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SUMMARY

Tumour registry linkage, chart review and patient self-report are all commonly used ascertainment
methods in cancer epidemiology. These methods are used for estimating the incidence or prevalence
of di�erent cancer types in a population, and for investigating the e�ects of possible risk factors for
cancer. Tumour registry linkage is often treated as a gold standard, but in fact none of these methods
is error free, and failure to adjust for imperfect ascertainment can lead to biased estimates. This is
true both if the goal of the study is to estimate the properties of each ascertainment type, or if it
is to estimate cancer incidence or prevalence from one or more of these methods. Although rarely
applied in the literature to date, when cancer is ascertained by three or more methods, standard latent
class models can be used to estimate cancer incidence or prevalence while adjusting for the estimated
imperfect sensitivities and speci�cities of each ascertainment method. These models, however, do not
account for variations in these properties across di�erent cancer sites. To address this problem, we
extend latent class methodology to include a hierarchical component, which accommodates di�erent
ascertainment properties across cancer sites. We apply our model to a data set of 169 lupus patients
with three ascertainment methods and eight cancer types. This allows us to estimate the properties of
each ascertainment method without assuming any to be a gold standard, and to calculate a standardized
incidence ratio for cancer for lupus patients compared to the general population. As our data set is
small, we also illustrate the e�ects as more data become available. We show that our model produces
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parameter estimates that are substantially di�erent from the currently most popular method of ascertain-
ment, which uses tumour registry data alone. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Methods of cancer ascertainment commonly used in epidemiological research include self-
report (or report by a proxy), medical chart review, and linkage with cancer registries. Each
method has advantages and limitations.
One bene�t of using self-report is that information can be obtained not only on outcomes,

but also on exposures that may not be captured by other means. However, this method
of cancer ascertainment may introduce inaccuracies, because of under- or over-reporting by
patients or proxies [1–3]. For example, errors in self-report may arise from lack of knowledge
of tumour type, or because pre-malignant lesions may be confused with actual cancers, such
as in cervical disease and skin lesions [2]. In addition, use of self-report will miss cases of
cancer in those deceased or lost to follow-up, potentially causing substantial under-reporting.
Similarly, ascertainment by chart review poses a problem for patients deceased or lost to
follow-up, or when not all care occurs at a single hospital. Registry linkage is often consid-
ered to be the best option, but it is well known that tumour registries may not include all
cases, because of under-reporting, incomplete coverage, or human error [4–8].
In the past 15 years, numerous authors have reported on the variable accuracy of regional

cancer registries in North America and the U.K. [4–7], and a few assessments of other
methods of cancer ascertainment, including chart review and self-report, have been published
[1, 2]. There is little data, however, on the comparison of chart review, self-report, and tumour
registry linkage within the same population, and few have commented on the consequences
of imperfect ascertainment inherent in all of these methods. In most studies, a single method
of ascertainment is chosen, and results such as cancer incidence are reported ignoring the
possible misclassi�cation error. The usual procedure when comparing one method of cancer
ascertainment to another is to select one as the gold standard; generally, this standard is
linkage with a registry. Of course, this ignores the possibility that even tumour registries
have imperfect sensitivities and speci�cities [8]. A further problem is that the sensitivity and
speci�city of each method of cancer ascertainment may vary with cancer type, even though
general tendencies across cancer types may be expected within each ascertainment method. In
addition, many studies are based on low numbers of cases of each cancer type; thus, simple
estimates, aside from being biased by misclassi�cation through use of an imperfect reference
standard, may also be inaccurate due to small sample sizes.
Previous methods for parameter estimation in studies using imperfect tests have included

latent class models from both frequentist [9, 10] and Bayesian [11] perspectives. Although in
theory these methods are applicable to cancer ascertainment studies, they have rarely been
applied in this setting. Conditional independence occurs when test results are statistically in-
dependent of each other, given the true disease status of each subject. When three or more
conditionally independent tests or ascertainment methods are available, maximum likelihood
methods can provide asymptotically unbiased estimates of the sensitivity and speci�city of all
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tests or methods, as well as the overall incidence or prevalence of the condition, without im-
posing any restrictions on the parameter space [9]. Restrictions are necessary when data from
only one or two tests are available, or when tests are not conditionally independent. In such
cases Bayesian methods can replace the need for restrictions with the use of an informative
prior distribution over a subset of the unknown parameters. Bayesian [12] and frequentist [13]
methods are also available when the tests or ascertainment methods are correlated with each
other (i.e. not conditionally independent).
Whether frequentist or Bayesian, previous methods do not allow for the combining of

information on several methods of disease ascertainment across two or more cancer types.
Without this, one either must assume a common sensitivity and speci�city across all cancer
types, which is unrealistic, or treat each cancer type as a completely distinct problem, ignoring
the general tendencies of each ascertainment method across cancer types, and resulting in
very wide interval estimates when sample sizes are small or moderate. Here, we propose a
hierarchical extension to the Bayesian methods previously developed [11], which has two main
advantages. First, it allows for simultaneous estimation of distinct sensitivity and speci�city
parameters for all three methods and for each cancer type. Second, it allows for the usual
‘borrowing of strength’ across cancer types, in order to obtain reasonable parameter estimates
for all types, even in small data sets [14]. This represents a compromise between the pooling
of data across cancer types at one extreme, and independent estimates for each cancer type at
the other, with the degree of pooling determined by the data. Typically, a small amount of bias
in each individual parameter estimate due to hierarchical pooling is traded for lower overall
mean square error, averaged across all parameter estimates [14]. If three or more tests are
available, di�use or non-informative prior distributions can be used, so that the �nal statistical
inferences are driven almost entirely by the data. Of course, if reliable prior information is
available, it can serve to further sharpen the inferences.
Adjusting for imperfect ascertainment data is important for several reasons. First, the sensi-

tivities and speci�cities of each ascertainment method are of interest by themselves, as these
properties need to be well understood by researchers planning cancer epidemiology studies or
interpreting results from such studies. Second, the incidence or prevalence of cancer arising
from studies using imperfect ascertainment methods needs to be correctly adjusted in order
to obtain consistent estimates. Third, biased estimation of primary parameters carries over to
quantities based on these estimates, such as measures of e�ect. For example, large errors can
occur in calculating SIRs, owing to a possibly di�erent mix of ascertainment methods used
to form the numerator and denominator.
In this article, we �rst provide the details of our latent class hierarchical model for cancer

ascertainment data. Next, for a small data set of 169 lupus patients, we use our model to
estimate sensitivity and speci�city of self-report, chart review and tumour registry methods
for each of eight cancer types, along with the incidence of each type. Our model also pro-
vides summary estimates of overall sensitivity and speci�city parameters for each method
across all cancer types. We compare our estimates to those from standard methods which
assume registry data to be a perfect gold standard, and also to a non-hierarchical Bayesian
latent class model, which accounts for imperfect registry data, but does not pool data or
‘borrow strength’ across cancer types. To illustrate the e�ect of increasing sample size, we
compare parameter estimates from all models assuming our data set was ten times its ac-
tual size. We examine how imperfect ascertainment biases SIR estimates from our lupus
data, and present an adjusted estimate. To provide context to this work, we also include
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a brief survey of methods of cancer ascertainment in current use in three major medical
journals.

2. METHODS

2.1. Literature review

We surveyed the frequency of methods of cancer ascertainment used in cohort studies in
three prominent medical journals (the New England Journal of Medicine, the Journal of the
American Medical Association, and the Journal of the National Cancer Institute) during 1999–
2001. A search was done for articles whose title or abstract included the keywords ‘cancer’
or ‘malignancy’ together with ‘cohort’ or ‘prospective’. All articles describing original cohort
studies with a primary outcome of cancer incidence (i.e. not of cancer mortality) were in-
cluded, and information on which cancer ascertainment methods were used was extracted. We
tabulated the number of times each method or combination of methods was used, as well as
whether adjustments for imperfect ascertainment were carried out.

2.2. A Bayesian hierarchical model for cancer ascertainment

The statistical methods described below were applied to data from a cohort consisting of
207 patients followed at the Montreal General Hospital Lupus Clinic during the period from
1984 to 1998. Each patient attending the clinic was invited to complete a postal survey on
malignancy occurrence and to give their permission for a chart review and for linkage of their
name with the Quebec Tumour Registry. Approval was obtained from the local ethics review
board, and written informed consent was obtained from each participant. All but 16 agreed to
participate, although a further 22 were unable or unwilling to complete the survey and thus
were not included in the study. The survey asked, ‘Have you ever had a cancer or malignant
tumour? If so, what type of cancer was it?’ and when the cancer occurred. The patients
seen in the Lupus Clinic are followed regularly, with an annual clinic visit. For our study,
the clinic charts were reviewed by a physician for documentation of cancer occurrence. The
participating patients were also linked to the Quebec Tumour Registry, a provincial database
that records cancer occurrence primarily from hospital admissions and day-hospital procedures
[15]. The registry also receives data from other provinces when Quebec cancer patients are
treated there. We thus had data on cancer occurrence using all three methods for 169 subjects.
While the aetiology is still unknown, it has long been suspected that lupus patients have

cancer rates well above that of the general population [16]. Therefore, although our data set
is small, high rates of cancers in lupus patients provided a total of 16 cancers among these
patients, or 9.5 per cent. The cancers were of eight di�erent types: haematological, breast,
endometrial, cervical, colorectal, central nervous system, melanoma, and ovarian.
Our three level latent class hierarchical model is described as follows: Label the subjects

i=1; 2; : : : ; 169, the three cancer ascertainment methods, j=1 (self-report), 2 (chart review) or
3 (tumour registry), and let the cancer types be labelled k=1; 2; : : : ; 8, in the same order as in
the above list. The probability that a randomly selected subject truly has developed cancer of
type k is given by the prevalence, �k . Given cancer of type k, the probability that cancer ascer-
tainment method j detects the cancer is given by the sensitivity Sjk , while the speci�city, or the
probability of ascertainment method j not detecting cancer of type k in subjects truly free from
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that cancer type, is denoted by Cjk . Let xijk =1 (0) denote that subject i is detected as having
(not having) cancer of type k by ascertainment method j. Given this notation, the probability
that ascertainment method j detects cancer of type k in subject i, including both true and false
positives, is given by Pr{xijk =1}=�kSjk + (1 − �k)(1 − Cjk). Similarly, the probability that
ascertainment method j does not detect cancer of type k in subject i, including both true and
false negatives, is given by Pr{xijk =0}=�k(1− Sjk) + (1− �k)Cjk . If we assume conditional
independence, which is reasonable in our situation since the methods of cancer ascertainment
operate very di�erently (see Section 4), expressions for results across all three ascertainment
methods are available. For example, Pr{xi1k =1 and xi2k =1 and xi3k =1}=�kS1kS2kS3k+(1−
�k)(1− C1k)(1− C2k)(1− C3k), and so on.
Let n111k denote the total number of subjects in our data set who are ascertained as having

cancer of type k by all three methods, n110k denote the number of subjects positive on the �rst
two tests but not in the tumour registry, n101k denote those positive by tumour registry and
self-report but not by chart review, and so on, down to n000k , which represents the number
of subjects who are ascertained as negative by all three methods. Of course, in our data set,
n111k + n011k + n101k + n110k + n001k + n010k + n100k + n000k =169. For each cancer type k, the
independent likelihood function contribution for our data, across all patients and ascertainment
methods is

[�kS1kS2kS3k + (1− �k)(1− C1k)(1− C2k)(1− C3k)]n111k

×[�kS1kS2k(1− S3k) + (1− k)(1− C1k)(1− C2k)C3k]n110k

×[�kS1k(1− S2k)S3k + (1− �k)(1− C1k)C2k(1− C3k)]n101k

×[�k(1− S1k)S2kS3k + (1− �k)C1k(1− C2k)(1− C3k)]n011k

×[�kS1k(1− S2k)(1− S3k) + (1− �k)(1− C1k)C2kC3k]n100k

×[�k(1− S1k)S2k(1− S3k) + (1− �k)C1k(1− C2k)C3k]n010k

×[�k(1− S1k)(1− S2k)S3k + (1− �k)C1kC2k(1− C3k)]n001k

×[�k(1− S1k)(1− S2k)(1− S3k) + (1− �k)C1kC2kC3k]n000k

This forms the �rst level of our hierarchical model, which takes into account individ-
ual sampling variability, including variability due to whether an individual truly has can-
cer of type k, and whether this cancer is detected by one or more of the methods. At
the second level, the logit of each of the eight sensitivities and speci�cities (across can-
cer types) from each test are assumed to follow normal distributions respectively, which
re�ects the fact that each ascertainment method can operate di�erently within each cancer
type. At this stage, we allow variability of the properties of each ascertainment method across
di�erent cancer types, but within a common model. We used logit(Sjk)∼ normal(�1j; �21j),
and logit(Cjk)∼ normal(�2j; �22j), k=1; 2; : : : ; 8; j=1; 2; 3. This stage allows for the ‘borrow-
ing of strength’ across cancer types when estimating the properties of each ascertainment
method, while still allowing distinct parameters for each method. In the third level of our
hierarchical model, we placed prior distributions on these second level hierarchical param-
eters, with �hj ∼ normal(0; 4), and �hj ∼ uniform[0:2; 2], h=1; 2; j=1; 2; 3. We bounded the
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uniform distribution for the �hj parameters away from zero since it is highly implausible for
these to be very close to zero. Finally, our model speci�cation is completed by independent
uniform prior distributions over the interval [0; 1] for the incidences, �k ; k=1; 2; : : : ; 8. While
usually considered as a non-informative prior, in very low prevalence situations, this prior may
result in slightly increased prevalence estimates, as it is equivalent to adding one negative
and one positive subject to the data.
The choice of hierarchical variance parameters were based on substantive considerations.

As probabilities range from 0.01, to 0.99, the logistic model covers a range of approximately
−4:6 to +4:6, and the range is about −6:9 to +6:9 for probabilities in the range 0.001 to
0.999. Therefore, standard deviations (SDs) of 2–3 easily cover the entire range of feasible
values. The SD of 2 for the normal hierarchical parameters is relatively non-informative, since
within each ascertainment type, the sensitivities and speci�cities should cover a much smaller
range than those given above, so the normal distribution should be relatively �at in the area
of posterior concentration. Similarly, the uniform range for the standard deviations covers the
most plausible range. Nevertheless, we checked the robustness of the chosen range by also
running models with �hj ∼ uniform[0:05; 4] and �hj ∼ uniform[0:1; 3], h=1; 2; j=1; 2; 3.
Note that inferences about the sensitivities and speci�cities of the cancer ascertainment

methods are available at two di�erent levels. First, marginal posterior densities can be esti-
mated for each of the 24 sensitivity and speci�city parameters, each providing information
about how a particular ascertainment method operated within a given cancer type. Second,
overall summaries of these properties across cancer types within each ascertainment method
are available from the second level of the hierarchical model, by taking the inverse logit of
the normal hierarchical distributions.
In order to further assess the e�ect of the hierarchical component of our model, we also

�t a model [11] with no hierarchical component. While this model accounts for the absence
of a gold standard, it does not pool data across cancer types. This involves the trade-o� of
fewer modelling assumptions for wider interval estimates within each cancer type. It is also
di�cult to summarize overall properties of each ascertainment methods across cancer types
using this non-hierarchical model.
Estimating functions of the above parameters, such as standardized incidence ratios (SIRs)

that are adjusted for imperfect ascertainment methods, is straightforward. For example, con-
sider the situation of estimating the SIR for lupus patients, de�ned as the ratio of cancer
incidence in lupus patients divided by the incidence in the general population. The incidence
of cancer in our lupus cohort is de�ned as

∑8
i=1 �k , which is already adjusted for the im-

perfect reference standards if the methods described above are used. The denominator may
be estimated from the Quebec Tumour Registry, by applying incidence rates in the registry
to the age–sex matched distribution of person years in the lupus cohort. While this number
is not adjusted for the imperfect registry data, an adjusted estimate can be derived from the
formula (�+ C − 1)=(S + C − 1), where S and C are the appropriate sensitivity and speci�city
estimates for the tumour registry, and � is the unadjusted estimate for the incidence of cancer
from the registry [11]. Note that while incidences are usually de�ned in terms of events per
person-year rather than raw counts of cancers, the person-years are the same in the numerator
and denominator in the above calculation, and so cancel out. Misclassi�cation errors, however,
do not cancel out, since di�erent ascertainment methods leading to di�erent magnitudes of
errors are used in the numerator and denominator of the SIR. The methods described above
rectify this problem.
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No analytic solution is available for estimating the parameters of these complex models. We
therefore used the Gibbs sampler, implemented via the WinBUGS program [17], to generate
random samples from our target posterior densities. These samples are then used for inferences
about the marginal posterior density of each parameter, which we summarized by posterior
means and 95 per cent highest posterior density (HPD) credible intervals. The Gibbs sampler
is an iterative method, where random samples are drawn from the full conditional distribution
of each parameter in turn. The full conditional distribution of each parameter is de�ned as the
distribution of that parameter conditional on all other parameters. In our case, the set of full
conditional distributions is made simpler by the addition of latent variables, represented by the
true but unobserved cancer status for each subject. See Reference [11] for further details about
using the Gibbs sampler in a similar diagnostic test setting with latent variables, Gelman et al.
[14] or Gilks et al. [18] for general information about the Gibbs sampler, and Spiegelhalter
et al. [17] for information on the BUGS programming language. We used the method of Gilks
et al. [18] to estimate the number of iterations required for accurate estimation, leading to a
choice of 20 000 iterations following a ‘burn-in’ (number of initial samples discarded before
convergence is reached) of 4500. All analyses were run from a variety of starting points to
further ensure convergence [14]. The WinBUGS code used is available from the authors.
Throughout, we use con�dence intervals when reporting results from frequentist methods,

and HPD intervals for summarizing results from Bayesian methods. Con�dence intervals are
only used for comparison purposes in the upper half of Table II.

3. RESULTS

3.1. Literature review

We retrieved 42 articles [19–61], with the vast majority using a single method of cancer
ascertainment, without assessing its accuracy. In articles relying on tumour registry data, all
authors implicitly assumed that accuracy of the registry data was perfect. Cancer outcome
was assessed using a cancer registry alone in 18 of the 42 articles (43 per cent) [44–61],
while 16 (38 per cent) used self-report (telephone or postal survey) alone [19–34] and 1
(2 per cent) used a review of medical records alone [35]. Two studies (4 per cent) used two
methods, including chart review plus self report [39] or plus physical exam [40]. Another two
studies [41, 42] used three methods (self-report, cancer registry and chart review). Finally,
three studies used other methods, including endoscopy [36, 37] and prostate speci�c antigen
assays [38]. Of the 16 studies that relied on self-report alone, a handful mentioned an attempt
to con�rm the cases with medical documentation such as a pathology report [22, 23, 30, 34, 43],
but the vast majority assumed their ascertainment methods to be perfect, even when the
main method used was not linkage with a tumour registry. None of the papers we reviewed
mentioned latent class modelling or made any attempt to adjust results for an imperfect gold
standard.

3.2. Data analysis

The average age of the 169 participating Lupus Clinic patients was 47.2 (standard deviation
13.5), similar to that of the 38 cohort members who did not participate (42.0, standard de-
viation 15.0). As systemic lupus erythematosus is a disease primarily a�ecting women, the
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majority (91 per cent) of participating subjects were female as were the majority of those
who declined (89 per cent).
Table I presents the data from our study. Sixteen cancers were reported by one or more

methods; eight of these were found by all three methods, and the other eight were reported
by only one or two methods. Therefore, there were disagreements among the methods for
half of all cancers found.
Table II presents overall estimates of the sensitivity and speci�city of postal survey and

chart review methods, �rst assuming the tumour registry is a perfect gold standard, and then
using our three level Bayesian hierarchical model, which does not assume any gold standard.
The estimates in the upper section of the table are found by pooling the data over all cancer
types, treating tumour registry as a perfect gold standard reference, and calculating the sensitiv-
ities and speci�cities for the postal survey and chart review separately. Con�dence intervals
were then found by an exact procedure [62]. The Bayesian estimates in the lower half of

Table I. Number of subjects in the Montreal General Hospital Lupus cohort with a cancer occurrence
(by type) as determined by the three methods of cancer ascertainment.

Method Cancer type

SR CR TR Haematologic Breast Endometrial Cervical Colorectal CNS Melanoma Ovarian

+ + + 1 4 1 1 1 0 0 0
+ + − 0 0 0 0 0 0 0 0
+ − + 0 0 0 0 0 0 0 0
− + + 0 0 0 2 0 0 0 0
+ − − 0 0 0 2 0 0 2 1
− + − 0 0 0 0 0 0 0 0
− − + 0 0 0 0 0 1 0 0
− − − 168 165 168 164 168 168 167 168

SR= self-report, CR=chart review, TR= tumour registry linkage, CNS=central nervous system.

Table II. Sensitivity and speci�city estimates for three methods of cancer ascertainment in the Montreal
General Hospital Lupus Cohort.

Sensitivity (95 per cent CI) Speci�city (95 per cent CI)

Considering tumour registry data as the reference standard
Postal survey 0.727 (0:390; 0:940) 0.968 (0:928; 0:990)
Chart review 0.909 (0:587; 0:998) 1.000 (0:977; 1:000)
Tumour registry 1:000∗ 1:000∗

Sensitivity (95 per cent HPD) Speci�city (95 per cent HPD)

Bayesian estimates (no single method is considered the reference standard)
Postal survey 0.736 (0:236; 0:999) 0.992 (0:975; 1:000)
Chart review 0.876 (0:511; 1:000) 0.998 (0:993; 1:000)
Tumour registry 0.885 (0:547; 1:000) 0.996 (0:990; 1:000)

∗Assumed to be perfectly accurate by the methodology. CI indicates a standard con�dence interval, while
HPD represents Bayesian highest posterior density intervals.
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Table II were found by sampling from the normal(�hj; �2hj) distributions, h=1; 2, and applying
the inverse logit, representing, respectively, the sensitivities and speci�cities for a ‘typical’
cancer type. The index j varied across the three ascertainment methods, producing the results
for each.
Of 11 cancers identi�ed by tumour registry linkage, eight were identi�ed on postal survey,

for a sensitivity (compared to tumour registry) of 0.727 (95 per cent CI 0:390; 0:940); the
speci�city was 0.968 (95 per cent CI 0:928; 0:990). Chart review identi�ed 10 of 11 malignan-
cies recorded in the tumour registry, for a sensitivity of 0.909 (95 per cent CI 0:587; 0:998).
All 10 malignancies found on chart review were recorded in the tumour registry. Using our
Bayesian hierarchical model, the intervals for the sensitivities are generally wider, since the
possibility of errors in the tumour registry is allowed, leading to a higher degree of uncertainty.
The estimates for the speci�cities changed little. This methodology allows us to estimate the
sensitivity and speci�city of the tumour registry for cancer occurrence; these values were
0.885 (95 per cent HPD 0:547; 1:000) and 0.996 (95 per cent HPD 0:990; 1:000), respectively.
While the point estimates are high, sensitivities as low as 55 per cent are not ruled out for
at least some cancer types.
It is important to understand the di�erent interpretations of the two types of inferences

presented in Table II. The sensitivity and speci�city estimates based on the tumour registry
standard are found by a simple pooling of data across cancer types. Therefore, for example,
�ve missed cancers of any single type count the same as �ve missed cancers, each of a
di�erent type. It is very di�cult to provide estimates within each cancer type, because the
small sample sizes lead to wide con�dence intervals. In other words, pooling the data hides
di�erences in the properties of the ascertainment methods across di�erent cancer types, while
individual estimates (by cancer type) are imprecise. Finally, no estimates of the true tumour
registry sensitivity and speci�city are provided, as this method is (unrealistically) assumed to
be perfect.
In contrast, the hierarchical model provides estimates of the properties of all three methods,

and provides a compromise between pooled and individual estimates. Each cancer type is
given its own sensitivity and speci�city parameters for each type of ascertainment method.
The overall summary is of these parameters, and changes depending on how the detected
cancers are distributed across cancer types. In addition, individual parameter estimates can
be estimated more precisely, because (depending on the observed data) a certain degree of
pooling takes place. If there is no strong evidence of di�erences in properties across cancer
types (as is the case with our data) then a larger degree of pooling will automatically take
place. The interpretation of the overall summary measures given in Table II, therefore, is
that for a ‘typical cancer type’. The 95 per cent HPD intervals re�ect both random sampling
variability and the variability due to di�erences in sensitivity and speci�city across cancer
types. The later term is omitted when estimates are based on tumour registry data alone.
If one assumes that tumour registry provides a perfect reference standard, then the incidence

of all cancers combined is simply estimated by the 11 cancers found by this method in 169
subjects, giving 6.5 per cent (95 per cent CI 3.3 per cent, 11.3 per cent). However, the
hierarchical model gives more weight to the �ve cancers ascertained by other methods and
the possibility that there are cancers detected by none of the methods, thus providing a much
higher incidence estimate of 10.8 per cent (95 per cent HPD 6.2 per cent, 16.2 per cent).
Individual incidences ranged from lows of less than 1 per cent for CNS, melanoma and
ovarian cancers to a high of 2.9 per cent for breast cancer.
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Table III. Bayesian estimates for the sensitivity and speci�city of the three methods of cancer
ascertainment in the Montreal General Hospital Lupus Cohort, according to type of cancer.

Cancer Type (N ) Self-report Chart review Tumour registry

Sensitivity
Haematologic (1) 0.789 (0:403; 0:999) 0.890 (0:626; 1:000) 0.903 (0:646; 1:000)
Breast (4) 0.856 (0:601; 0:999) 0.923 (0:744; 1:000) 0.927 (0:754; 1:000)
Endometrial (1) 0.788 (0:407; 0:999) 0.895 (0:623; 1:000) 0.903 (0:647; 1:000)
Cervical (5) 0.592 (0:184; 0:946) 0.913 (0:701; 1:000) 0.918 (0:717; 1:000)
Colorectal (1) 0.791 (0:401; 0:999) 0.897 (0:623; 1:000) 0.902 (0:640; 1:000)
CNS (1) 0.723 (0:213; 0:999) 0.859 (0:430; 1:000) 0.886 (0:554; 1:000)
Melanoma (2) 0.737 (0:229; 0:999) 0.868 (0:465; 1:000) 0.880 (0:515; 1:000)
Ovarian (1) 0.736 (0:233; 0:999) 0.872 (0:478; 1:000) 0.882 (0:530; 1:000)

Speci�city
Haematologic (1) 0.997 (0:992; 1:000) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
Breast (4) 0.997 (0:991; 1:000) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
Endometrial (1) 0.997 (0:991; 1:000) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
Cervical (5) 0.992 (0:981; 0:999) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
Colorectal (1) 0.997 (0:991; 1:000) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
CNS (1) 0.997 (0:991; 1:000) 0.999 (0:996; 1:000) 0.997 (0:991; 1:000)
Melanoma (2) 0.992 (0:981; 0:999) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)
Ovarian (1) 0.995 (0:987; 0:999) 0.999 (0:996; 1:000) 0.998 (0:995; 1:000)

N = total number of cases reported by any method. CNS=central nervous system. Numbers in parentheses
represent Bayesian 95 per cent HPD intervals.

Table III presents estimates for the sensitivity and speci�city of the three methods of cancer
ascertainment according to type of cancer, from our three level hierarchical model. Across all
cancer types, the sensitivity of tumour registry was higher than that of self-report, although
tumour registry and chart review appeared similar in terms of both sensitivity and speci�city.
With our small data set, little can be said about the di�erences in the properties of each
ascertainment method across cancer types.
In larger data sets, HPD intervals for the sensitivities and speci�cities for each method

within each cancer type will be narrower, and �rmer conclusions will be available. To illustrate
this, and the impact of di�erent models, Figure 1 compares four possible models for estimating
the sensitivity of self-report for haematologic cancer using a small data set (Table I) and a
larger data set (Table I data with each cell multiplied by 10). Model 1 is the simplest possible
model, where sensitivity is assumed to be the same across all cancer types, so that data from
all types can be pooled. Model 2 does not pool, using data from the column for haematologic
cancer only. In both Models 1 and 2, registry is considered as the gold standard. Models 3
and 4 are the two models described in Section 2.2. While neither assume tumour registry to
be a perfect gold standard, Model 4 pools across cancer types, while Model 3 does not. In the
small data set, there are large di�erences between models, with non-pooled models providing
virtually no useful information due to very wide con�dence intervals. Comparing the models
which do pool data, the hierarchical model provides a slightly wider interval, as uncertainty
is introduced by acknowledging the imperfections in the tumour registry. Compared to the
smaller data set, the larger data set provides narrower interval estimates, and the di�erent
assumptions behind the models in some cases provide quite di�erent estimates. Overall, the
tradeo�s are clear: assuming that the distinct sensitivity and speci�city parameters are drawn
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Small Data Set Large Data Set
(Table 1) (10 × data in Table1)

Model 1

Model 2

Model 3

Model 4

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

.39 .94

.05

.14 .99

.40

.63 .81

.74

.71 .99

.86

Figure 1. Ninety-�ve per cent HPD interval estimates for the sensitivity of self-report haematologic
cancer across four di�erent models, in two di�erent data sets. Models 1 and 2 assume the tumour
registry to be a perfect gold standard, while models 3 and 4 do not. Models 2 and 3 do not pool data
across cancer types, while model 1 pools the data from all types. Model 4 is a hierarchical model that

allows the data to automatically select the degree of pooling which takes place.

from the same distribution (hierarchical model) results in narrower intervals compared to the
unpooled models that do not impose this assumption. Pooled models that assume all cancer
types have the same sensitivity may be unrealistic, as sensitivites may vary across cancer
types.
The bias inherent in falsely assuming tumour registry data to be a gold standard, in turn,

has consequences for other estimates based on these numbers. For example, there is growing
evidence that lupus patients have higher rates of cancer, which is possibly due to either
intrinsic pathogenic pathways, or external exposures such as immunosuppressive medications
[16]. Using the Quebec Tumour Registry, we calculated 6.54 expected cases cancers in our
cohort of 169 lupus patients, assuming the patients are at the same risk as the general Quebec
population. We observed 11 tumour registry cases in our subjects, resulting in an estimated SIR
of 1.68 (95 per cent HPD 0:81; 2:68). However, adjusting both the numerator and denominator
for possible biases due to imperfections in the tumour registry results in an estimate of 2.56
(95 per cent HPD 1:32; 3:90), a substantially di�erent result. Adjusting the numerator alone
leads to an estimate of 2.81 (95 per cent HPD 1:62; 4:19).
Almost all results remained stable as we changed the range of the uniform prior distribu-

tion of the standard deviation from [0:2; 2] to [0:1; 3] to [0:05; 4]. In particular, all prevalences,
speci�cities and SIR estimates remained virtually unchanged. The sensitivities, however, were
a�ected by the choice of prior distribution. This is not surprising, given that the low preva-
lences across all cancer types meant that very little data were available for estimating the
sensitivity parameters. This e�ect was diminished in a similar robustness study using 10
times our amount of data.

4. DISCUSSION

Tumour registry linkage is a common method of cancer ascertainment in epidemiological
studies, and is often assumed to be error-free. We describe a method for parameter estimation
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in this setting without assuming a gold standard. This in turn leads to adjusted incidence,
prevalence and SIR estimates that account for imperfect ascertainment methods. The method-
ology is applicable when data from one or more methods are available across two or more
cancer types, or more generally, whenever diagnostic tests are applied to two or more related
populations. We focus on latent data models; other methods have been suggested, such as
using a composite reference standard [63], but these methods can also lead to bias as again
an imperfect standard is used.
Our methodology depends on the model being a reasonable approximation to reality, in-

cluding the forms of the hierarchical distributions, conditional independence, independence of
cancer incidence within each individual, and the simplifying assumption that cancer incidence
is constant across the lupus population. The latter assumption can easily be removed by us-
ing a logistic regression model for incidence that allows di�erent patients to assume di�erent
probabilities of developing each cancer type, depending, for example, on characteristics such
as age and length of follow-up. With only 16 events across eight cancer types, however,
we did not attempt to add the many additional parameters that would be required by this
model. Although our model assumed that the logits of individual sensitivity and speci�city
values across cancer types follow normal distributions, other hierarchical forms can easily be
substituted. Independence of cancer incidence within each individual is not a strong assump-
tion in practice, since low incidences within each cancer type means that the probability of
contracting two or more types is very low, regardless of how it is modelled.
Our chart data come from outpatient charts not used by the cancer registry, and patient

self-report was by mail and not tied to any physician visit. While conditional independence
thus seems reasonable for our data, this may not carry over to other settings. Conditional
dependence can also be handled [12, 13], although further constraints must be imposed [9].
Our model assumes a priori exchangeability between ascertainment methods, but if prior
information suggests di�erences between methods, this can be accommodated by adding a
fourth level to the model. For example, one might allow the sensitivities to depend on a
regression term such as cancer type.
In our data set, the speci�cities of all three methods of cancer ascertainment were similarly

high, but our sensitivity estimates suggest that malignancies can be missed by each of the
di�erent methods. This in turn led to higher prevalence estimates than using any single method
as a gold standard. Self-report did not seem as sensitive as chart review or tumour registry
linkage, and this appeared to hold across cancer types, although our small data set does not
allow for strong conclusions.
While we used data on eight cancer types, we in fact scanned the database for 25 di�er-

ence cancer types, only eight of which were found by one or more ascertainment methods.
Thus, our data set included zero cases for another 17 cancer types. In theory, we could have
included all 25 cancer types, with the addition of 119 extra parameters (17 additional preva-
lence parameters, and 6× 17 additional sensitivity and speci�city parameters across the three
ascertainment parameters). However, with no observed cases, there would be little information
upon which to estimate the sensitivities, and speci�cities would again be very high, matching
the distributions already estimated. Prevalence estimates would be low, since no cases were
observed. Therefore, the extra information to be gained was judged to be not worth the much
larger model required.
Our population may have some unique characteristics (a group of persons with a seri-

ous disease, under regular medical follow-up) that may a�ect generalizability of the results,
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although lower sensitivity of self-report compared to other methods has been documented else-
where [2]. Many factors a�ect completeness of cancer case ascertainment; for chart review,
this includes the inability to �nd charts, which may vary from centre to centre [64, 65].
Our calculations of the sensitivity and speci�city of tumour registry data and of the SIR

for lupus patients illustrate that estimates can be highly inaccurate if a ‘gold standard’ which
itself is imperfect is used without adjustment. Although our estimate of the sensitivity of
the Quebec tumour registry linkage for cancer ascertainment was relatively high, and other
registries may be able to do even better [65, 66], even small imperfections can have large
e�ects on important parameters estimated in studies [67]. Therefore, whenever possible, future
studies should consider using a combination of di�erent methods of cancer ascertainment, and
present not only estimates of the sensitivity and speci�city of the methods, but also adjusted
estimates of any quantities which depend on these parameters.
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