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Summary

Linear regression and logistic regression are the two most common methods employed in

medical research to provide estimates of the effects of treatments or exposure variables on

continuous or dichotomous outcomes, respectively, while adjusting for potential confounding

variables. With small modifications to the basic models, these methods are also able to

adjust for possible measurement error in covariates, either on the main exposure or a poten-

tial confounding variable. Despite their widespread use in the analysis of data, methods for

designing studies that will eventually provide data for regression modelling are more rarely

used. Most researchers either ignore sample size considerations entirely when planning such

studies, or use simple methods that do not account for potential confounding and measure-

ment error, both of which can have very large effects on sample size requirements. In this

paper we present a method that calculates the sample size required to estimate the effect of

any regression parameter to a desired degree of accuracy while adjusting for any expected

confounding variables and/or measurement error. We employ both Bayesian and mixed

Bayesian/likelihood sample size criteria so that our methods are applicable to studies whose

data will eventually be analysed by either Bayesian or frequentist modelling. We present

examples that both do and do not account for the presence of confounding and measure-

ment error, illustrating the effect that these potential complications can have on the required

sample sizes. A free software package that facilitates the use of our methods is available.

Key words: Bayesian methods; linear regression; logistic regression; measurement error;

sample size determination; study design.



1 Introduction

Linear regression and logistic regression models are widely used in the analysis of data in

order to estimate the effects of various independent variables on continuous or dichotomous

outcomes, respectively. Although less often used in practice, with small adjustments to these

models researchers can also adjust for any biases estimates in their estimates brought on by

measurement error.

Both linear and logistic regression can account for confounding, providing estimates of

main effects that are adjusted for the effects of confounding induced by any covariates in-

cluded in the model. Since both confounding and measurement error are very commonly

occurring in practice, it would seem important to account for both effects when planning

any study, since larger sample sizes may be required in the presence of confounding or mea-

surement error compared to if these problems are ignored in the modelling

A wide variety of sample size criteria have been proposed. These range from power

calculations and methods based on confidence interval widths from a frequentist viewpoint

(reviewed by Lemeshow et al 1990 and Desu and Raghavarao 1990) to Bayesian versions of

these same criteria (Spiegelhalter and Freedman 1986, Joseph, du Berger, and Bélisle 1997),

reviewed by Adcock (1997) and Wang and Gelfand (2002). Bristol (1989) showed that sam-

ple sizes based on interval widths are not directly related to those based on power, so that

sample sizes guaranteeing high power may not be sufficient for accurate estimation. It is

therefore important that the sample size methods match the eventual analysis. Since re-

porting interval estimates is preferable to hypothesis testing in most practical circumstances

including regression (Gardner and Altman 1988), sample sizes should be based upon interval

widths rather than power of hypothesis tests. Decision theoretic criteria have also been pro-

posed (for example, Pallay 2000), but while interesting in theory these methods are difficult
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to implement in practice, in large part because realistic loss functions are difficult to derive

and are highly specific to a given application. These criteria will therefore not be discussed

further here.

Frequentist sample size methods depend on accurate point estimates of the required in-

puts such as effect sizes and standard deviations, but these are typically not accurately

known at the design stage of any study. It is therefore advantageous to consider Bayesian

methods, where prior densities not only allow for uncertainty in the inputs, but incorpo-

rate this uncertainty into the sample size requirements. It is also easy to extend Bayeisan

regression models to include measurement error.

In this paper we develop Bayesian methods to determine sample size requirements to

accurately estimate any linear or logistic regression parameter including the possibility of

confounding variables and measurement error. In particular, we develop methods to derive

sample sizes using the Average Coverage Criterion, (ACC), the Average Length Criterion

(ALC) as well as the Modified Worst Outcome Criterion (MWOC) both accounting and not

for confounding and measurement error.

The outline of this paper is as follows. Section 2 reviews various Bayesian sample size

criteria based on highest posterior density (HPD) credible interval lengths. HPD intervals

are optimal in that they will lead to the smallest possible sample sizes for a given desired

length and coverage probability. Specific methods for calculating the sample sizes defined

by the criteria in Section 2 in the case of linear and logistic regression are given in Section

3. Sample sizes from a series of prototypic examples are given in Section 4, comparing the

change in sample size with and without consideration of confounding and measurement error.

We end with a discussion in Section 5.
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2 Bayesian sample size criteria

Let θ ∈ Θ be the parameter of interest, f(θ) the prior distribution, x = (x1, . . . , xn) the data

of sample size n, X the data space, f(x) the predictive marginal distribution of the data,

and f(θ|x) the posterior distribution for θ given data x. Then

f(x) =
∫

Θ
f(x|θ)f(θ)dθ, and (1)

f(θ|x) =
f(x|θ)f(θ)

f(x)
.

In a Bayesian approach to sample size determination inputs include the desired length of

the HPD interval l, the chosen credible interval level 1 − α, and a prior distribution for θ.

Since the data are not known at the design stage, we need to integrate or maximize over the

predictive distribution of the data given by (1), which leads to the following three criteria.

2.1 Average coverage criterion

For a fixed posterior interval length l, one can determine the sample size by finding the

smallest n such that the equation∫
X

{∫ a+l

a
f(θ|x, n)dθ

}
f(x)dx ≥ 1− α (2)

is satisfied. This average coverage criterion (ACC) ensures that the mean coverage of poste-

rior credible intervals of length l, weighted by f(x), is at least 1− α.

2.2 Average length criterion

For a fixed posterior credible interval coverage of 1− α, one can also determine the sample

size by finding the smallest n such that∫
X
l
′
(x, n)f(x)dx ≤ l, (3)
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where l
′
(x, n) is the length of the 100(1− α)% posterior credible interval for data x, deter-

mined by solving ∫ a+l
′
(x,n)

a
f(θ|x, n)dθ = 1− α

for l
′
(x, n) for each value of x ∈ X . As above, a can be chosen to give highest posterior

density intervals or symmetric intervals, which coincide for symmetric unimodal densities.

This average length criterion (ALC) ensures that the mean length of 100(1−α)% posterior

credible intervals weighted by f(x) is at most l.

2.3 Modified worst outcome criterion

Cautious investigators may not be satisfied with the “average” assurances provided by the

ACC and the ALC criteria. Therefore, a conservative sample size can also be determined by

the smallest n satisfying the equation

inf
x∈S

{∫ a+l(x,n)

a
f(θ|x, n)dθ

}
≥ 1− α, (4)

where S is a suitably chosen subset of the data space X . For example, this modified worst

outcome criterion (MWOC) ensures that if S consists of the most likely 95% of the possible

x ∈ X , then there is 95% assurance that the length of the 100(1 − α)% posterior credible

interval will be at most l.

One must also consider a “design prior,” that is, the prior density to plug into (1) to

generate the set of all possible data x, which is not necessarily the same as the “analysis

priors” used in the calculation of the posterior density. For example, one can use informative

design priors to predict future data, but non-informative analysis priors to let the data alone

determine the posterior density. In the next section, we will present methods for applying

the above criteria to selecting sample sizes for studies involving linear and logistic regression

parameters.
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3 Sample size methods for linear and logistic regres-

sion parameters with and without confounding and

measurement error

In this section we consider how to apply the above sample size criteria in the context of both

linear and logistic regression, both with and without adjustment for confounding and/or

measurement error.

3.1 Sample size methods for linear regression

Let θ be the vector of linear regression parameters including the intercept and the residual

variance. We assume that all parameters are a priori independent, with normal densities for

each intercept and regression parameter priors, and a uniform prior for the residual standard

deviation. In the absence of measurement error, this completely defines the posterior density

when it is combined with the standard linear regression likelihood function (please see the

detailed equations in the appendix). In the case of measurement error, we assume normal

errors with mean zero around each independent variable measured with error, adding only

one new parameter, the standard deviation of the measurement error. We again use a uniform

prior for this standard deviation term.

The above information completely defines the likelihood function and priors for our

model, both with and without measurement error. Therefore all we need to complete our

analysis are the design priors. We assume these will, take the same form as the analysis pri-

ors, although each parameter may or may not take on different numerical values compared

to their analysis prior counterparts. With all necessary functions now defined, applying the

Bayesian sample size criteria of Section 2 is straightforward, and is implemented by MCMC.

Given a bounded range that contains the correct sample size, it can be found through
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a bisectional search algorithm, for example as described by Thisted (1988). In practice, a

starting sample size is selected, and the above criterion is checked. The sample size is then

increased or decreased according to whether the criterion is above or below the required

threshold, continuing until the optimal sample size is found.

3.2 Sample size methods for logistic regression

Let θ be the vector of logistic regression parameters. We again assume that all parameters

are a priori independent, with normal densities for each intercept and regression parameter

priors. In the absence of measurement error, this completely defines the posterior density

when it is combined with the standard logistic regression likelihood function (please see

details in the appendix). In the case of measurement error, we again assume normal errors

with mean zero around each independent variable measured with error, adding only one new

parameter, the standard deviation of the measurement error. We again use a uniform prior

for this standard deviation term.

The above information completely defines the likelihood function and priors for our

model, both with and without measurement error. Therefore all we need to complete our

analysis is the design priors. We assume these will take the same form as the analysis priors,

although each parameter may or may not take on different numerical values compared to

their analysis prior counterparts. With all necessary functions now defined, applying the

Bayesian sample size criteria of Section 2 is straightforward, and is implemented by MCMC.

As above we find the final sample size through a bisectional search algorithm.

A user-friendly R package called “RegressionSampleSize”that implements all of the above

methods are available from the first author’s website, at

www.medicine.mcgill.ca/epidemiology/Joseph/
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We next use this software to determine sample sizes for various scenarios that may occur

in the planning of studies where parameters of interest will be estimated with linear or

logistic regression.

4 Sample sizes for prototypic scenarios

We first look at a typical example when estimating a linear regression parameter, followed

by an application of our methods to logistic regression parameters. In each case we calculate

the required sample size to ensure the desired degree accuracy using the ACC criterion. Of

course, similar results will be produced when using any of the other Bayesian sample size

criteria. In each case we compare results with no confounding and no measurement error to

results with one or both of these problems.

4.1 Example for linear regression

Suppose one is designing a study that will be analysed by linear regression, and where the

outcome will be predicted by two independent variables, a main variable of interest, say x1

which may possibly be measured with error, and a second possibly correlated variable which

also may be measured with error, x2. We will assume that the true population distribution of

these two variables are both N(0,1). We would like to accurately estimate the beta coefficient

of the first variable, β1 while adjusting for the possible confounding effects from the second

variable, also accounting for any measurement error. We will use a 95% HPD credible interval

to estimate β1, whose length we would like to be at most 0.8. The true value of all beta

parameters is assumed to be 1, and the true residual variance was taken to be 1, with priors

uniformly distributed on the interval [0.1, 10]. What sample size is required using the ACC

criterion?
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If the two independent variables are uncorrelated and there is no measurement error, then

the sample size we will need is 990. If there is a weak correlation of 0.1 between x1 and x2

then the sample size is increased to 1111, and larger correlations of 0.5 and 0.9 increase the

required sample sizes to 1314 and 5183, respectively. We can see that correlation between

the variables can have a very large effect on the sample size.

The above sample sizes are what is required if there is no measurement error. Suppose

that both x1 and x2 are both measured with error, with mean error of zero, but with standard

deviation uniformly distributed within the interval [0.1, 0.3]. The sample size when there

is no correlation between the two variables now increases to 1090, and the sample size

changes to 1127, 1501, and 4312 when there is correlation of 0.1, 0.5, and 0.9, respectively.

Therefore we see that correlation has a larger effect on the required sample size compared

to measurement error in this example.

4.2 Example for logistic regression

We will now turn to the design of study whose data will be analysed by logistic regression.

Suppose one is designing a study that will be analysed by logistic regression, and where

the outcome will be predicted by two independent variables, a main variable of interest, say

x1 which may possibly be measured with error, and a second possibly correlated variable

which also may be measured with error, x2. We will assume that the true population

distribution of these two variables are both N(0,1). We would like to accurately estimate the

beta coefficient of the first variable, β1 while adjusting for the possible confounding effects

from the second variable, also accounting for any measurement error. We will use a 95%

HPD credible interval to estimate β1, whose length we would like to be at most 1 on an odds

ratio scale. The true value of all beta parameters is assumed to be 0.1, with priors selected

such that 95% of ther prior density is between 0.2 and 2.5, again on the odds ratio scale.
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What sample size is required using the ACC criterion?

If the two independent variables are uncorrelated and there is no measurement error,

then the sample size we will need is 1269. If there is a correlation of 0.5 between x1 and

x2 then the sample size is increased to 1680. Similar to linear regression, we can see that

correlation between the variables can have a large effect on the sample size.

The above sample sizes are what is required if there is no measurement error. Suppose

that both x1 and x2 are both measured with error, with mean error of zero, but with standard

deviation uniformly distributed within the interval [0.2, 0.3]. The sample size when there is

no correlation between the two variables now changes to 1156, and the sample size changes

to 1482 when there is correlation of 0.5. Therefore we once again see that correlation has a

larger effect on the required sample size compared to measurement error in this example.

5 Discussion

Many sample size criteria have been proposed from both hypothesis testing and interval

estimation viewpoints. Since the advent of fast desktop computers and the development

of MCMC algorithms for Bayesian analysis, increasing numbers of statisticians are using

Bayesian methods. Accompanying these advances have been important modeling advances

in bias correction, such as adjusting analyses for measurement error. Although these meth-

ods have increased flexibility in modelling, there are fewer design methods to plan studies

where these new analytic techniques will be used. This paper addresses this gap in providing

Bayesian methods to determine sample sizes for linear or logistic regression modelling, includ-

ing adjusting sample size requirements for possible confounding variables and measurement

error in covariates.

As both of the prototypic examples we presented in Section 4 show, sample size require-
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ments can considerably change if confounding and/or measurement error is accounted for

at the design stage. The accompanying software, available from the first author’s webpage

at http://www.medicine.mcgill.ca/epidemiology/Joseph/, allows for easy implementa-

tion of all methods discussed in this paper.

Appendix
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SampleSizeRegression 

Version 1.0, July 2019 

 

1.  Introduction 

The program SampleSizeRegression --- available for Windows only --- was developed to estimate 

sample size requirements in the context of Bayesian linear and logistic regression parameter estimation 

with possible covariate measurement error, along the lines of our paper 

Bayesian Sample Size Criteria for Linear and Logistic Regression in the  
Presence of Confounding and Measurement Error 
Lawrence Joseph  and Patrick Bélisle 
Unpublished (see link below) 
 

We recommend that you read the above paper carefully before using this software; this paper 
is available from 
http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/SSReg.pdf 
 
You are free to use this program, for non-commercial purposes only, under two conditions: 
 
- This note is not to be removed; 
- Publications using SampleSizeRegression results should reference the manuscript mentioned 
above; 
- While we have done our best to ensure the program works as described in this manual, the 
user acknowledges that this program is not necessarily bug-free.  We assume no liability for any 
errors or consequences that may arise from the use of this program.  The use of this software is 
at the exclusive risk of the user. 
 
If you have not installed SampleSizeRegression yet, please read the Installation Instructions 
(InstallInstructions.html) first. 
 
The easiest way to open this program1 is to use the shortcut found in Programs list from the 
Start menu. Once opened, you will be prompted by a graphical user interface (GUI) to describe 
the problem, that is: 
 
- choose between sample size calculations or outcome prediction for fixed sample size(s) 
 

                                                           
1 You can start SampleSizeRegression by browsing through the User's Programs menu (available by clicking the Start button and 

then Programs) and selecting SampleSizeRegression. You can also start SampleSizeRegression by opening Windows Explorer, 

browsing to this package's location (c:\Users\user name\Documents\Bayesian Software\ SampleSizeRegression or c:\Documents 

and Settings\user name\My Documents\ Bayesian Software\ SampleSizeRegression by default, depending on your platform) and 

clicking on SampleSizeRegression.vbs. 

 

http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/SSReg.pdf


- choose between linear and logistic regression 
- fill in your prior information about regression parameters for each independent variable 
included in your regression model 
- select a sample size criterion 
- select an output file (where you want the results to be saved) 
- and a few more technical questions (number of Gibbs iterations,  where to start the seach for 
the optimal sample size, etc.). 
 
Once the GUI has collected all of the inputs required for the problem, it will be closed and the 
program will continue almost invisibly; the only thing that you will see on your screen is a 
WinBUGS window, which you can minimize. 
 
When the program has finished (running time can vary, and could be many hours if you are 
running sample size calculations) another GUI will appear announcing program completion and 
giving you the opportunity to view the output immediately.  This GUI will not appear when 
SampleSizeRegression is called from a script (see section 3.1). 
 
When started from the .vbs file (for example, when run from the Start menu), 
SampleSizeRegression will always run at low priority, allowing your system to use more CPU 
for higher priority tasks when needed.  Thus, you can continue to work comfortably as this 
program runs in the background. 

 

2.  Problem description 

Suppose 𝑃 independent variables 𝑋𝑖  =  (𝑋𝑖1,  𝑋𝑖2,… , 𝑋𝑖𝑃) are to be collected, with or without 

measurement error, on 𝑁 subjects as well as the outcome (or response) variable 𝑌𝑖 , 𝑖 =

1, 2, . . . , 𝑁, and that the relationship between the outcome and the 𝑃 independent variables 

will be modeled through either  

a) a linear model, that is, 

𝑌𝑖 = 𝛽0 +  𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +  … . + 𝛽𝑃𝑋𝑖𝑃 +  𝜀𝑖 , 

where the 𝜀𝑖  are independent normally distributed random error variables with mean 0 and 

common variance 𝜎2, when the outcome is a continuous variable or 

b) a logistic model, that is, 

𝑌𝑖  ~ Bernoulli 𝜋𝑖  

where  logit 𝜋𝑖 =   𝛽0 +  𝛽1𝑋𝑖1 +  𝛽2𝑋𝑖2 +  … . + 𝛽𝑃𝑋𝑖𝑃   

when the outcome is binary. 



In both linear and logistic model, we assume a multivariate normal prior distribution on the 

regression parameters 𝜷 =  𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑃 ′. For variables 𝑋𝑘  that come with measurement 

error, we assume that the measured value is a random value centered about the true value 𝑋𝑘
∗, 

that is, 𝑋𝑘  ~ 𝑁 𝑋𝑘
∗, 𝜎𝑘

2  where 𝜎𝑘~ 𝑈 𝑎𝑘 , 𝑏𝑘  for given constants 𝑎𝑘  and 𝑏𝑘 .  

In the linear model, we assume a uniform prior distribution on 𝜎, that is, 𝜎 ~ 𝑈(𝑎, 𝑏) for given 

constants 𝑎 and 𝑏. Note that the presence of the intercept 𝛽0 in the linear model is optional. 

 

The posterior density for 𝜷 in the context of a linear regression is given by 

𝑓 𝜷   𝒀)  ∝  𝑓 𝒀   𝜷, 𝑿, 𝝈)

𝜎

 𝑓 𝜷  𝑓 𝜎       𝑓 𝑋𝑖𝑘  𝑋𝑖𝑘
∗ ,𝜎𝑘)

𝜎𝑘

𝑓(𝜎𝑘)

𝑁

𝑖=1𝑘  ∈ 𝑆

 𝑑𝜎𝑘  𝑑𝜎 

where  

𝒀 is the response vector 𝒀 =  𝑌1,𝑌2, … , 𝑌𝑁 ′  

𝑿 is the design matrix 
𝑓 𝒀   𝜷, 𝑿, 𝝈) is the likelihood of the data 𝒀  ̶  that is, a multivariate normal distribution with 

mean 𝑿𝜷 and covariance matrix 𝜎2 𝐼𝑞 , where 𝐼𝑞  is the 𝑞 × 𝑞 identity matrix,  

𝑞 =  𝑃 + 1 if the model has an intercept, 𝑞 = 𝑃 if not 

𝑓 𝜷  is the analysis prior distribution for 𝜷 

𝑓(𝜎) is the analysis prior distribution for 𝜎 

𝑆 is the set of variables measured with error, that is, 
𝑆 = {𝑘 ∶  𝑋𝑘  is measured with error};  if 𝑆 is null – that is, if all variables are 

measured exactly –  then     𝑓 𝑋𝑖𝑘  𝑋𝑖𝑘
∗ ,𝜎𝑘)

𝜎𝑘
𝑓(𝜎𝑘)𝑁

𝑖=1𝑘  ∈ 𝑆  𝑑𝜎𝑘  = 1 

𝑋𝑖𝑘
∗  is the measured/observed value for variable 𝑋𝑘  in subject 𝑖 

 

𝑋𝑖𝑘  is the true value for variable 𝑋𝑘  in subject 𝑖 (unobserved for variables with 
measurement error). 
 

 

SampleSizeRegression was developed to compute the minimal sample size 𝑁 such that a 

regression parameter (say 𝛽1, without loss of generality) is estimated within a given pre-

specified accuracy. 

 

 

 



2.1  How SampleSizeRegression works 

 

For a fixed sample size 𝑁, a large number 𝑀 (𝑀 is called the preposterior sample size) of data 

points 𝑋𝑖 , 𝑖 = 1, 2, … , 𝑁 is sampled. 

The distribution of 𝑋𝑖  =  (𝑋𝑖1,  𝑋𝑖2, … , 𝑋𝑖𝑃) can be assumed to be a multivariate normal 

distribution or any multivariate distribution 𝐹; in the latter case, the user must provide R code 

to generate random values for 𝑋𝑖 , 𝑖 = 1, 2, … , 𝑁: an example will be provided in section 4.2. 

For each of the 𝑀 samples of { 𝑋1,𝑋2,… , 𝑋𝑁}, a set of regression parameters  𝛽0, 𝛽1,

𝛽2, … , 𝛽𝑃  is sampled from the 𝜷 design prior distribution, and finally a set of response 

variables { 𝑌1, 𝑌2, … , 𝑌𝑁} is generated along the linear or logistic regression model parameters. 

Response and independent variables are then saved and analyzed through a WinBUGS model 

taking into account the measurement error around independent variables (if any) and the 

uncertainty around the regression parameters (through the 𝜷 analysis prior distribution). The 

WinBUGS Markov Chain Monte Carlo process leads to the approximation of the posterior 

distribution of the regression parameters 𝜷.  

The coverage or length of the HPD interval of a predetermined regression parameter is then 

calculated for each of the 𝑀 samples and the sample size 𝑁 is then ranked as being sufficient or 

not depending on whether or not the selected sample size criterion is met. 

SampleSizeRegression iterates over 𝑁 until  

a) the desired parameter accuracy is met for sample size 𝑁 but not for 𝑁 − 1 or 

b) in a series of six consecutive sample sizes, the larger three satisfy the sample size 

criterion while the smaller three do not, and these six consecutive sample sizes do not 

span more than 2% of their midpoint value. 

Stopping criterion (b) proves useful when the final sample size is large (e.g. more than a 

thousand). 

 

 

 

 

 

 

 



3.  How to use SampleSizeRegression 

The initial window (below) is used to choose between sample size calculations, or the 
estimation of average or percentile of HPD lengths or coverages for a series of predetermined 
sample sizes. 
 

 

 

The next form 
will first be 
used to select 
between 
linear or 
logistic 
regression by 
clicking the 
corresponding 
label. 

 
 



In the context of linear 
regression, the form will 
then be used to enter the 
prior distribution on the 
standard deviation of 
then (independent) error 
terms. 

 
 

The remaining of this section illustrates the entry form in the context of linear regression. This 

entry form and the following forms will be very similar in the context of logistic regression; the 

form entries specific to the logistic model will be introduced in section 3.2. 

You will next be asked whether or not you wish to include an intercept in your model and 

whether the independent variables 𝑋𝑖  =  (𝑋𝑖1,  𝑋𝑖2, … , 𝑋𝑖𝑃) come from a multivariate normal 

distribution or not. In epidemiological studies, independent variables will often include 

dichotomous (e.g., gender) or class variables (e.g., socio-economic status, race) which obviously 

cannot be modeled through a multivariate normal distribution.  

If the distribution for 𝑋𝑖  is assumed to be multivariate normal, then the next step (below) will 

be to enter the number of independent variables, the variable names (second form below) and 

the parameters associated with the 𝑋𝑖  distribution (third form below). 



 

 

 



 

 

 

 

The parameters of the prior density for 𝑋𝑖  are the 𝑃 means and the 𝑃 ×  𝑃 covariance matrix, 

by default; you can alternate between covariance and precision matrices through the top menu 

item Switch to Precision (Covariance) matrix entry. 

 

 

 



 

 
 
Scale parameters can be equally 
entered through a covariance or a 
precision matrix. 

 
 
 

The next form (below) will be used to enter a prior distribution for uncertainty around each 

independent variable that is measured with some error. Note that all can also be considered as 

being measured exactly. 

 

 

The next form (below) is for entry of the parameters of the multivariate normal prior 

distribution for the 𝜷 regression parameters. It is similar to the entry form for the 𝑋𝑖  

multivariate distribution and also allows the choice of entry through a covariance or a precision 

matrix. 



 

 

 

If sample size determination was selected in the initial window, the next form (below) allows 

selecting one of the ten sample size criteria available. This window is also used to specify the 

fixed or target (depending on criterion selected) HPD length and coverage for the parameter of 

interest, also selected from this form. 

 

 

 



When the Mixed Bayesian/Likelihood approach is chosen in form above, the prior distributions 

for  𝜷 and 𝜎 will be used at the design stage (to generate data) but different prior distributions 

(called analysis prior distributions) will be used at the analysis stage (that is, in the WinBUGS 

model written to estimate the posterior distribution for 𝜷): these analysis prior distributions 

would be collected later through forms similar to those already presented. 

 

Note that it is also possible to base sample size calculation on a linear combination of 

regression parameters rather than on a single regression parameter as illustrated above. 

Indeed, clicking the tick box labeled infer on a linear combination of regression parameters will 

modify the elements displayed in Monitored parameter frame: you can then click on the 

regression parameters of your choice in the list box displayed an assign a weight to the selected 

regression parameter by entering it in the text box to its left. In the example below, we first 

click b(x.1) and assign it a +1 weight, and then click b(x.3) and assign it a -1 weight to build the 

difference b(x.1) – b(x.3). Note that the text to the right of  gives the expression of the 

regression parameters linear combination such defined. 

 

 
 

 
 

 

 

 



In the context of logistic regression, that 
feature could also be used to base sample 
size calculation on the Odds Ratio of a 
variable on a different scale than the 
default one-unit OR. The opposite image 
illustrates an example where the interest 
would be on the Odds Ratio for age 
expressed in terms of a 10-years 
difference. 
 

 
 

 

 

 

 



The next window allows the 
user to specify the 
preposterior sample size and 
the number of burn-in and 
monitored iterations of the 
Gibbs sampler algorithm that 
is used throughout.  
Changing these values is 
optional, the default values 
will usually provide 
reasonable estimates. 
 
When SampleSizeRegression 
is used to calculate sample 
sizes, this form also allows 
the user to specify whether 
the optimal sample size 
should be found via a 
bisectional search or with a 
so called model-based 
algorithm.  The latter, the 
default choice, usually 
converges to the optimal 
sample size neighbourhood 
with fewer steps. 
 
In either case, the first three 
sample sizes for which the 
outcome of interest (e.g. 
average HPD length) will be 
estimated are based on a 
bisectional search, after 
which this option comes into 
effect. 

 

 

 

 

 

 

 

 

Finally, a Problem Reviewal form (below) allows the user to review each parameter entered 
through the different forms and modify any, if necessary, by clicking the appropriate Change 
button. 



 
 

 
 
 
The above form is also used to select the output file location, either by selecting the top-left 
menu item File/Save as… or by clicking the Output location link in the lower left portion of the 
form. 
 

 

 

 

 

 

 

 



 

3. 1  Entering prior distribution for regression parameters in the 

context of logistic regression 

 

In the context of logistic regression, the prior distribution for the  regression parameters can 

be entered through its mean vector and covariance or precision matrix as illustrated in the 

context of linear regression in section above, or through the 95% limits of prior intervals for the 

Odds Ratio of each independent variable included in the regression model, as shown in figure 

below. 

 

 
 

 

The top 2 boxes are used to enter the 95% interval for the prior probability of a positive 

outcome (𝑌𝑖 = 1) when the continuous independent variables are equal to their average and 

the dichotomous independent variables are 0’s. The other values to enter are the 95% prior 

intervals  for each of the independent variables’ Odds Ratios (per one unit change): this is done 

by first clicking a X variable name in the right box labeled Odds Ratio Summary / Pick list, and 

then entering the lower and upper limits of its 95% Odds Ratio prior interval. The prior 

information contained in the above 95% limits on OR’s is turned into a multivariate normal 

distribution with independent components, with mean and sd (𝜇𝑖 , 𝜎𝑖) for regression parameter 

𝛽𝑖  such that exp(𝜇𝑖 + 𝑧0.025𝜎𝑖) are equal to the two endpoints of the 95% prior interval for 𝛽𝑖 , 

i=1, 2,..., 𝑃, and (𝜇0,𝜎0) such that exp(𝜇0 + 𝑧0.025𝜎0) are equal to the logit() value of the two 

endpoints of the 95% prior interval for Pr{Y = 1 | continuous X variables = their average and 

dichotomous X variables = 0}. 

 

 



3. 2 Saving and running scripts 

 

Once a problem is fully described by completing the appropriate forms, the actual  

computations can be launched right away by clicking the [Run now] Proceed to Sample Size 

calculations or saved for future submission by clicking the [Run later] Register Problem 

Description button, both found in the lower right corner of the Problem Reviewal form. 

Problems saved for future computation will be saved as script files, identified by a label entered 

by the user in the next form. 

 

 
 

 

The initial form of 
SampleSizeRegression 
allows the user to run 
one or more previously 
registered scripts 
through the Run/From 
script… top-left menu 
item. 
 
 

 
 
Running and submitting a script is useful when computing sample sizes for a number of variants 
(e.g., with different criteria or with different prior distributions), in that it eliminates delays 
between each run. 
 



Select the scripts you 
wish to run now by 
clicking the appropriate 
script label(s) from the 
list and click the Run>> 
button. 
 
Note the tick box below 
the Run>> button which 
can be ticked if you wish 
to delete the script files 
when the calculation is 
completed. 
 
By default, the scripts are 
listed in order of entry 
date and time. Clicking 
the two-sided arrow 
button to the left of the 
list will reverse the order 
of the list. 

 
 

 

4.  Examples of running SampleSizeRegression 

4.1 Sample size calculation 

ICI on va illustrer l’utilisation du GUI pour répéter un exemple tiré de l’article. 

  

 

 

 



4.2 Running sample size calculations on problems where X is not 

multivariate normally distributed 

The independent variables 𝑋𝑖  =  (𝑋𝑖1,  𝑋𝑖2, … , 𝑋𝑖𝑃)  do not necessarily come from a 

multivariate normal distribution, as discussed in Section 2.1. In many applications to medicine 

and other fields of application, categorical variables will be present, meaning that the 

multivariate normal density is not appropriate. As the algorithm needs to sample from the 𝑋𝑖  

distribution (again, see Section 2.1), you will be asked to provide R code to sample from the 𝑋𝑖  

distribution.  

Following the second form, where you indicate that 𝑋𝑖  does not come from a multivariate 

normal distribution, you will need to enter/load your R data-generating code: you can load your 

R code through the top-left menu item or enter (or cut and paste) your R code into the main 

text box of the form illustrated below. 

 

 

 

 

 



 

The generating-data R code from example above is reproduced below to ease readability: 

gender.age.mean <- c(72, 65) # female and male expected age means 
gender.age.sd   <- c(4, 5)   # female and male expected age sds 
male.prop <- 0.4 
gender <- rbinom(N, 1, male.prop) 
age <- rnorm(N, mean=gender.age.mean[1+gender], sd=gender.age.sd[1+gender]) 
BMI <- rnorm(N, mean=25, sd=2.5) 
x <- data.frame(gender, age, BMI) 
 
 

 

The above code will sample values for three independent variables, namely gender, age and 

BMI. The proportion of males in the study is expected to be 40% and the age for women is 

expected to be 72 years old on average, with an SD of 4, while men’s age is expected to be 

slightly lower with mean 65 years old and with an SD of 5. BMI is expected to be normally 

distributed (with mean 25 and s.d. 2.5) for both men and women. 

As can be seen in the R code above, the fourth line uses the reserved variable name 𝑁, used for 

the sample size. 𝑁 is a reserved variable name in the sense that it should NOT be used in your 

code for any variable other than sample size. The object defined on the last line of your code (𝑥, 

in the above example) should be a data frame containing each variable to be used in the linear 

regression model. Obviously, your R code should be thoroughly tested before you use it in 

SampleSizeRegression as no debugging for this code is done by the program itself. 

We suggest that you enter a label in the text box under the label Enter a label for R code above: 

doing so will make the use of your R code only one click away the next time you run 

SampleSizeRegression. 

Note that the use of class variables with 𝐾 > 2 classes in SampleSizeRegression is possible only 

through the use/definition of 𝐾 − 1 dummy variables in the R data-generating code. 

Categorical variables not defined in this way will be treated as continuous variables. This 

limitation arises from the way WinBUGS treats categorical data. 

 

 

 



4.3 Validating the normal approximation to the posterior density 

of the regression parameter of interest 

 

The calculation of HPD interval length or coverage for the parameter of interest (one of the 

slopes in the regression model) is based on the normal approximation of its marginal posterior 

distribution. It is hence a good idea to validate the appropriateness of that approximation in the 

context of your problem for your final sample size. 

 

From the initial 
form, select the 
Run/Validation of 
Normal 
approximation... 
top-left menu 
item. 

 
 

 

 

 



The next form 
allows the user to 
enter the number 
of values sampled 
from preposterior 
to assess the 
normal 
approximation for 
the posterior 
density of the 
parameter under 
study. 
 
Even though a 
large preposterior 
sample size (of the 
magnitude of 
thousands of 
samples) was used 
in the original 
problem, this time 
the sample does 
not need to be very 
large to form an 
opinion on the 
appropriateness of 
the normal 
approximation.  

 

 

We suggest to run it for 60 samples by default, but this can of course be changed. Remember, 
however, that a histogram of the values obtained in the MCMC WinBUGS program run will be 
drawn for each sample, with the distribution function of the best-fitting normal density 
superimposed. This means we have to monitor and save the values of the parameter of interest 
for each WinBUGS iteration, which is demanding in terms of both computer time and memory. 
By default, each page of the pdf output file will display 3 rows and 4 columns of histograms, but 
this can also be changed in the above form. 
 
The trace OF XX and YY will also be saved, allowing the user to monitor the appropriateness of 
the chosen number of burn-in and monitored iterations, among other options.  
 
Click the Save output plot to file item in the lower section of the form to select the pdf output 
file location: make sure not to overwrite an already existing pdf file. When done, click the Ok>> 
button. 



 

The next form 
displays the 
optimal sample 
size obtained for 
this problem. 
  
 

 
 

By default, the normal approximation validation check will be run for that optimal sample size 

only, but you can also add additional sample sizes, should you consider sampling more or less 

subjects than indicated and wish to validate the normal approximation for these alternative 

sample sizes as well. Click the Close note [add sample sizes] button and then the Next>> button 

to proceed with optimal sample size only. 

A Problem Reviewal form will be displayed, allowing you to modify the parameters entered. 
Some parameters, however – such as number of burn-in and monitored iterations – are not 
modifiable as it would not make sense to check the convergence and mixing with technical 
parameters different from those used in the original problem. 
Click [Run now] Proceed>> when ready. 
 
Upon completion, a form will pop-up, offering you links to the (now modified) main html output 
file, the .pdf file with the normal approximation superimposed on the histograms and the traces 
OF XYZ. 
 

A link to the normal approximation validation check pdf output file will be added to the main 
html output file. Below is an excerpt of the normal approximation validation check pdf output 
file: the four figures display, respectively, the histogram for 𝛽1 values sampled in the WinBUGS 



MCMC run for four samples with 𝑁 = 206: the superimposed orange lines show the 
distribution function of the best-fitting normal distributions and all show a more than decent 
fit, which should reassure the user of both the appropriateness of the normal approximation for 
the posterior distribution for 𝛽1and for the appropriateness of the optimal sample size 
returned, given the prior information at hand. Each histogram represents the results from one 
sample of 𝑋𝑖 ’s, 𝑖 = 1, 2, … , 𝑁.   
 

 

ICI peut-etre presenter des traces et les commenter sommairement?? 

 

4.4 Running SampleSizeRegression with pre-determined sample 

sizes 

 
SampleSizeRegression can also be used to estimate a given outcome (e.g. the average coverage 
of HPD regions of fixed length) for fixed sample sizes. Indeed, suppose one knows it will not be 
possible to recruit more than XYZ subjects in a study, but would still like to obtain an idea, 
beforehand, of the coverage of HPD regions of fixed length XYZ in the same context as that 
illustrated in section X.Y. 
 

 



From the initial form of 
SampleSizeRegression, 
click the second box. 
 

 
 
 
The next forms are identical to those presented in section 3 and are used to enter the number 
of independent variables, the prior distribution for 𝜷, etc.  We therefore omit discussion of 
these steps here, proceeding to the next form where there is a difference from the procedure 
for sample size calculations. 
 
The next form 
allows the 
user to pick 
the outcome 
of interest 
and specify 
either of the 
fixed HPD 
length or 
coverage, as 
well as to pick 
the 
regression 
parameter of 
interest. 

 
 



The next form is used to 
specify the sample sizes for 
which the above-specified 
outcome is to be estimated. 

 
 
 
Enter 500 in the Add a 
sample size text box and 
click the button underneath 
to register this sample size. 

 
 
 



Proceed the same 
way for each 
sample size of 
interest. 
 
Click Next>> 
when done. 

 
 
 
 



The next form – Technical 
settings – is simplified 
compared to that 
presented in section 3, as 
the sample size search 
algorithm settings are 
irrelevant here. 
 

 
 
 
The last form is the Problem Reviewal form, similar to that presented in section X.Y. 
 
When done, 
SampleSizeRegression 
will pop-up a form with 
links to the main html 
output file and to 
secondary graphical 
pdf output files. 
 
Whether this form will 
be opened full size or 
minimized (then only 
noticeable in the 
taskbar) depends on 
the corresponding 
option in the Problem 
Reviewal form. 

 



When running multiple scripts through the Run from script… top-left menu from the initial 
form, the above final form with links to output files will NOT appear. 

 

4.5 Resuming/repeating a previous analysis 

It is easy to resume or repeat a problem that was already run with SampleSizeRegression. This 
can be useful if one wants to modify the prior distribution previously used for one or more 
parameters, or to check how the sample size may change under a different sample size 
criterion, for example. 
 
The top-left 
menu from 
the initial 
form offers 
the option to 
resume or 
repeat a 
problem that 
was 
previously 
run. 
 

 

 

 

4.5.1 Resuming a previous analysis 

Some errors, such as due to a computer crash, to the need to reboot your system while 
SampleSizeRegression was still running, or if you inadvertently stopped a WinBUGS script that 
was launched by SampleSizeRegression, might lead you to want to continue running a previous 
instance of the program.  Regardless of the reason for an interruption of the program, an error 
message such as the one reproduced below will be printed at the bottom of the html output 
file. 
 

 
 
 



To resume the problem, select the Resume/repeat previous output file… top-left menu item 
from the initial SampleSizeRegression form and load the incomplete html output file: 
SampleSizeRegression will then resume from where it stopped (or was stopped!). 
 
If the same error occurs again, it might be a sign of a problem inherent to 
SampleSizeRegression. Please do not hesitate to contact us if you cannot think of a solution to 
the problem or if the error message is unclear. See our contact email address at the end of this 
document. 

 

4.5.2 Repeating a previous analysis 

The Resume/repeat previous output file…, as its name indicates, can also be used to repeat an 
analysis previously done with SampleSizeRegression. If the original analysis was done with fair 
precision (i.e., with a large number of samples from preposterior and a decent number of 
monitored iterations), there is not much interest in actually repeating the same analysis (even 
though you would almost surely obtain at least slightly different results by doing so, as the 
whole process is subject to Monte Carlo error). This option, however, can advantageously be 
used to rerun an analysis with slight modifications, such as different hyperparameters for the 
prior distribution of one or more parameter, a different sample size criterion, or even for 
focusing the inference on a different regression parameter. When loading a 
SampleSizeRegression html output file that completed with success, this option will bring you 
directly to the final Problem Reviewal form which, as already seen earlier in this document, 
allows the user to modify almost every single problem description parameter. 

 

4.1 Iterative html output file updates 
 

Whether you are running SampleSizeRegression for a sample size calculation or for outcome 
estimation for a series of predetermined sample sizes, you may be interested in having a look at 
intermediate results while SampleSizeRegression is running. The main html output file is 
updated after the outcome of interest is estimated for each sample size, and viewing it in your 
favorite browser is possible at any point in time. 
 

 



 

 

The output section labeled Results obtained along 
the march to optimal sample size is divided into 
two subsections: the upper portion lists the series of 
sample sizes along with their corresponding 
estimated outcome, in the order in which they were 
run. This is followed by a subsection where the same 
results are listed in ascending order of sample size, 
which may be easier to follow. Note that if the 
outcome had to be re-estimated for a given sample 
size (along the search for optimal sample size), that 
sample size will appear two or more times  in the 
upper section, once per re-estimation, while only 
the final estimate (which summarizes information 
from each intermediate outcome estimate) will 
appear in the lower (sorted) section. 
 

 

Finally, a link labeled Show/Hide Scatter plot opens a scatter plot (see example below) which 
helps visualize the relationship between outcome and sample size; it may even give enough 
information to the user with regards to the final sample size, even though the program has not 
formally reached convergence, and the user may decide to stop the program before it does 
converge. Note that when SampleSizeRegression finishes, a .pdf document presents the same 
scatter plot with a little bit more information. 
 

 



 
 

 

5.  Troubleshooting 

5.1 Avoiding trap errors from permission settings on Windows 7 

and Windows Vista platforms 

 

If you are working on a Windows 7 

or Windows Vista platform and 

have run WinBUGS before, you may 

have already run into the cryptic 

Trap #060 error message illustrated 

to the right. This is due to restricted 

write permissions in c:\Program 

Files, where you may have installed 

WinBUGS. 

 
 



 

WinBUGS must be installed in a directory where you have write permissions (e.g.C:\Users\user 

name \Documents) for SampleSizeRegression to run smoothly. 

 

5.2 Illegal Vista platforms write 

You may hit a Illegal memory 
write error message (prompted by 
WinBUGS) for high dimensional 
problems. This typically happens 
when WinBUGS tries to save results 
to disk (just before closing) when 
the number of monitored iterations 
is large; the work-around is to save 
intermediate results and clear 
WinBUGS memory after a certain 
number of iterations. By default, 
this is done after each 1000 
iterations, but that may not be 
sufficient in complex problems. 
 

 

The necessary frequency of WinBUGS memory wash-outs depends on the agreement table size and 

your system environment. If wash-outs at every 1000 iterations are not sufficient, we suggest that 

you try with wash-outs at every 500 iterations, 200 iterations, and so on, until 

SampleSizeRegression runs to completion. Changing the maximum number of iterations before 

each memory clear is done through the Technical settings form, as shown below. 

 



Click the More button in the 
Monte Carlo Markov chain 
specifications box. 
 

 
 

Then modify the value of Maximum number of iterations before memory clear. 
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