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A b s t r a c t .  Maximum likelihood estimators of the parameters of the distribu- 
tions before and after the change and the distribution of the time to change in 
the multi-path change-point problem are derived and shown to be consistent. 
The maximization of the likelihood can be carried out by using either the EM 
algorithm or results from mixture distributions. In fact, these two approaches 
give equivalent algorithms. Simulations to evaluate the performance of the 
maximum likelihood estimators under practical conditions, and two examples 
using data on highway fatalities in the United States, and on the health effects 
of urea formaldehyde foam insulation, are also provided. 
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1. Introduction 

The  s ingle-path change-point  p rob lem has been the subject  of considerable 
research (Hinkley (1970), Cobb  (1978), Shaban  (1980), P icard  (1985), Worsley 
(1986), Carls tein (1988)), while its counterpar t ,  when the  da t a  consist of several 
sample  paths ,  has received scant a t t en t ion  (Joseph (1989), Joseph  and Wolfson 
(1992)). This  is ra ther  surprising, as m a n y  applicat ions of "the change-point"  

arise when repea ted  observat ions are made  in t ime,  on different pa t ien ts  say, and 
it is desired to make inference abou t  the ins tant  of change (if any) in the heal th  
s ta tus  of these pat ients .  

Many  of the  techniques proposed  for s ingle-path change-point  problems t rans-  
fer, wi th  sui table modification,  to the  mul t i -pa th  sett ing. The  me thod  of m a x i m u m  
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likelihood, for example, may be carried out by maximizing the joint likelihood of 
all the data with respect to both the unknown parameters of the underlying dis- 
tributions of the data, as well as with respect to the unknown distribution of 
the position of change; it is assumed that each path has its own change-point 
and that there is a probability mass function describing the distribution of these 
change-points. 

In the context of a single sample path it is well known that the maximum likeli- 
hood estimator of the change-point is not consistent as the number of observations 
on either side of the change-point tends to infinity, Hinkley (1970). This lack of 
consistency arises because the change-point problem is really a location problem 
on the space of infinite sequences and one finite path segment contains even less 
information than one observation in this space. Carlstein (1988) establishes con- 
sistency of a non-parametric change-point estimator of the ratio of the number of 
variables before to the number after the change in the single-path context. 

It is the object here to discuss maximum likelihood estimation in a multi- 
path setting. An example on the change in traffic accident death rates after the 
relaxation of the 55 miles per hour speed limit in the U.S. in 1987, is provided as one 
illustration of the method of maximum likelihood. A second example concerning 
the health effects of urea formaldehyde foam insulation as measured by changes 
in the rate of visits to a doctor before and after installation of the material in the 
homes of a study population in Canada is also provided. 

The general setup is given in Section 2, and the various approaches to maxi- 
mum likelihood estimation are outlined in Section 3. It is soon realized that  imple- 
mentation of the maximum likelihood procedure in the multi-path change-point 
problem requires an approach more efficient than a point-by-point search. Sec- 
tion 4 discusses two of these approaches, one using the EM algorithm of Dempster 
et al. (1977), and the other taking a mixture viewpoint. In fact, these give equiva- 
lent algorithms. In anticipation of the examples in Section 7, consistency is proved 
for the Poisson case in Theorem 5.1. A sketch of a proof of consistency in the 
location-scale case is also given in Section 5. Section 6 presents the results of sim- 
ulations designed to test the methods under a variety of practical circumstances, 
and Section 8 contains some concluding remarks. 

The method of proof of Theorem 5.1 is based on the work of Kiefer and 
Wolfowitz (1956), who also point out that consistency of maximum likelihood 
estimators in a variety of multi-path settings often does not hold. However, when 
certain reasonable restrictions on the model are imposed and regularity conditions 
met, it is possible to establish consistency. 

By regarding each path as arising from a mixture of distributions, consistency 
as well as asymptotic normality of all parameter estimates including those of the 
mixing constants, may be established in much the same way in the Poisson case, as 
has been done in the multivariate normal setting (Peters and Walker (1978)). The 
proof given there, however, requires assumptions that  appear to be very difficult 
to check. For example, the information matrix arising from equation (3.1) below 
must be positive definite, which seems to be a daunting hurdle. There are virtually 
no general results for information matrices even in exponential family settings (see 
e.g. Redner and Walker (1984), p. 205). The compactness argument used to prove 
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consistency in this paper is straightforward and is related to the work of Redner 
(1981), Kiefer and Wolfowitz (1956) and Wald (1949). 

Apart from the mathematical and statistical difficulties referred to in the above 
paragraph, there are also well known pitfalls in the actual solution of the likelihood 
equations (Redner (1984)). The EM algorithm offers a tractable solution. Here, 
simulations are used to verify the validity of the results. Application of general 
theorems as a means of verification appear to be very difficult if not impossible 
because of the complicated form of the likelihood function. 

2. The general setup 

(2.1) 

We shall assume that the observations are in the form of the M × N array, 

X S l  X s 2  ' ' "  XIN t 
X2s X22 . . .  X2N 

\ XM1 XM2 • . . X~/fN 

A change will be said to occur at ~-i, in row i for i = 1, 2 , . . . ,  M, and for 1 _< wi _< 
N -  1, if Xil,  X i2 , . . . ,  Xi~-~, are identically distributed with common distribution 
F1 which is different from the common distribution, F2 of Xi~-~+l, X~-~+2,. . . ,  X iN.  
In this paper our assumptions will be more specific in order to keep the exposition 
as simple as possible. 

We make the following additional assumptions: 
(i) The observations {X~j} within row i (i = 1, 2 , . . . ,  M), are independent 

Poisson(As)  random variables for j = 1, 2 , . . . ,  z~ and independent P o i s s o n ( t 2 )  
random variable's for j - -  T i + l , . . . , N w h e r e  1 _< Ti < N - 1 .  We say that no 
change has occurred in row i, if ~-~ = N. To simplify the proof of Theorem 5.1, we 
shall always assume that a change has occurred, although this assumption is not 
necessary. 

(ii) The collection of rows in array (2.1) form independent random vectors. 
(iii) The sequence {~-~}~=s,2 ..... M is  a set of independent and identically dis- 

tributed discrete random variables with range the set of integers {1, 2 , . . . ,  N - 1}, 
and distribution function G(.) corresponding to the probability function PT('r) = 
pr(T = T). 

(iv) The intensities, Is  and A2 are unknown, as is the distributional form of 
a( . ) .  

In Section 3 maximum likelihood estimation of As, A2 and G(.) will be dis- 
CUssed .  

3. Maximum likelihood estimation 

Given the set of observations Xij  = xij ,  i = 1, 2 , . . . ,  M ,  j = 1 , 2 , . . . ,  N ,  the 
joint likelihood of the data in array (2.1) is given by 

M N - 1  Ti N 

(3.1) z(e;Aa'~2,{PT()})=II~II/(zul Ad II  f(x~jla2)rz(~-~), 
i=1 "ri=l j = l  j=wi+l 
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where f( .  ] t )  denotes the Poisson probability function with mean 1. 
The method of maximum likelihood calls for the maximization of I(S; .) with 

respect to 11, t2, and the distribution PT(~-)- Alternative approaches to change- 
point inference including maximum likelihood methods under different assump- 
tions, are given by Joseph (1989) and Joseph and Wolfson (1992). 

There are at least three ways of interpreting PT (,-) in this maximization prob- 
lem: 

(a) While the parameters 11 and A2 are fixed constants, the actual change 
points {Ti}i=l ..... ~ are thought of as arising as realizations of M independent 
identically distributed random variables with unknown distribution PT('). This 
approach gives the proof of consistency presented in Section 5. 

(b) The unknown true points of change {T,~} are regarded as missing data and 
the ensuing maximization is carried out by using the EM algorithm. 

(c) The quantities PT(') are looked upon as mixing constants in a standard 
finite mixture problem, where 1~ and 12 are unknown parameters in the mixture 
distributions. It transpires that approaches (b) and (e) are equivalent, and is the 
justification for using the EM algorithm for mixture problems. See Section 4. 

4. The EM algorithm and mixture distributions 

If the ~-i's were observed, maximization of the likelihood with respect to t l  
and t2 would, of course, be straightforward, as would be that of G, G being 
the empirical distribution function. Since the ~-i's are not observed we have a 
missing data problem where the missing data are the ~-i's . The EM algorithm, 
see Section 4.3 of Dempster et al. (1977), can then be applied as follows: 

E-step: Given the current estimate at the k-th step, A~, Z~ and P~(T), estimate 
the M x N matrix, Z, of conditional probabilities that each row i has a change at 
position j, i.e., 

= t 1 , t 2 ,  

J 
exp[-jA  - (N - j)X  + log(a ) Z + log(a ) 

/=1 

N 

l = j + l  

N - 1  j N 
E exp[-jl~ - (N - j)12 k + log(l~) E x{l + log(l~) E 

j = l  /=1 / = j + l  

after some simplification, where x represents the array (2.1). 
M-step: Compute 

M 
E i = I  al ÷ 1 = E _I(1 - 

M 

= and 
M 

E 
~ T tJ] 

M ' 
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where 
0, j = 1, for all i = 1 , . . . , M  

wij = Wi,j--1 + Zi,j--1, j = 2 , . . . ,  N,  for all i = 1 , . . . ,  M. 

One alternates between the E-step and the M-step until a convergence criterion is 
met. 

This same algorithm may be derived directly by maximizing the likelihood 
N--1 (3.1) using Lagrange multipliers with constraint }-~.j=~ PT(j)  = 1. See, for exam- 

ple, Peters and Walker (1978), who address the problem of mixtures of multivariate 
normal distributions. On the other hand Redner and Walker (1984) derive their 
equations (4.5) and (4.6) from the EM algorithm. Here, the joint distribution of 
the random variables in each row is a mixture of exponential family random vari- 
ables. This follows from the fact that the product of exponential family densities 
is again a member of an exponential family. Theorems 5.1 and 5.2 of Redner and 
Walker regarding convergence rates of the EM algorithm hold. In particular, under 
the Conditions 1 and 2 of Redner and Walker, p. 211, the algorithm converges to 
the unique asymptotically normal consistent maximum likelihood estimate if one 
can be shown to exist. Because the Conditions 1 and 2 of Redner and Walker are 
very difficult to check in the mixture context, we have performed simulations to 
examine the convergence of the maximum likelihood estimators computed via the 
EM algorithm. Our experience with the change-point problem is that if the initial 
parameter estimates are carefully chosen as described in Section 6, convergence to 
a global maximum always occurs. Consistency is the subject of Section 5. 

5. Consistency 

Our goal here is to show that given the array of data (2.1), the maximum 
likelihood estimators G and ~1 and A2 are consistent as M -~ oc. Specifically, we 
have 

THEOREM 5.1. Under the data array (2.1) and under Assumptions (i) 
through (iv) above, the maximum likelihood estimators )~l and )~ satisfy 

~1 ~ ~1, ~2 --~ A2 almost surely as M ~ oc, 

while the maximum likelihood estimator G of G satisfies 

(5.1) G(x) ~ G(x) almost surely for each real x as M --+ oc. 

It was first pointed out by Neyman and Scott (1948) in a more general setting, 
that the maximum likelihood estimator of a parameter in the presence of infinitely 
many incidental parameters may not be consistent. That the situation changes 
when the incidental parameters are allowed to be independent and identically 
distributed random variables, is discussed by Kiefer and Wolfowitz (1956). 

The setting of the Kiefer and Wolfowitz paper is that of an array of random 
variables {Xij} ,  i = 1 , 2 , . . . , n ;  j = 1 , 2 , . . . , k  such that the density (mass) func- 

tion of Aria,... ,  Xik is f(•l  O, c~i) when 0and  ai are given. Typically, Oand ai are 
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unknown and often it is desired to estimate 0, a so-called structural parameter, 
in the presence of the so-called incidental parameters {c~i}. Kiefer and Wolfowitz 
show that under appropriate assumptions, the maximum likelihood estimator of 
is consistent, provided {c~i}i can be regarded as independent and identically dis- 
tributed random variables with common distribution G. A bonus of their proof is 
that the nonparametric maximum likelihood estimator G of G is also consistent 
for G, an unexpected, and particularly useful result in the change-point setting. 

Here, the data are the array (2.1), the parameter 0 = ()`1,)`2) and the inci- 
dental parameters c~e = re, i = 1, 2 , . . . ,  M. Of course, in the usual change-point 
problem the distribution, G, of the ri, is of prime interest and the parameters )`1 
and )`2 of secondary importance. 

Our Assumptions 1-5 below are those of Kiefer and Wolfowitz, adapted to the 
change-point setup. Each is verified under the hypotheses of Section 2. It is impor- 
tant to notice that in the present change-point setting, G is termed nonparametric 
only because no parametric form is assumed; there are, of course, only finitely 
many points G(r), r = 1, 2 , . . . ,  N -  1 to estimate. Nevertheless, the work of 
Kiefer and Wolfowitz, most useful when there are infinitely many "incidental" pa- 
rameters, facilitates a relatively straightforward proof of consistency in the present 
finite dimensional problem. In contrast, the well known Theorem 3.1 of Redner 
and Walker (1984), while establishing asymptotic normality as well as consistency, 
requires the positive definiteness of the information matrix, which is very difficult 
to compute in mixture problems. Related to the compactness approach of Kiefer 
and Wolfowitz is that of Redner (1981) whose results are intended for situations 
in which identifiability fails to hold. Equivalence classes of distributions replace 
distributions and consistency has to be interpreted with this in mind. Here, as 
Assumption 4 below shows, we do have identifiability, and this obviates the need 
to use Redner's result. 

The following notation will be used: 
The joint density of Xel,Xe2,... ,XeN at the point a~, is denoted by f (Z  I 

),1, )`2, T i) when ),1, )`2, and re are given. Of course, 

f (S  I A1, )`2, ~-e) = 

% N 

H f(z¢51)̀ ~) H f(0:~yl)̀ 2). 
j = l  j=~-i÷l  

The "true" parameters and distribution respectively, will be denoted by 0As, 0A2, 
and Go. By definition, ~7 = ()`1,)`2, G), 0 =  ()u,)`2), and 0 0 =  (0)`~, o)`2). 

Let f~ be the space of possible values of 0', and A = {1, 2 , . . . ,  N -  1}, the set of 
possible values of r. The parameters 0} s) (1 < s < 2) will denote the components 

of a point Ot in ft. 
Let P = {G} be a given space of cumulative distribution functions of •i. The 

G's will be discrete with support the finite set {1, 2 , . . . ,  N -  1}. It is assumed 
that 00 E f~, Go ~ F, and "7 E f~ × F. 

We define 

(5.2) ' f ( f  I 4) = £ f ( J  I 0, T)dG(T) 
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= E .f(xJ I/~1) r I  f(xJ I/~2)PT(T) ' 
m=l j=l j=m+l 

where PT(N) = O. 
In the space .Q x F, define the metric 

2 { N }1/2 
(5.3) 6 ( ~ , 7 ~ ) = ~ - ~ l a r c t a n ~ ) - a r c t a n ~ ) ] +  ~ l P T ~ ( i )  PT~(i)l 2 , 

s=l i=1 
and observe that 6 ( ~ , ~ )  converges to zero if and only if the first term on the 
r.h.s, of (5.3) and IPT,(i) --PT~(i)I both converge to zero for i = 1 ,2 , . . .  ,N.  The 
metric (5.3), is equivalent to the metric on f t x  F defined by Kiefer and Wolfowitz. 
The simplification arises because G is discrete, while the choice of metric permits 
compaetification of t2 x F to t2 × F. It should be noted that the additional functions 
needed to compactify ft × F need not be density functions. 

PROOF OF THEOREM 5.1. The proof of Theorem 5.1 rests on a careful veri- 
fication of Assumptions 1 through 5 below, in the multi-path change-point setting. 
These assumptions are discussed more generally by Kiefer and Wolfowitz (1956). 

ASSUMPTION 1. f (S  I l l , 1 2 , r )  is absolutely continuous with respect to a 
a-finite measure on a Euclidean space of which Z is a generic point. 

Verification. This is obvious, f being a product of Poisson probability func- 
tions. 

ASSUMPTION 2. Before checking Assumption 2, we shall need to "compact- 
ify" the space t2 × F. First, since G E F is discrete with range {1, 2 , . . . ,  N - 1}, 
F is easily seen to be sequentially compact (in the sense of the metric defined by 
the second term on the right of (5.2)) and hence compact. Alternatively, if F is 
defined as the space P together with all the limits of its Cauchy sequences, then 
the completeness of 7~ implies that Y = F. 

Next, let ~ be the space t2 together with the limits of all its Cauchy sequences 
(in the sense of the metric defined by the first term on the left hand side of (5.2)). 
Again, it is not difficult to show that if the points (+oc, +oc), (0, +oc),  (+oo, 0), 
and (0, 0) are appended to t2 then we obtain t2. The space f~ is compact, and 
hence f t x  P is compact. 

Returning to Assumption 2, let {ff~} and {@} belong to ~ x F and suppose 
that ~ ~ @. We must show that f ( i  I ~ )  ~ / ( S  I ~*), except perhaps on a set 
of S whose probability is 0 according to the density f ( i l %  ). 

We complete the definition of f for (0', 7) in F x A in a straightforward manner: 
Define for all r E A, 

0, 
O, 

f ( S  I O, 7) = 0, 
1, 
e - T A 1  , 

e--(N-•)A2 

i f x i ¢ 0 ,  for some i _< w and if A1 = 0  
i fx j  ~ 0 ,  for s o m e j  > w a n d i f A 2 - 0  
if either A1 = +oo or if A2 = +oo, for all Y 
if S = O, and if A 1 = 0 and A2 = 0 
i f S = O ,  andi fA1 ¢ 0 ,  A 2 - O  
i f S = O ,  and i f A l = O ,  A2 ¢ 0 .  
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For (0, G) E f~ × F, we then define f (~ l  0, G) by (5.2). 

m 

Verification of Assumption 2. First suppose that 7~ and ~* both E ~ x F, 
that 7~ > ~* and that at least one of A~ and A~ is infinite. 

For instance, this may occur if the sequences {~A1} and {hA2} satisfy 

rJ~l  ---+ (20, n.~2 ~ . ~  E (0,  +0(3)  aS n ~ (N3 

i.e., + = (+oc, A~, G*). 
Then, by definition 

N - 1  ~- N 

f ( 2 l  + )  = ~ H f(z~ I xD II f(~ l A;DPT(~) 
T:I i:1 i:T--I 

= 0 .  

On the other hand, 

N f l  N 

f(Sl%)=~ S ( ~ l ~ )  II 
m=l i = l  i=m+l  

f(z~ I ~A~)PT=(~) -~ 0 

for all z. When ~Ai and ~A2 converge to A~ and A~ respectively, both nonzero and 
finite and PT~ ~ PT the continuity of f(- I A~) and f(.  I 12) in the arguments 1~, 
and A2 respectively, ensures, trivially, t h a t / ( S  1%) ~ I (S t  ~*). 

ASSUMPTION 3. For any ff C f~ ×F, and any p > 0, w(S I if, P) is a measurable 
function of e where w(97 ] "7, P) = sup f ( J  ] if'), the sup being taken over all 
74 E ~ x F for which 6('7, 7') < P. 

Verification. The measurability of w(J  I "7, P) follows immediately from the 
measurability of f (S  I "7'). 

A S S U M P T I O N  4. 

at least one y, 
(Identifiability) If "~1 E ft × F is different from "~, then, for 

L ' ;  L ' ;  ... f ( z I  ~l)d~ ¢ ... f (Sl  ~0)d~. 
O O  O O  0(2) O O  

Verification. Since by assumption, the "true parameter" 7o C ~ × F, it is 
sufficient to show that if, for almost all 97 and 7~ E ~ × F 

(5.4) 

then "71 = "70. Now, (5.4) implies 

(s.s) 

f ( J  J "~1) : f ( i  I "%), 

f (~ 11>,~) H s(x~ 1 I~/PT~O-/ 
T=I i=1 i=T--i  _I{H } 

= ~ f(cc~ J0A1) [ I  f(x~ I 0a2)PTo(~) 
~-=1 i=1 i = m + l  
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for almost all S. 
Summing both  sides over x2, 13,..., XN we get 

N 1 N - -1  

E f(xl i11x)PT~(r) = ~ f(x~ I oA1)PTo(r ) 
"r=l m = l  

N- -1  N - -1  

=~ f(xl I 1 t l )  ~ PT~(~-)= .f(xl I oil) ~ PTo(T) 
3-=1 f = l  

==~ I(Xl I l t l )  = f ( x l  10A1) 

for all z 1. But  this implies tha t  1 1 1  = 0 t l  . 

Similarly, by summing over zl, z2,.. . ,  XN-1, we get 112 = o12, and hence we 

obtain (111, 1t2) = (Otl, o12). 
To prove tha t  PT~ (~-) = Pro (T) for ~- = 1, 2 , . . . ,  N - 1, sum both sides of (5.4) 

over x3, X4~ • • • , XN i. We get 

f(Zl I 111)f(x2 I 1t2)PT~(1)+f(x~ I I11)f(x2 1111)PT~(2) 
-F"- -~ f(xl I 111)/(x2 I 1tl)PT1 (N - -  1) 

= f(x~ I 0ta)f(z2 I 0t2)Pmo(1)+f(xl 1011)f(x2 [o11)Pmo(2) 
+ . . .+ f ( z l l oA1) f ( z2  I011,)Pro(X--1), i.e., 

f(2Cl [ 11])[f(x2 / ~12)Pr~(])+f(x2 I 111){1- PTI(1)}] 
= f(xl 1011)[f(x2 I oA2, )Pro(l)+ f(x2 I o11){1 -Pro(l)}]. 

B u t  we have already established (111, 1t2)  = (011 ,0 t2 )  = ( t l ,  12) , say. T h e r e -  
fore, (5.4) implies tha t  

f(x2 I A2)PT~(1) -- f(x2 I t l)PT~(1) = f(x2 I A2)PTo (1) - f(x2 I 11)Pro(i) ,  

i .e. ,  

P T l ( 1 ) [ f ( x 2 1 1 2 )  - f(x21 t l)1 = P T o ( 1 ) [ / ( x 2 1 1 2 )  f ( x 2 1 1 1 ) ]  

Pr l (1 )  = P~o(1),  

since 11 ¢ 12 :=~ ~x 2 Sllch that f(x2 I 11) ¢ f(x2 112). 

In the same way, summing over zk, Zk+l,..., ZN-I, one can show iteratively 

t h a t  r r l  (]~ - 2) = PTo (/~ -- 2),  for ~ = 3 , . . . ,  N - 1. 
To obtain PT1 (N - 1) = Pro (N - 1) and hence PT~ (N - 2) = Pro (N - 2), 

we simply carry out the above procedure except we sum over xz,x2,... ,XN-2. 
Hence, PT~ (k) = PTo (k) for all k = 1, 2 , . . . ,  N - 1, and it follows tha t  % = ~ .  

Since a full inductive proof is cumbersome, it is omitted. 

ASSUMPTION 5. 
p ~ 0 ,  

E 

(Integrability Assumption) For any ~ C f~ × F, we have, as 

lim E ~(x I ~/'~)1 ÷ 
l og / (2  I~o) J < ~ 
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15,p)]+ 
lira E log 
o*0 f(3~ j "70) 

= l imE[ logw(X I ~, p ) - l o g f ( X  I ~0)] + 
p$0 

= lim E[log sup f()~ I "~, P) - log f(X 1%)] + 
p$0 

_< l i m e  I logsup f ( ) (  I if, p) r + E] log f(2 1%)1, 
p$0 

and Assumption 5 follows since "70 E f t  x F and f(.) is a Poisson probability 
function. 

The verification of Assumptions 1 to 5 implies that  the maximum likelihood 
estimators of A1 and A2 are strongly consistent and, perhaps more importantly, 
the maximum likelihood estimator of G is consistent in the sense that  for each x, 
Gn(x) converges almost surely to G(x) at all continuity points x of G. 

Generalization of Theorem 5.1. Consistency can, in fact, be established for 
a much wider class of underlying distributions than the Poisson. We state such a 
result for location-scale families and sketch the main arguments of the proof. 

THEOREM 5.2. Suppose that the joint  likelihood of the data in array (2.1) is 
given by 

I(X; O~1, ~1, O~2,/~2, {-PT (') }) 

o 1  
= H E  /~1 X~2~l 

i=1 v'i=l j= l  

N Z f ( x i j  ~ 

where we assume that f is a density with respect to a a-finite measure on a Eu- 
clidean k-space, and 

(5.6) /31 > c > 0  and / 3 2 > c > 0 ,  

(5.7) sup f ( x )  < ~ ,  
x 

(5.8) f is a measurable function of x, 

(5.9) lim f ( x )  = O, and 

/ /  (5.10) f(x)[log ]x]]+dx < ~ .  

C known, 

Then under assumptions (i) through (iv) above (with the obvious modifications), 
the maximum likelihood estimators all, d2, l~1, and ~2 satisfy 

dl --+ 0~1, (~2 ~ 0~2, /~1 ---+ ~1, and ~2 ---+ ~2 

almost surely as M ~ oo, while the maximum likelihood estimator G of G satisfies 
~ G almost surely for each real x as M ---+ oc. 

The conditions (5.6) to (5.10) are a slightly modified subset of those given 
by Kiefer and Wolfowitz ((1956), p. 895). The current situation is simpler than 
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theirs as G is a discrete distribution. The condition (5.6) is, in practice hardly 
restrictive, as one could use c = 10 -6, say. Many important  distributions are 
covered by Theorem 5.2, including the normal, uniform, Cauchy, and exponential. 

Sketch of the proof of Theorem 5.2. As in the proof of Theorem 5.1, Assump- 
tions 1 to 5 must be verified. The salient features only, are given. Assumption 1 
is trivial, and Assumption 2 follows by defining for each 7-i, 

I f ~ x~j 2 0~1 XiJ = 0 
H 91 \ 91 92 
j=l j =  1 

i f  ( t  1 = 4-00 or O~ 2 = 4-OO, or ,31 = +co or ,32 = +oc,  and then invoking conditions 
(5.7) and (5.9). 

Assumption 3 is a consequence of condition (5.8). 
Assumption 4 follows from the identifiability of location scale families: if 

F(z) -- F(az + b) for all z and if F is non-degenerate, then a - 1 and b = 0. (Fox" 
a proof of this result see Billingsley (1986).) 

Assumption 5 is proved using the assumed boundedness from below of ~1 
and .32 and the uniform boundedness of f(z),  condition (5.7). The verification 
of Assumption 5 then  involves a straightforward adaption of the verification of 
Assumption 5 in example la,  p. 895, of Kiefer and Wolfowitz. 

Apart  fi'om the Poisson case given by Theorem 5.1, the gamma distr ibution 
with density 

f(:c) = F(a)/3 ~ zc~-le -~/~, for x > 0 

0, elsewhere 

is an important  special case not covered by the location scale families of The- 
orem 5.2. Again, however, by imposing the harmless restriction c~1 _> c > 0, 
a2 _> c > 0 on the shape parameters before and after the change, consistency of 
the maximum likelihood estimators continues to hold. Here, the change is in the 
vector (a,/3). 

It is possible to define A = {1, 2, . . . ,  N}, in which case there is positive prob- 
ability, PT(N), of no change. This si tuation involves no special difficulties in 
the proof of consistency, al though for brevity of exposition the simpler case of 
A = {1, 2 , . . . ,  N - 1} is given. If PT(N) = 1 then with probability one there is no 
change and the proof of identifiability breaks down. This shortcoming may, how- 
ever, be avoided by simply assuming tha t  PT(N) < 1, which for practical purposes 
is not unreasonable. 

While consistency provides a theoretical justification for the maximum likeli- 
hood estimators, simulations to assess the effectiveness of the EM algorithm and 
also to examine the feasibility of using the method for small samples are important .  
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6. Simulations 

Referring to (2.1), fix M sequences of length iV = 8 or iV = 40, where M = 10, 
30, 100, or 500. Two sets of choices for the Poisson parameters  for F1 and F2 were 
considered: a change from A1 = 3 to t2  = 5, and a change from /~1 = 2 tO -'~2 = 6. 
These values were selected by choosing the lowest integers tha t  solved the equat ion 
(11 - t 2 ) / @ ( 1 1  + 12) /2  = c, for c = 1 or 2, corresponding to "standardized 
differences" for the change in mean of size 1 and 2, respectively. 

For N = 40, five choices for PT were considered: 

1. U(15, 24), a uniform distr ibution on the integers from 15 to 24, so tha t  
pr{~- = k} = 0.1, k = 1 5 , . . . ,  24, and zero elsewhere. 

2. U(1,40),  a uniform distr ibution on the integers from 1 to 40, so tha t  
pr{T = k} = 0.025, k = 1 , . . . , 4 0 .  

3. T(15,25) ,  a "tent-shaped" function, with peak at 7- = 20, and sloping 
down linearly to zero at ~- = 15 a n d r  = 25. Hencepr{~-  = 20} = 0.2, pr{T = 
19} = pr{7- = 21} = 0.16, pr{7 = 18} = pr{~- = 22} = 0.12, pr{~- = 17} = pr{~- = 
23} = 0.08, pr{~- = 16} = pr{~- = 24} = 0.04, all o ther  choices for k having zero 
probability. 

4. T(3 ,7) ,  a tent -shaped function, with peak at ~- = 5, and sloping down 
linearly to zero at ~- = 3 and ~- = 7. Hence pr{~- = 5} = 0.5, and pr{~- = 4} = 
pr{~- = 6} = 0.25, all o ther  choices for k having zero probability. 

5. S(4, 38), a spiked function, where p r{ r  = 4} = pr{~- = 38} = 0.5 all other  
choices for k having zero probability. 

Using similar notat ion,  the choices of P r  for N = 8 were U(1, 8), T(3, 7), and 
s(2,6). 

These choices cover a wide range of possible shapes for the distr ibutions of 
~-. Included are those where nothing at all is known about  the location of the 
change, U(1, 40) and U(1, 8), distributions where the change is equally likely to 
occur in a specified region, but  nothing is known about  the relative probabilit ies 
within the region, U(15, 25), two distributions where the most  likely location for 
the change is known, but  points near this value are also possible, with decreasing 
probabil i ty fur ther  from the centre, T(15, 25) and T(3, 7), and a distr ibution where 
the change may occur early or late in the sequence, with equal probability, S(4, 38) 

and S(2, 6). 
These choices for Pr, combined with two sets of ~ parameters  and four choices 

for M gives 40 different si tuations for N = 40, and 24 for N = 8. Each of these 
64 combinations was simulated 300 times. 

Outcome measures for the simulations include the average error in PT, 
defined by I P r ( t ) -  IST(t)l averaged over all N possible locations for t and 
over all 300 simulations, and various statistics summarizing the largest error, 
defined by SUPl<t<N IPT(I 0 --PT(t)I. These included the mean, median,  and 
range of the largest error, over the 300 simulations. The  stopping criterion was 
SUPl<t<N ] p ~ + l ( t ) - P ~ ( t ) ]  _< 0.00001. For all outcome measures, PT( ' )  was taken 
to be the empirical distr ibution function of the realized T's. This was chosen ra ther  
than  the theoretical  G(~-) to make the simulations with small M meaningful. 

The  initial estimates of PT were taken to be the empirical distr ibution function 
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Table i. Results of the simulations, number of columns = 40. 

4# M G(~-) A1 A2 Mean Median Range Avg error 

I i0 U(15,24) 3 5 0.3298 0.3015 (0.1031,0.8055) 0.0306 

2 i0 U(1,40) 3 5 0.2492 0.2353 (0.I000,0.4808) 0.0339 

3 i0 T(15,25) 3 5 0.3392 0.3057 (0.i000,0.9109) 0.0283 

4 I0 T(3,7) 3 5 0.3670 0.3561 (0.0329,0.8371) 0.0232 

5 I0 S(4,38) 3 5 0.3193 0.3000 (0.0000,0.7998) 0.0213 

6 I0 U(15,24) 2 6 0.1730 0.1761 (0.0207,0.4922) 0.0157 

7 I0 U(1,40) 2 6 0.1351 0.1118 (0.0018,0.2998) 0.0168 

8 10 T(15,25) 2 6 0.1938 0.1985 (0.0600,0.6863) 0.0154 

9 i0 T(3,7) 2 6 0.1901 0.1671 (0.0034,0.5525) 0.0105 

i0 i0 S(4,38) 2 6 0.0938 0.0873 (0.0000,0.5000) 0.0055 

ii 30 U(15,24) 3 5 0.2149 0.2017 (0.0935,0.4759) 0.0239 

12 30 U(1,40) 3 5 0.1531 0.1494 (0.0708,0.3984) 0.0309 

13 30 T(15,25) 3 5 0.2352 0.2192 (0.0667,0.6006) 0.0221 

14 30 T(3,7) 3 5 6.2456 0.2320 (0.0377,0.6324) 0.0153 

15 30 S(4,38) 3 5 0.1733 0.1465 (0.0003,0.5402) 0.0115 

16 30 U(15,24) 2 6 0.1072 0.1000 (0.0256,0.2732) 0.0112 

17 30 U(1,40) 2 6 0.0773 0.0712 (0.0333,0.1738) 0.0163 

18 30 T(15,25) 2 6 0.1153 0.1096 (0.0359,0.2678) 0.0106 

19 30 T(3,7) 2 6 0.1004 0.0954 (0.0089,0.2664) 0.0055 

20 30 S(4,38) 2 6 0.0506 0.0404 (0.0000,0.2471) 0.0031 

21 i00 U(15,24) 3 5 0.1421 0.1336 (0.0648,0.4200) 0.0170 

22 i00 U(1,40) 3 5 0.0955 0.0910 (0.0500,0.1851) 0.0249 

23 i00 T(15, 24) 3 5 0.1503 0.1399 (0.0486,0.4436) 0.0153 

24 i00 T(3,7) 3 5 0.1509 0.1428 (0.0183,0.3706) 0.0089 

25 i00 S(4,38) 3 5 0.0883 0.0781 (0.0005,0.2343) 0.0061 

26 I00 U(15,24) 2 6 0.0574 0.0562 (0.0226,0.2731) 0.0062 

27 i00 U(1,40) 2 6 0.0420 0.0401 (0.0221,0.0789) 0.0122 

28 I00 T(15,24) 2 6 0.0609 0.0571 (0.0172,0.1372) 0.0059 

29 100 T(3, 7) 2 6 0.0586 0.0557 (0.0019,0.2198) 0.0032 

30 100 S(4,38) 2 6 0.0252 0.0208 (0.0001,0.1158) 0.0016 

31 500 U(15,24) 3 5 0.0751 0.0730 (0.0300,0.1720) 0.0087 

32 500 U(1,40) 3 5 0.0497 0.0479 (0.0297,0.0960) 0.0161 

33 500 T(15, 24) 3 5 0.0755 0.0715 (0.0263, 0.1603) 0.0079 

34 500 T(3,7) 3 5 0.0667 0.0625 (0.0071,0.1699) 0.0041 

35 500 S(4, 38) 3 5 0.0397 0.0324 (0.0051, 0.1547) 0.0028 

36 500 U(15,24) 2 6 0.0230 0.0226 (0.0099,0.0417) 0.0026 

37 500 U(1,40) 2 6 0.0185 0.0183 (0.0118,0.0280) 0.0057 

38 500 T(15, 24) 2 6 0.0268 0.0256 (0.0098,0.0602) 0.0026 

39 500 T(3, 7) 2 6 0.0241 0.0217 (0.0021,0.0757) 0.0013 

40 500 S(4, 38) 2 6 0.0090 0.0077 (0.0001,0.0343) 0.0006 
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Table 2. Results of the simulations, number of columns -- 8. 

# M G(r) kl A2 Mean Median Range Avg error 

41 10 U(1, 8) 3 5 0.3785 0.3297 (0.1000, 0.9991) 0.1364 

42 10 T(3, 7) 3 5 0.3700 0.3278 (0.0441,0.9073) 0.1090 

43 10 S(2, 6) 3 5 0.3739 0.3570 (0.0066, 0.9997) 0.1103 

44 10 U(1,8) 2 6 0.1793 0.1812 (0.0107, 0.4000) 0.0709 

45 10 T(3, 7) 2 6 0.1922 0.1890 (0.0108, 0.7124) 0.0528 
46 10 S(2, 6) 2 6 0.1189 0.0981 (0.0000, 0.5145) 0.0336 
47 30 U(1,8) 3 5 0.2429 0.2266 (0.0843,0.5767) 0.1047 
48 30 T(3, 7) 3 5 0.25.57 0.2475 (0.0365, 0.5461) 0.0752 
49 30 S(2, 6) 3 5 0.2265 0.2107 (0.0032, 0.6333) 0.0679 
50 30 U(1, 8) 2 6 0.1125 0.1028 (0.0201,0.2882) 0.0486 
51 30 T(3,7) 2 6 0.1076 0.1005 (0.0123,0.2991) 0.0300 
52 30 S(2, 6) 2 6 0.0600 0.0481 (0.0004, 0.2328) 0.0172 
53 100 U(1,8) 3 5 0.1515 0.1468 (0.0466,0.3236) 0.0693 

54 100 T(3,7) 3 5 0.1489 0.1435 (0.0169,0.3727) 0.0446 
55 100 S(2,6) 3 5 0.1268 0.1221 (0.0080,0.3952) 0.0390 

56 100 U(1,8) 2 6 0.0603 0.0560 (0.0193,0.1353) 0.0276 
57 100 T(3,7) 2 6 0.0559 0.0512 (0.0047,0.1543) 0.0153 

58 100 S(2,6) 2 6 0.0293 0.0259 (0.0002,0.0994) 0.0085 
59 500 U(1,8) 3 5 0.0782 0.0763 (0.0248,0.1947) 0.0355 
60 500 T(3,7) 3 5 0.0642 0.0596 (0.0119,0.1972) 0.0195 
61 500 S(2,6) 3 5 0.0585 0.0570 (0.0056,0.1366) 0.0181 
62 500 U(1,8) 2 6 0.0265 0.0258 (0.0095,0.0564) 0.0123 

63 500 T(3,7) 2 6 0.0255 0.0253 (0.0027,0.0761) 0.0070 
64 500 s (2 ,6 )  2 6 0.0125 0.0111 (0.0001,0.0355) 0.0037 

of es t ima tes  f rom the  s ingle-pa th  m a x i m u m  likel ihood e s t ima to r  for a change,  
Hinkley  (1970). T h e  initial es t imates  of  A1 and  A2 were the  weighted  averages  of  
observa t ions  before and  after  the  change  in each row. 

In  all cases, m a x i m u m  likelihood es t imates  were c o m p u t e d  by the  E M  algo- 
r i t h m  as descr ibed  in Sect ion 4, p r o g r a m m e d  in For t ran ,  and  run  on a S P A R C -  
s t a t ion  SLC. 

Results of the simulations. T h e  resul ts  of  the  s imula t ions  are t a b u l a t e d  in 
Tables  1 and  2, and  boxp lo t s  c o m p a r i n g  the  d i s t r ibu t ions  of  the  grea tes t  errors  
a p p e a r  in Figs. 1 and  2. T h e  es t imates  for the  A's are no t  inc luded in the  tables.  
For  N = 40, t h e y  were a lmos t  a r r a y s  accu ra t e ly  es t imated .  In  fact,  ]A i -A i  I _< 0.26 

across all 40 x 300 s imulat ions ,  IX~ - A~ I _< 0.15 for s imula t ions  wi th  M _> 100, and  

IAi - Ail _< 0.05 for s imula t ions  wi th  M = 500, i = 1, 2. As could be expec ted ,  the  

a c c u r a c y  for N = 8 was s o m e w h a t  less t h a n  for N = 40, w i th  IAi-Ai l  _< 5 across  all 

24 × 300 s imulat ions ,  IA~- )'~1 -< 0.67 for s imula t ions  wi th  M > 100, and  IA~- A~ I < 
0.22 for s imula t ions  wi th  M = 500, i = 1, 2. However ,  in mos t  s imula t ions  A1 and  
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Fig. 1. Results of the simulations for N = 40: boxplots of the ]argest errors. 
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),2 were es t imated with much more accuracy than  these maximal  errors indicate. 
As expected,  errors in es t imat ion of the change-point  distr ibution decreased 

appreciably as M increased. For M = 500 even the maximum error was typical ly 
much less than  0.08, while maximum errors of 0.3 were typical  when M = 10. As 
Fig. 3 shows, however, even with M = 10, the es t imated probabil i ty  tended to be 
in the same neighbourhood as the t rue probability, but  was often moved over by 
one or two indices along the z-axis. Under most circumstances,  these errors should 
not great ly decrease the value of the analysis. Figure 4 shows the improvement  for 
M = 500. There  was great similarity between the cases where N = 40 and N = 8 
in these measurements .  

7. Examples 

The  analyses in this section while by no means complete serve to i l lustrate the 
me thod  proposed in this paper.  

Example 1. Urea-formaldehyde foam insulation (UFFI)  was installed in 
many  homes in Canada  until it was banned by the Federal Government  on Decem- 
ber 18, 1980. The  decision to ban UFFI  was based more on precaut ionary  measures 
than  solid evidence tha t  the material  was harmful  to the heal th of residents of the 
buildings in which it was installed. One indicator of the danger posed by UFFI  
would be an increase in the rate  at which household occupants  visit a doctor  after 
installation as compared to before. Of course, even if there is an increase, one 
would not expect  an instant  react ion to the material ,  and one may be interested 
in est imating the t ime to effect (if any). Tr i -monthly da ta  was collected, L'Abb~ 
(1984), on the number  of visits to a doctor  for one year before and after installa- 
t ion of the foam in 337 households in Canada,  so tha t  N = 8. There  were 67 cases 
with missing da ta  (an interesting extension of the methods  presented here would 
be to employ the EM algori thm to simultaneously est imate  the missing values in 
addit ion to the usual parameters  of the model),  and a fur ther  36 outliers, defined 
as those cases with greater  than  20 visits in any three month  period, presumed 
to have a serious illness not associated with UFFI.  After removing these cases, 
M = 234 households remained in the analysis. 

The  a lgor i thm as proposed in Section 4 was employed. The  visit rates were 
es t imated to be ),1 = 1.12 and £2 = 4.83. The  results for /ST are given by 
Fig. 5, where it is noted tha t  /5(8) = 0.55. This may  be in terpre ted to mean  
tha t  there  is relatively high probabil i ty  tha t  UFFI  had no effect on the rate  at 
which most  household occupants  visited their  doctors.  Other  research on this 
contentious issue supports  these findings. This analysis required only 48 i terat ions 
and approximate ly  20 seconds to converge. 

Example 2. Data  consisting of the number  of rural  highway fatalities in the 
United States before and aRer the relaxation of the 55 mile per hour  speed limit 
were analyzed. Precisely, the da ta  provided by the United States National  Highway 
Traffic Safety Adminis t ra t ion  gave the month ly  number  of traffic deaths  on rural  
inters ta te  roads for all s tates from April 1985 to April 1989. This t ime period 
included the year tha t  the 55 miles per hour speed limit was lifted by Congress. 
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Fig. 5. E s t i m a t e d  t ime to change of the  visit rate.  

Forty of the 50 states increased their limits to 65 miles per hour, 38 of them in 
the spring or summer of 1987, and two in 1988. 

The main goal of the analysis was to estimate the distribution of the time at 
which the traffic fatality rate changed. The assumption is that not all states would 
experience a change the instant the speed restriction was lifted. 

Initially, an analysis for all 48 states with one or more fatalities was carried 
out even though the fatality rates differed greatly from state to state, violating 
the assumptions of Section 2. Not surprisingly, the estimated distribution placed 
virtually all its mass at either the beginning or the end of the time period under 
study. This phenomenon is due to the fact that  the between state differences were 
most often much greater than the before-to-after differences within each state. 

This problem was resolved by modifying the algorithm slightly, allowing Am 
and A2 to vary from row to row but remain as fixed constants. Although the proof 
of consistency no longer holds in this case, further simulations seemed to show 
that the slightly modified algorithm performed well under conditions similar to 
those of this example. Since the rates A1 and A2 are estimated separately for each 
row, the modified algorithm always estimates _P(N) = 0. This is because the value 
of the likelihood contribution for each row cannot decrease when A1 and A2 are 
included in the model, that  is, when 1 < ~- < 48, compared to when the likelihood 
contains only A1, when ~- = 49. Thus the modified model is useful principally for 
estimation under the assumption that there is a change in each row. Information 
concerning the size of the change in each state is provided by the estimates of A1 
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Fig. 6. Es t ima ted  t ime to change of the  fatal i ty rate.  

and •2 for each row. It is presumed that  the fatality rate does not affect PT. 
The resulting /3T appears in Fig. 6. It can be seen that 69% of the mass is 

concentrated around the months after the speed limit was lifted. In examining the 
estimated values for A1 and A2, 35 of the 48 states (73%) had £1 > ~2, indicating 
an increase in the fatality rates. Using the same stopping criterion as in the 
simulations, the algorithm converged in 114 iterations, taking approximately 50 
seconds to run. 

The data were not seasonally adjusted as this would have entailed a tedious 
state-by-state seasonal adjustment without further illuminating the method. 

8. Concluding Remarks 

The multi-path change-point problem is attacked on three fronts. By taking 
a missing data viewpoint, the EM algorithm is used to carry out the maximiza- 
tion. The same algorithm may be obtained by placing the estimation problem in 
the context of a more general mixture problem. Of course, there are other pro- 
cedures for approximating maximum likelihood estimates. For a full discussion of 
these methods, including Newton's method and the conjugate gradient method, 
see Redner and Walker (1984). Alternatively, in order to prove the consistency of 
the maximum likelihood estimators, the work of Kiefer and Wolfowitz is invoked. 
They discuss estimation of parameters in the presence of a sequence of "random" 
parameters. 

Careful simulations seem to indicate that  all parameters are well estimated. 
Difficulty in estimating the change-point distribution may arise when the size of 
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the change is small and there are few data paths. Alternative methods for multi- 
path change-point problems are given in Joseph and Wolfson (1992). 
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