acid amplifica-
tion tests (NAATS), based on amplification and detection of

nucleic acid sequences in clinical specimens, are one such op-
tion. In-house NAATS, developed in research laboratories are
less expensive compared to commercial alternatives, but are
not well standardized.

Pai et al. (2004) identified 11 studies of in-house NAATSs
of the IS6110 target, a commonly used gene target for My-
cobacterium tuberculosis that is used as a rapid test for tuber-
culous pleuritis (Table 1). Due to the lack of standardization
across laboratories and differences in test procedures used,
it is reasonable to anticipate that each primary study used
different criteria to define a positive test. Thus it would be
reasonable to use a HSROC-type model to meta-analyze this
data. Another source of heterogeneity was the variety of ref-
erence standards. Primary studies used different composite
reference standards based on different combinations of cul-
ture, microscopy, biopsy and clinical data (including signs,
symptoms and clinical response to empiric TB therapy) (Pai
et al., 2004).

Table 1 lists the reference standards used in each study
together with the plausible range of values for the sensitiv-
ity of each reference standard. These ranges were determined
based on several clinical studies and literature reviews, includ-
ing systematic reviews (Berger and Mejia, 1973; Bueno et al.,
1990; Seibert et al., 1991; Valdes et al., 1998; Light, 2010). De-
spite the highly variable sensitivity, all reference standards are
believed to have high specificity ranging from 90% to 100%.
We return to analyze these data in Section 5 with the hier-
archical model, described in Section 3, for pooling sensitivity
and specificity estimates across studies while adjusting for the
imperfect and varied nature of the reference tests in the pri-
mary studies.

3. A Model for Meta-Analysis of Diagnostic Tests in
the Absence of a Perfect Reference Test

We assume that J diagnostic studies are included in the meta-
analysis, and that each study provides the cross-tabulation
between the test under evaluation (the index test, 7)) and the
reference test (73). Both tests are assumed to be dichotomous,
taking the value of 1 when positive and 0 when negative.
Both tests are assumed to be imperfect measures of a common
underlying dichotomous latent variable D, the true disease
status. Let ¢;; and ¢,; denote the vectors of results from study
j for T} and T5, respectively. The sensitivity of the reference
test is defined by S, = P(T, = 1|D = 1) and its specificity is
defined by Cy = P(Ty = 0|D = 0). In the simplest version of
the model, we assume that the same reference standard is
used in all studies.

Like Rutter and Gatsonis (2001), we assume that the ob-
served dichotomous result on 7) is based on an underlying
continuous latent variable. However, we assume that the con-
tinuous latent variable (Z;) follows a normal distribution, and
that a positive result on 7} corresponds to a higher value on
Zy than a negative result. Both parameterizations give similar
results when 75 is assumed to be perfect. Our model assumes
that among patients with D = 0, Z; ~ N{-%, exp(f%)} and
when D=1, Z; ~ N{%/,cxp(%)}. This model can also be
conceptualized as a binomial regression model with a probit
link.

Within the jth study, the difference in the means of these
two distributions is «;, and the ratio of their standard
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Table 1

Studies included in meta-analysis of in-house nucleic acid amplification tests for tuberculous pleuritis (Source: Pai et al. 2004).

Index (T7) and reference (15) test results

T =1 T =1 T,=0 T,=0 Sensitivity of
Study Author (Year) =1 7, =0 =1 7, =0 Reference test reference test
1 Chan (1996) 11 1 14 75 Culture 20-60%
2 Gunisha (2001) 1 1 3 25 Culture 20-60%
3 Almeda (2000) 8 0 1 16 Culture/Clinical data 20-70%
4 Tan (1997) 16 6 0 43 Culture/Clinical data 20-70%
5 Portillo-Gomez (2000) 16 0 1 56 Culture/Biopsy 70-90%
6 De Lassence (1992) 9 0 6 10 Culture/Biopsy 70-90%
7 Mangiapan (1996) 13 0 4 25 Culture/Biopsy 70-90%
8 Querol (1995) 17 2 4 84 Culture/Biopsy 70-90%
9 Tan, Jama (1995) 7 0 3 13 Culture/Biopsy 70-90%
10 Villena (1998) 14 1 19 97 Culture/Biopsy 70-90%
11 Villegas (2000) 31 7 11 63 Culture/Biopsy 70-90%
deviations is exp(3). Each study is assumed to use a dif- (P(D = 1|Study = j) = 7;), as follows:

ferent cut-off value, 6;, to definea positive result. We define
a hierarchical prior distribution (Spiegelhalter, Abrams, and
Myles, 2004) on the mean difference (or diagnostic accuracy),
aj ~ N(A,02), allowing for variation in the distribution of
Z, in each study. Similarly, a hierarchical prior §; ~ N(©,03)
allows for variation in the the cut-off values across studies.
This structure is equivalent to a hierarchical model with two
levels—a within-study level for study-specific parameters 6;
and a; and a between-study level for parameters A, © and 3
that are common to all studies.

Based on the above assumptions, thc‘ sensitivity of T} in

the jth study is given by S; =

L8
ficity is given by C); = @{ 9’? ﬁ)}. Thus, increasing values
exp(— 5

of #; induce a negative correlation between sensitivity and
specificity of T} across studies, while increasing values of «;
induce a positive correlation between them. The overall sensi-
tivity and bpeciﬁcity of the index test may be summarized as
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} respectively. The utility of a sin-

gle pooled estimate w111 depend on the degree of heterogeneity
between studies (Macaskill et al., 2010). A more informative
approach to summarizing the data may be via an SROC plot
obtained by plotting the overall sensitivity versus the overall
specificity as © spans its range. Predicting parameter values
in a future study is another way of studying the heterogeneity
in a meta-analysis (Spiegelhalter et al., 2004). If the credible
intervals around the predicted values are much wider than
those around the pooled estimates, it would suggest that the
pooled estimates cannot be generalized to individual studies.
Predicted values of «, 0, and 3 can be obtained from the pre-
dictive distribution of these parameters leading to predicted
values of sensitivity dnd speciﬁcity in a future study (51) as
follows: Sy, = ®{— 1% 2 } and C);, = {2 o }, where the

exp(5 exp(—5)
hat notation denotes the predicted value of a parameter.

3.1 FEstimation

The likelihood function of the observed data across the J
studies can be expressed in terms of the sensitivity and
specificity of each test, and the prevalence in the jth study,
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To carry out Bayesian estimation, we need to specify prior
distributions over the set of unknown parameters. Our overall
strategy was to use noninformative (objective) prior distribu-
tions for most parameters, but using prior parameter values
that cover a reasonable range. The priors for A, ©, and
were selected so that the resulting marginal distributions on
the pooled sensitivity or specificity were approximately uni-
form over (0,1). The pooled ‘difference in means’ parameter
was assumed to have prior density A ~ U(—3,3). The log of
the ratio between the two standard deviations, 3 was assumed
to follow a U(-0.75, 0.75) distribution. The pooled “cut-off”
parameter, © was assumed to follow a U(-1.5, 1.5) distri-
bution. Parameters o, and oy were assumed to follow U(0,2)
distributions. For the 7;, Sy, and C, parameters we used Beta
prior distributions. As we will illustrate in our example, some
of these prior distributions may be informative. When an ob-
jective prior distribution was desired we used the Beta(1,1)
distribution.

The total number of degrees of freedom available is 3.J,
with each study contributing 3 degrees of freedom. The total
number of parameters to be estimated is at least J+7. There-
fore, a minimum of 4 studies would be required to reasonably
estimate this model without any informative prior distribu-
tions. Since the two parameters Si; and C; are defined as a
function of three parameters—a;, 0;, 3—we chose to assume
([ was the same across all studies to avoid problems of non-
identifiability. A similar assumption was made in Rutter and
Gatsonis (2001). If there is a need to allow 3 to vary across
studies, informative prior distributions would be needed over
these additional parameters.

There being no analytical solution to the marginal pos-
terior distributions, we used a Gibbs sampler algorithm to
obtain a sample from the marginal posterior distributions of
the parameters of interest. Most full-conditional distributions
were of known forms, except that of 3 for which we used a
Metropolis—Hastings step (see Web Appendix A for a listing
of the full-conditional distributions). We have developed an R
package, HSROC, to implement this algorithm (Schiller and
Dendukuri, 2011). To assess convergence of the models in Sec-
tion 5 we ran five different chains of 50,000 iterations starting
at disparate initial values and calculated the Gelman—Rubin
statistic for comparing variability within and between chains
(Gelman and Rubin, 1992). Convergence was achieved fairly
rapidly for all the models we considered. We dropped the
first 10,000 iterations in each of the five chains and reported
summary statistics based on the remaining 200,000 iterations.
We have also written programs in WinBUGS (Spiegelhalter,
Thomas, and Best, 2007) and using PROC MCMC in SAS
(SAS Institute Inc., 2009) to implement the model and ver-
ified that all programs provide identical results up to Monte
Carlo error.

3.2 Multiple Reference Standards

It is possible that different studies in a meta-analysis use dif-
ferent reference standards. This can be accommodated by re-
placing parameters S, and C5 by Sy; and Cj;, respectively, in
(1), and defining independent prior distributions for the pa-
rameters of each reference standard, e.g., Ss; ~ Beta(sa;, sb;)
and Cy; ~ Beta(ca;,cb;). As in the case of a single reference
standard, these prior distributions may be informative or ob-

jective. When the same reference standard is used in two dif-
ferent studies j and j/, we could assume the accuracy is the
same in both studies (Sy; = Ssj, and Cy; = Cy;,) or different
and allow for hierarchical prior distributions on logit(S,;) and
logit(C5;) as in Bernatsky et al. (2005).

3.3 Conditional Dependence Between Index and Reference
Tests
In the absence of a gold standard reference it is important to
adjust for conditional dependence between multiple tests car-
ried out on the same subjects (Dendukuri and Joseph, 2001) in
order to adjust for unexplained correlation between the tests
within each latent class. The model in (1) can be extended
to adjust for conditional dependence in a number of ways
(Dendukuri, Wang, and Hadgu, 2009). For the application in
Section 5 of this article we consider modeling conditional de-
pendence by the addition of covariance terms between the sen-
sitivity of index and reference tests (covs;) in the jth study
and between their specificity (cove;) in the jth study as in
Dendukuri and Joseph (2001) and Chu et al. (2009). The joint
probability of the two tests in the jth study is
P(Ty = u, Ty, = v|Study = j)
7S5 (1= 81,) 08 (1= 8)07) 4 (=1)eovs, }
+(L=m){Cy -0 G (- Gy
+ (=1)lleove; }

We defined uniform prior distributions over the co-
variance parameters as follows: covs; ~ U(0, min(S;;,S2) —
51j55), covej ~ U(0,min(Cy;, Cy) — C4;Cs). Models adjusting
for conditional dependence were fit using WinBUGS.

4. Simulation Study

We fit the model in (1) to simulated datasets generated un-
der eight scenarios in order to examine the impact of: (i) the
number of studies (J = 5,10, 20, or 35), (ii) the range of sam-
ple sizes of the primary studies (n = 50-200 or n = 200-500),
and (iii) sensitivity to the prior distributions for S, and Cs,
on the performance of our model. Sensitivity to the prior dis-
tributions was examined by fitting each data set with three
different sets of prior distributions for S, and C5 - informa-
tive, noninformative, and degenerate at Sy = Cy = 1. We esti-
mated the frequentist properties of the model in terms of bias
(average absolute difference between true value and posterior
median), as well as average coverage and average length of
the 95% credible intervals of the key parameters in the model
across 500 datasets generated under each of the eight scenar-
ios.

Results for scenarios where sample sizes of individual stud-
ies ranged from 50 to 200 are summarized in Table 2 and in
Web Table 1. Results for scenarios with larger sample sizes
are in Web Table 2. In all eight scenarios the true values of
the pooled index test sensitivity and specificity was 0.9, while
the reference test was assumed to have low sensitivity of 0.6
and higher specificity of 0.95 like many tests for TB. The
informative prior distribution over Sy was Beta(57,38) (95%
credible interval from 0.5 to 0.7) and the informative prior
distribution over Cy was Beta(95,5) (95% credible interval
from 0.8997 to 0.9834). The prevalence in individual stud-
ies ranged from 0.15 to 0.4. We used a Beta(2.75,8.25) prior



Bayesian Meta-Analysis in the Absence of a Gold Standard Reference 5

Table 2
Average bias (AB), average length (AL) and average coverage
(AC) of 95% credible intervals across 500 simulated datasets
with individual study sample size ranging from n = 50-200.
(I: Informative prior distribution, NI: Noninformative prior
distribution, GS: Reference test assumed to be gold standard.
True values of parameters: S; = 0.9, C; = 0.9, o, = 0.75,
op = 0.5, 3 = 0.25).

J = 10 studies J = 35 studies

Prior distribution

Parameter Statistic I NI GS I NI GS
S AB 0 0.01 0.15 0.03 0.03 0.15
AL 0.23 0.24 0.23 0.12 0.13 0.10
AC 1 1 0.09 0.98 0.95 0
C AB 0.03 0.04 0.13 0.02 0.03 0.13
AL 0.23 0.25 0.2 0.12 0.13 0.10
AC 0.96 0.95 0.09 0.95 0.93 0
Tq AB 0.07 0.04 0.42 0 0.01 0.45
AL 1.63 1.64 0.74 1.12 1.13 0.37
AC 0.99 0.98 0.56 0.96 0.95 0
o) AB 0.02 0.00 0.12 0.02 0.01 0.14
AL 0.98 0.96 0.55 047 0.47 0.23
AC 0.97 098 0.90 097 0.96 0.44
Ié] AB 0.23 0.28 0.14 0.2 0.24 0.05
AL 1.35 136 1.18 1.19 1.21 0.80
AC 1 1 0.98 0.96 0.96 0.94

distribution over the prevalence to increase the chances that
the Gibbs sampler converged to the more meaningful mode
(with prevalence <0.5, and sensitivity and specificity >0.5)
in all 100 datasets.

The following general observations can be made from these
results:

1 When allowing the reference standard to be imperfect,
bias in overall sensitivity and specificity was less than
0.05 across all scenarios, while the average coverage was
very high, exceeding 95% for a number of scenarios. The
average length of the 95% credible interval decreased
with increasing number of studies in the meta-analysis,
though the sample sizes of individual studies did not
appear to have a substantial impact in the scenarios
considered.

2 When incorrectly assuming the reference standard was
perfect, there was a bias in estimation of overall sen-
sitivity and specificity of about 0.15. The average cov-
erage for these parameters was very poor (less than
70% in all scenarios), decreasing to 0 as the number of
studies increased. There was also considerable bias in
the estimation of the heterogeneity parameters (o, and
0p ), with the bias and coverage worsening with increas-
ing number of studies.

3 There was no difference in the performance of the model
when using informative or noninformative prior distri-
butions over Sy and C,. This suggests that prior dis-
tributions we considered were dominated by the data
even when the number of studies was as low as J = 5.

4 When allowing the reference standard to be imperfect,
the bias in estimating parameters o, and oy was around
0.15 when J =5 studies were included in the meta-
analysis. It decreased with increasing number of studies
in the meta-analysis. The average length of the 95%
credible interval for these parameters decreased with
increasing number of studies in the meta-analysis as
well with higher sample size per study.

5 The parameter 3 was least well estimated. Bias in es-
timation did not decrease with increasing number of
studies nor higher sample size per study. Wide aver-
age length ensured high average coverage above 95%
for most scenarios considered.

The above results suggest that the model we are propos-
ing performs well on average, including when using nonin-
formative prior distributions. We also considered a simulated
scenario that resembled our tuberculous pleuritis data, i.e.,
J = 11 studies using three different reference standards across
studies. We considered both conditionally independent and
dependent models. In both cases we observed similar results
to those described above (data not shown), suggesting the
model can be applied to the data at hand.

5. Meta-Analysis of Nucleic Acid Amplification Tests

As explained in Section 2, we determined plausible ranges
for the sensitivity and specificity of the three reference stan-
dards based on a review of the literature. We transformed
the prior information on the plausible ranges of the sensi-
tivity and specificity of the reference tests for TB pleuritis
into Beta(a, 3) prior distributions. This was done by equat-
ing the mid-point of the range to the mean of the Beta dis-
tribution <=, and matching one quarter of the range to its
standard deviation

WJHH) Ranges for the sensitivity
of each reference test are given in Table 1. The prior range
for specificity across all references tests is 0.9-1. The prior
distributions over the sensitivities of the three different refer-
ence tests were: (i) culture: Sy ~ Beta(9.2, 13.8), (ii) culture
and clinical data: Sy ~ Beta(6.678, 8.162), (iii) culture and
Biopsy: Ss3 ~ Beta(50.4, 12.6). The specificities of all refer-
ence tests were assumed to have the same prior distribution,
Cy; ~ Beta(71.25,3.75), j = 1-2, 3-4, 5-11. The prevalence
in each study was assumed to follow a Beta(1,1) distribution.
We did not consider hierarchical priors as two of the reference
standards were used in only two studies each.

We considered the model in (1) that assumes conditional
independence between the index and reference tests, together
with a model that adjusted for conditional dependence be-
tween the tests in each study. We considered models with
informative prior distributions over S, and C,, as well as non-
informative Beta(1,1) distributions. For comparison, we also
considered the model that assumed the reference test was per-
fect in all studies. Model fit was compared using the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002).

We found that the DIC was lowest (indicating the best fit)
for the model with noninformative prior distributions that ad-
justed for conditional dependence (DIC = 145.7). The worst
fitting model was the one that assumed conditional indepen-
dence between index and reference test (DIC = 171.1 with
informative prior, DIC = 155.1 with noninformative prior).
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Table 3
Posterior .5450.0%g7.5% quantiles of sensitivity and specificity of in-house nucleic acid amplification tests from three
meta-analysis models for TB pleuritis data. (*Model adjusted for conditional dependence in addition to imperfect reference;
DIC: Deviance Information Criterion).

Model* with Model* with Model with
informative prior noninformative prior perfect reference

(DIC = 150.7) (DIC = 145.7) (DIC = 151.2)
Study Sl Cl Sl Cl Sl Cl
1 0.130.300.64  0.921.001.00 0.150-540.00  0.900.991.00 0.300.49.65  0.950.991.00
2 0.130.500.88  0.931.001.00 0.170-640.04  0.890.991.00 0.150-520.81  0.800.981.00
3 0.280.500.78  0.931.001.00 0.310.640.03  0.870.991.0 0.560-820.06  0.900.981.00
4 0.410.680.94  0.871.001.0p 0.380-8T0.99  0.730.961.00 0.770.941.00  0.790.890.96
5 0.600-770.92  0.041.001.09 0.540.800.97  0.850.981.00 0.680-870.08  0.940.991.00
6 0.330.530.72 0.041.001.09 0.330.570.81  0.890-991.00 0.300.620.82  0.900.991.00
7 0.460.650.84  0.951.001.00 0.440.690.92  0.900.991.00 0.540.750.00  0.930.991.00
8 0.550.750.04  0.041.001.00 0.510.780.97  0.850-981.00 0.610-790.02  0.040.981.00
9 0.360.600.83  0.041.001.09 0.380.650.91  0.800.991.00 0.440.700.89  0.910.991.00
10 0.270.430.62  0.961.001.00 0.280.490.81  0.940.991.00 0.300.460.62  0.960-991.00
11 0.560-710.86  0.901.001.00 0.510.740.03  0.840.97 1.0 0.610.750.86  0.840.92¢.97
Pooled 0.420.580.73  0.971.001.00 0.430.670.87  0.920.991.00 0.530. 710,84 0.040.981.00

The estimates of the sensitivity and specificity of the index
test within each study as well as overall from the best-fitting
model are given in Table 3.

For comparison, this table also includes estimates from a
model that assumed all studies used a perfect reference test
and a model using the informative prior distributions. In gen-
eral, the best-fitting model gave estimates of sensitivity, speci-
ficity and prevalence that were intermediate between the other
two models in Table 3. The wide credible intervals around
these estimates imply similar inferences, showing poor sen-
sitivity for the NAAT with heterogeneity across studies, and
consistently high specificity. This is also reflected in the SROC

_A
I-g }) versus
exp(7)

curves in Figure 1, which plot Sensitivity (®{— g
Specificity (®{ exﬁ:ﬁ;)
0B as the value of T’ Zvaries over the 95% credible interval of ©.

Our hierarchical model makes a number of unverifiable as-
sumptions that could have an important effect on the estima-
tion of the parameters of interest (Spiegelhalter et al., 2004).
Therefore we carried out a series of sensitivity analyses to
check its robustness. We changed the distribution of the latent
variable Z; to logistic, allowed the random effects to follow a
t(4) distribution rather than a normal distribution, and con-
sidered two alternative prior distributions over the between-
study variability. Under the first alternative both o2 and o}
followed a U(0,5) distribution, while the second alternative
L and U% both followed a Gamma(shape =

assumed that p

0.5, rate = 0.5) distribuﬂtion. We found that the individual
and pooled sensitivity and specificity estimates and credible
intervals from the different models were fairly similar, and
the DIC did not differ greatly between them (Web Table 3).
Therefore we concluded that our selected model was robust
for this particular application.

Finally, for comparison, we extended the conditional de-
pendence model of Chu et al. (2009) to allow for multiple
reference standards. We fit the model to our data assuming
that the sensitivity and specificity of each reference standard

1) at the posterior mean values of A and

were independent of each other and the other parameters in
the model. We found that the results were very similar to
those obtained from our best fitting model (Pooled sensitiv-
ity 0.69 (0.39, 0.91) ; Pooled specificity 0.97 (0.86, 0.99); DIC
149.4).

Based on our best fitting model, there was high variabil-
ity in both the diagnostic accuracy and threshold parameters
across studies (see o, and oy in first line of Web Table 3),
though the variability in accuracy was greater. The high vari-
ation in the threshold parameter across studies supports our
concern that in-house NAAT tests may not be well standard-
ized. The median and 95% credible interval for the predicted
sensitivity and specificity in a future study were 0.65 (0.19,
0.96) and 0.96 (0.73, 1.00), respectively, indicating consider-
able heterogeneity between the observed studies. This het-
erogeneity is also depicted in the SROC curve in Figure 1.
This suggests that the pooled sensitivity and specificity are
not widely generalizable and more research is needed to study
the reasons for heterogeneity in the accuracy between studies.

The posterior median and 95% equal-tailed credible inter-
val for the sensitivity and specificity of the four reference tests
was as follows: (i) Culture: Sensitivity 0.65 (0.25, 0.96), Speci-
ficity 0.87 (0.76, 0.98) (ii) Culture and clinical data: Sensitiv-
ity 0.65 (0.33, 0.95), Specificity 0.97 (0.80, 0.99), (iii) Culture
and biopsy: Sensitivity 0.85 (0.59, 0.99), Specificity 0.95 (0.84,
1.00). Thus, based on the selected model, in-house NAATS for
the IS6110 target do not improve over the best-known refer-
ence of culture and biopsy in terms of sensitivity. The higher
DIC of the models with informative prior distributions can be
attributed to a disagreement between the observed data and
the prior information. In particular, the posterior credible in-
tervals for the sensitivity of culture and culture+-clinical data
cover wider ranges than we had provided, including higher
values.

6. Discussion

We have presented a Bayesian hierarchical model adjust-
ing for the imperfect nature of the reference standard in a
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Figure 1. Summary receiver operating characteristic curves for competing meta-analysis models of sensitivity and specificity
of an in-house nucleic acid amplification test for tuberculous pleuritis (IS6110).

bivariate meta-analysis of diagnostic test sensitivity and
specificity. The model allows for different reference standards
to be used in individual studies, a feature commonly encoun-
tered when a gold standard reference is either nonexistent or
prohibitive. Our results show that ignoring the imperfect na-
ture of the reference may result in biased estimates of pooled
sensitivity and specificity of the test under evaluation. In the
case of TB pleuritis, our results show that in-house NAAT
tests for the IS6110 target may have worse sensitivity but
better specificity than previously estimated. An earlier meta-
analysis of in-house NAATSs for varied targets for TB pleu-
ritis had estimated their pooled sensitivity and specificity as
0.71 (0.63, 0.78) and 0.93 (0.88, 0.96), respectively (Pai et al.,
2004).

Our simulations show that model performance is enhanced
by both the number of studies as well as the sample size
per study, particularly for estimation of between-study het-
erogeneity. For the scenarios we considered, we did not en-
counter major problems with the convergence of the Gibbs
sampler. However, we noticed that when using noninforma-
tive prior distributions for all parameters, the problem of
permutation nonidentifiability can result in the estimates of
individual study parameters converging to the mode that is
not meaningful (i.e., prevalence >0.5, sensitivity and speci-

ficity <0.5 for the scenarios we considered). Consequently,
the pooled estimates are not meaningful. The problem of per-
mutation identifiability is well recognized in the literature on
latent class analysis (McLachlan and Peel, 2000). The likeli-
hood function of a model with G latent classes has G! modes.
In the meta-analysis model at hand, the problem is exacer-
bated due to the combinations of modes across studies re-
sulting in G!” modes. For example, for the TB dataset we
considered, the likelihood function has 2'' modes. To dis-
tinguish between these modes we can use our substantive
knowledge of the test accuracy parameters or the prevalence.
We know that the specificity of all three reference tests for
TB pleuritis is very high, exceeding 90%, while their sen-
sitivity is poor. Thus before reporting the pooled sensitiv-
ity and specificity we need to ensure that the Gibbs sam-
pler has converged to the mode of (7;,S1;,5%,C4;,Cs) and
not (1 —m;,1—Cy;,1—Cy,1— 83,1 —5,) in each individual
study. Carefully selected initial values and weakly informative
prior distributions helps to avoid this problem.

The advantage of the HSROC model (Rutter and Gatsonis,
2001), that we chose to extend, is that it models the variation
in diagnostic accuracy and cut-off values, both well-recognized
sources of heterogeneity across diagnostic studies (Macaskill
et al., 2010). The model we have described can be considered
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a special case of the model described by Chu et al. (2009) in
the situation when: (i) the same reference standard is used in
all studies, (ii) only the sensitivity and specificity of the index
test are considered correlated, and (iii) there are no covariates
affecting sensitivity and specificity of either index or reference
tests. However, as noted by Harbord et al. (2007), despite the
likelihood functions of the two models being equivalent, the
prior distributions do not share a one-to-one relationship and
hence Bayesian inference of the two models may not yield
identical inferences. Further research is needed to establish
the links between these two models. For the particular case
of the tuberculous pleuritis data we found that both models
gave similar results. The best approach for fitting a summary
receiver operating characteristic function remains a topic of
debate (Arends et al., 2008).

The model we described can be extended in numerous ways
to accommodate some well-known practical problems. To ex-
tend the model to the situation when the index test is ordi-
nal, additional cut-off parameters will have to be added to the
model (Tosteson and Begg, 1988). As described by Rutter and
Gatsonis (2001), we can express the §; and «; parameters as
functions of covariates. Whether adjustment for conditional
dependence in a meta-analytic setting is appropriate when
heterogeneity between studies is caused by known covariates
is another open question.

7. Supplementary Materials

Web Appendix A (including full-conditional distributions ref-
erenced in Section 3.1, Web Tables 1 and 2 referenced in Sec-
tion 4 and Web Table 3 referenced in Section 5), are available
with this article at the Biometrics website on Wiley Online
Library.
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