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Summary

Linear regression and logistic regression are the two most common methods employed in
medical research to provide estimates of the effects of treatments or exposure variables on
continuous or dichotomous outcomes, respectively, while adjusting for potential confounding
variables. With small modifications to the basic models, these methods are also able to
adjust for possible measurement error in covariates, either on the main exposure or a poten-
tial confounding variable. Despite their widespread use in the analysis of data, methods for
designing studies that will eventually provide data for regression modelling are more rarely
used. Most researchers either ignore sample size considerations entirely when planning such
studies, or use simple methods that do not account for potential confounding and measure-
ment error, both of which can have very large effects on sample size requirements. In this
paper we present a method that calculates the sample size required to estimate the effect of
any regression parameter to a desired degree of accuracy while adjusting for any expected
confounding variables and/or measurement error. We employ both Bayesian and mixed
Bayesian /likelihood sample size criteria so that our methods are applicable to studies whose
data will eventually be analysed by either Bayesian or frequentist modelling. We present
examples that both do and do not account for the presence of confounding and measure-
ment error, illustrating the effect that these potential complications can have on the required

sample sizes. A free software package that facilitates the use of our methods is available.

Key words: Bayesian methods; linear regression; logistic regression; measurement error;

sample size determination; study design.



1 Introduction

Linear regression and logistic regression models are widely used in the analysis of data in
order to estimate the effects of various independent variables on continuous or dichotomous
outcomes, respectively. Although less often used in practice, with small adjustments to these
models researchers can also adjust for any biases estimates in their estimates brought on by

measurement error.

Both linear and logistic regression can account for confounding, providing estimates of
main effects that are adjusted for the effects of confounding induced by any covariates in-
cluded in the model. Since both confounding and measurement error are very commonly
occurring in practice, it would seem important to account for both effects when planning
any study, since larger sample sizes may be required in the presence of confounding or mea-

surement error compared to if these problems are ignored in the modelling

A wide variety of sample size criteria have been proposed. These range from power
calculations and methods based on confidence interval widths from a frequentist viewpoint
(reviewed by Lemeshow et al 1990 and Desu and Raghavarao 1990) to Bayesian versions of
these same criteria (Spiegelhalter and Freedman 1986, Joseph, du Berger, and Bélisle 1997),
reviewed by Adcock (1997) and Wang and Gelfand (2002). Bristol (1989) showed that sam-
ple sizes based on interval widths are not directly related to those based on power, so that
sample sizes guaranteeing high power may not be sufficient for accurate estimation. It is
therefore important that the sample size methods match the eventual analysis. Since re-
porting interval estimates is preferable to hypothesis testing in most practical circumstances
including regression (Gardner and Altman 1988), sample sizes should be based upon interval
widths rather than power of hypothesis tests. Decision theoretic criteria have also been pro-

posed (for example, Pallay 2000), but while interesting in theory these methods are difficult



to implement in practice, in large part because realistic loss functions are difficult to derive
and are highly specific to a given application. These criteria will therefore not be discussed

further here.

Frequentist sample size methods depend on accurate point estimates of the required in-
puts such as effect sizes and standard deviations, but these are typically not accurately
known at the design stage of any study. It is therefore advantageous to consider Bayesian
methods, where prior densities not only allow for uncertainty in the inputs, but incorpo-
rate this uncertainty into the sample size requirements. It is also easy to extend Bayeisan

regression models to include measurement error.

In this paper we develop Bayesian methods to determine sample size requirements to
accurately estimate any linear or logistic regression parameter including the possibility of
confounding variables and measurement error. In particular, we develop methods to derive
sample sizes using the Average Coverage Criterion, (ACC), the Average Length Criterion
(ALC) as well as the Modified Worst Outcome Criterion (MWOC) both accounting and not

for confounding and measurement error.

The outline of this paper is as follows. Section 2 reviews various Bayesian sample size
criteria based on highest posterior density (HPD) credible interval lengths. HPD intervals
are optimal in that they will lead to the smallest possible sample sizes for a given desired
length and coverage probability. Specific methods for calculating the sample sizes defined
by the criteria in Section 2 in the case of linear and logistic regression are given in Section
3. Sample sizes from a series of prototypic examples are given in Section 4, comparing the
change in sample size with and without consideration of confounding and measurement error.

We end with a discussion in Section 5.



2 Bayesian sample size criteria

Let 6 € O be the parameter of interest, f(#) the prior distribution, = = (zy,...,z,) the data
of sample size n, X the data space, f(x) the predictive marginal distribution of the data,

and f(f|x) the posterior distribution for ¢ given data x. Then

fla) = [ F@l6)fO)d6,  and 1)
F(xl6)£(6)
£(6) o

In a Bayesian approach to sample size determination inputs include the desired length of
the HPD interval [, the chosen credible interval level 1 — «, and a prior distribution for 6.
Since the data are not known at the design stage, we need to integrate or maximize over the

predictive distribution of the data given by (1), which leads to the following three criteria.

2.1 Average coverage criterion

For a fixed posterior interval length [, one can determine the sample size by finding the

smallest n such that the equation

/X {/aaﬂf(@\x,n)cw} fl)de >1—« (2)

is satisfied. This average coverage criterion (ACC) ensures that the mean coverage of poste-

rior credible intervals of length [, weighted by f(z), is at least 1 — «.

2.2 Average length criterion

For a fixed posterior credible interval coverage of 1 — «, one can also determine the sample

size by finding the smallest n such that

[ @y <t (3



where ['(z,n) is the length of the 100(1 — a)% posterior credible interval for data x, deter-

mined by solving
a—i—l/(x,n)
/ fOlz,n)dd =1 — «

for l/(az,n) for each value of z € X. As above, a can be chosen to give highest posterior

density intervals or symmetric intervals, which coincide for symmetric unimodal densities.

This average length criterion (ALC) ensures that the mean length of 100(1—a)% posterior
credible intervals weighted by f(z) is at most .

2.3 Modified worst outcome criterion

Cautious investigators may not be satisfied with the “average” assurances provided by the
ACC and the ALC criteria. Therefore, a conservative sample size can also be determined by

the smallest n satisfying the equation

inf {/GH(M) £(6lz, n)de} >1—a, (4)

z€S
where S is a suitably chosen subset of the data space X'. For example, this modified worst
outcome criterion (MWOC) ensures that if S consists of the most likely 95% of the possible
x € X, then there is 95% assurance that the length of the 100(1 — )% posterior credible

interval will be at most [.

One must also consider a “design prior,” that is, the prior density to plug into (1) to
generate the set of all possible data x, which is not necessarily the same as the “analysis
priors” used in the calculation of the posterior density. For example, one can use informative
design priors to predict future data, but non-informative analysis priors to let the data alone
determine the posterior density. In the next section, we will present methods for applying
the above criteria to selecting sample sizes for studies involving linear and logistic regression

parameters.



3 Sample size methods for linear and logistic regres-
sion parameters with and without confounding and
measurement error

In this section we consider how to apply the above sample size criteria in the context of both
linear and logistic regression, both with and without adjustment for confounding and/or

measurement error.

3.1 Sample size methods for linear regression

Let 6 be the vector of linear regression parameters including the intercept and the residual
variance. We assume that all parameters are a prior: independent, with normal densities for
each intercept and regression parameter priors, and a uniform prior for the residual standard
deviation. In the absence of measurement error, this completely defines the posterior density
when it is combined with the standard linear regression likelihood function (please see the
detailed equations in the appendix). In the case of measurement error, we assume normal
errors with mean zero around each independent variable measured with error, adding only
one new parameter, the standard deviation of the measurement error. We again use a uniform

prior for this standard deviation term.

The above information completely defines the likelihood function and priors for our
model, both with and without measurement error. Therefore all we need to complete our
analysis are the design priors. We assume these will, take the same form as the analysis pri-
ors, although each parameter may or may not take on different numerical values compared
to their analysis prior counterparts. With all necessary functions now defined, applying the

Bayesian sample size criteria of Section 2 is straightforward, and is implemented by MCMC.

Given a bounded range that contains the correct sample size, it can be found through



a bisectional search algorithm, for example as described by Thisted (1988). In practice, a
starting sample size is selected, and the above criterion is checked. The sample size is then
increased or decreased according to whether the criterion is above or below the required

threshold, continuing until the optimal sample size is found.

3.2 Sample size methods for logistic regression

Let 6 be the vector of logistic regression parameters. We again assume that all parameters
are a priori independent, with normal densities for each intercept and regression parameter
priors. In the absence of measurement error, this completely defines the posterior density
when it is combined with the standard logistic regression likelihood function (please see
details in the appendix). In the case of measurement error, we again assume normal errors
with mean zero around each independent variable measured with error, adding only one new
parameter, the standard deviation of the measurement error. We again use a uniform prior

for this standard deviation term.

The above information completely defines the likelihood function and priors for our
model, both with and without measurement error. Therefore all we need to complete our
analysis is the design priors. We assume these will take the same form as the analysis priors,
although each parameter may or may not take on different numerical values compared to
their analysis prior counterparts. With all necessary functions now defined, applying the
Bayesian sample size criteria of Section 2 is straightforward, and is implemented by MCMC.

As above we find the final sample size through a bisectional search algorithm.

A user-friendly R package called “RegressionSampleSize” that implements all of the above

methods are available from the first author’s website, at

www.medicine.mcgill.ca/epidemiology/Joseph/



We next use this software to determine sample sizes for various scenarios that may occur
in the planning of studies where parameters of interest will be estimated with linear or

logistic regression.

4 Sample sizes for prototypic scenarios

We first look at a typical example when estimating a linear regression parameter, followed
by an application of our methods to logistic regression parameters. In each case we calculate
the required sample size to ensure the desired degree accuracy using the ACC criterion. Of
course, similar results will be produced when using any of the other Bayesian sample size
criteria. In each case we compare results with no confounding and no measurement error to

results with one or both of these problems.

4.1 Example for linear regression

Suppose one is designing a study that will be analysed by linear regression, and where the
outcome will be predicted by two independent variables, a main variable of interest, say x;
which may possibly be measured with error, and a second possibly correlated variable which
also may be measured with error, x5. We will assume that the true population distribution of
these two variables are both N(0,1). We would like to accurately estimate the beta coefficient
of the first variable, 5; while adjusting for the possible confounding effects from the second
variable, also accounting for any measurement error. We will use a 95% HPD credible interval
to estimate 1, whose length we would like to be at most 0.8. The true value of all beta
parameters is assumed to be 1, and the true residual variance was taken to be 1, with priors
uniformly distributed on the interval [0.1, 10]. What sample size is required using the ACC

criterion?



If the two independent variables are uncorrelated and there is no measurement error, then
the sample size we will need is 990. If there is a weak correlation of 0.1 between x; and x»
then the sample size is increased to 1111, and larger correlations of 0.5 and 0.9 increase the
required sample sizes to 1314 and 5183, respectively. We can see that correlation between

the variables can have a very large effect on the sample size.

The above sample sizes are what is required if there is no measurement error. Suppose
that both x; and x5 are both measured with error, with mean error of zero, but with standard
deviation uniformly distributed within the interval [0.1, 0.3]. The sample size when there
is no correlation between the two variables now increases to 1090, and the sample size
changes to 1127, 1501, and 4312 when there is correlation of 0.1, 0.5, and 0.9, respectively.
Therefore we see that correlation has a larger effect on the required sample size compared

to measurement error in this example.

4.2 Example for logistic regression

We will now turn to the design of study whose data will be analysed by logistic regression.

Suppose one is designing a study that will be analysed by logistic regression, and where
the outcome will be predicted by two independent variables, a main variable of interest, say
21 which may possibly be measured with error, and a second possibly correlated variable
which also may be measured with error, z5. We will assume that the true population
distribution of these two variables are both N(0,1). We would like to accurately estimate the
beta coefficient of the first variable, §; while adjusting for the possible confounding effects
from the second variable, also accounting for any measurement error. We will use a 95%
HPD credible interval to estimate (1, whose length we would like to be at most 1 on an odds
ratio scale. The true value of all beta parameters is assumed to be 0.1, with priors selected

such that 95% of ther prior density is between 0.2 and 2.5, again on the odds ratio scale.



What sample size is required using the ACC criterion?

If the two independent variables are uncorrelated and there is no measurement error,
then the sample size we will need is 1269. If there is a correlation of 0.5 between x; and
x9 then the sample size is increased to 1680. Similar to linear regression, we can see that

correlation between the variables can have a large effect on the sample size.

The above sample sizes are what is required if there is no measurement error. Suppose
that both z1 and x5 are both measured with error, with mean error of zero, but with standard
deviation uniformly distributed within the interval [0.2, 0.3]. The sample size when there is
no correlation between the two variables now changes to 1156, and the sample size changes
to 1482 when there is correlation of 0.5. Therefore we once again see that correlation has a

larger effect on the required sample size compared to measurement error in this example.

5 Discussion

Many sample size criteria have been proposed from both hypothesis testing and interval
estimation viewpoints. Since the advent of fast desktop computers and the development
of MCMC algorithms for Bayesian analysis, increasing numbers of statisticians are using
Bayesian methods. Accompanying these advances have been important modeling advances
in bias correction, such as adjusting analyses for measurement error. Although these meth-
ods have increased flexibility in modelling, there are fewer design methods to plan studies
where these new analytic techniques will be used. This paper addresses this gap in providing
Bayesian methods to determine sample sizes for linear or logistic regression modelling, includ-
ing adjusting sample size requirements for possible confounding variables and measurement

error in covariates.

As both of the prototypic examples we presented in Section 4 show, sample size require-



ments can considerably change if confounding and/or measurement error is accounted for
at the design stage. The accompanying software, available from the first author’s webpage
at http://www.medicine.mcgill.ca/epidemiology/Joseph/, allows for easy implementa-

tion of all methods discussed in this paper.

Appendix

10



SampleSizeRegression

Version 1.0, July 2019

1. Introduction

The program SampleSizeRegression --- available for Windows only --- was developed to estimate
sample size requirements in the context of Bayesian linear and logistic regression parameter estimation
with possible covariate measurement error, along the lines of our paper

Bayesian Sample Size Criteria for Linear and Logistic Regression in the
Presence of Confounding and Measurement Error

Lawrence Joseph and Patrick Bélisle

Unpublished

We recommend that you read the above paper carefully before using this software; this paper
is available from
http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/SSReg.pdf

You are free to use this program, for non-commercial purposes only, under two conditions:

- This note is not to be removed;

- Publications using SampleSizeRegression results should reference the manuscript mentioned
above;

- While we have done our best to ensure the program works as described in this manual, the
user acknowledges that this program is not necessarily bug-free. We assume no liability for any
errors or consequences that may arise from the use of this program. The use of this software is
at the exclusive risk of the user.

If you have not installed SampleSizeRegression yet, please read the Installation Instructions
(Installlnstructions.html) first.

The easiest way to open this program® is to use the shortcut found in Programs list from the
Start menu. Once opened, you will be prompted by a graphical user interface (GUI) to describe

the problem, that is:

- choose between sample size calculations or outcome prediction for fixed sample size(s)

1 You can start SampleSizeRegression by browsing through the User's Programs menu (available by clicking the Start button and
then Programs) and selecting SampleSizeRegression. You can also start SampleSizeRegression by opening Windows Explorer,
browsing to this package's location (c:\Users\user name\Documents\Bayesian Software\ SampleSizeRegression or c:\Documents
and Settings\user name\My Documents\ Bayesian Software\ SampleSizeRegression by default, depending on your platform) and
clicking on SampleSizeRegression.vbs.


http://www.medicine.mcgill.ca/epidemiology/Joseph/publications/Methodological/SSReg.pdf

- choose between linear and logistic regression

- fill in your prior information about regression parameters for each independent variable
included in your regression model

- select a sample size criterion

- select an output file (where you want the results to be saved)

- and a few more technical questions (number of Gibbs iterations, where to start the seach for
the optimal sample size, etc.).

Once the GUI has collected all of the inputs required for the problem, it will be closed and the
program will continue almost invisibly; the only thing that you will see on your screen is a
WinBUGS window, which you can minimize.

When the program has finished (running time can vary, and could be many hours if you are
running sample size calculations) another GUI will appear announcing program completion and
giving you the opportunity to view the output immediately. This GUI will not appear when
SampleSizeRegression is called from a script (see section 3.1).

When started from the .vbs file (for example, when run from the Start menu),
SampleSizeRegression will always run at low priority, allowing your system to use more CPU
for higher priority tasks when needed. Thus, you can continue to work comfortably as this
program runs in the background.

2. Problem description

Suppose P independent variables X; = (X1, X2, ..., Xip) are to be collected, with or without
measurement error, on N subjects as well as the outcome (or response) variable Y;, i =
1,2,...,N, and that the relationship between the outcome and the P independent variables
will be modeled through either

a) alinear model, that is,
Yo =Bo+ P1Xi1 + BoXio + ..+ BpXip + &,

where the ¢; are independent normally distributed random error variables with mean 0 and
common variance ¢, when the outcome is a continuous variable or

b) a logistic model, that is,
Y; ~ Bernoulli(w;)
where logit(;) = By + B1Xi1 + B2 Xip + ...+ BpXip

when the outcome is binary.



In both linear and logistic model, we assume a multivariate normal prior distribution on the
regression parameters B = (By, B1, B2, .-, Bp)’. For variables X, that come with measurement
error, we assume that the measured value is a random value centered about the true value X,
that is, X, ~ N(X}, 62) where g, ~ U(ay, by,) for given constants a;, and by,.

In the linear model, we assume a uniform prior distribution on g, that is, 0 ~ U(a, b) for given
constants a and b. Note that the presence of the intercept 5, in the linear model is optional.

The posterior density for B in the context of a linear regression is given by

N
1810 = [rw18x0) f@r@ [[[] [ retulxion s dogao

keSS i=1 Ok

where

Y is the response vector Y = (¥, Y5, ..., YN)'

X is the design matrix

f(Y | B,X,0) |isthe likelihood of the data Y —that is, a multivariate normal distribution with
mean X and covariance matrix o2 I;, where [, is the g X q identity matrix,
q = P + 1if the model has an intercept, g = P if not

f(B) is the analysis prior distribution for 8
f (o) is the analysis prior distribution for o
S is the set of variables measured with error, that is,

S ={k : X is measured with error}; if S is null —that is, if all variables are
measured exactly — then [], ¢ s [TV, fak fXu X, 00) f(03) do =1

Xk is the measured/observed value for variable X in subject i

Xik is the true value for variable X}, in subject i (unobserved for variables with
measurement error).

SampleSizeRegression was developed to compute the minimal sample size N such that a
regression parameter (say 1, without loss of generality) is estimated within a given pre-
specified accuracy.




2.1 How SampleSizeRegression works

For a fixed sample size N, a large number M (M is called the preposterior sample size) of data
points X;,i = 1,2, ..., N is sampled.

The distribution of X; = (X;1, X;2, ..., X;p) can be assumed to be a multivariate normal
distribution or any multivariate distribution F; in the latter case, the user must provide R code
to generate random values for X;,i = 1, 2, ..., N: an example will be provided in section 4.2.

For each of the M samples of { X1, X5, ..., Xy}, a set of regression parameters (S, S1,

B, ..., Bp) is sampled from the B design prior distribution, and finally a set of response
variables { Y}, Y5, ..., Yy} is generated along the linear or logistic regression model parameters.
Response and independent variables are then saved and analyzed through a WinBUGS model
taking into account the measurement error around independent variables (if any) and the
uncertainty around the regression parameters (through the f analysis prior distribution). The
WinBUGS Markov Chain Monte Carlo process leads to the approximation of the posterior
distribution of the regression parameters .

The coverage or length of the HPD interval of a predetermined regression parameter is then
calculated for each of the M samples and the sample size N is then ranked as being sufficient or
not depending on whether or not the selected sample size criterion is met.

SampleSizeRegression iterates over N until

a) the desired parameter accuracy is met for sample size N but not for N — 1 or

b) in a series of six consecutive sample sizes, the larger three satisfy the sample size
criterion while the smaller three do not, and these six consecutive sample sizes do not
span more than 2% of their midpoint value.

Stopping criterion (b) proves useful when the final sample size is large (e.g. more than a
thousand).



3. How to use SampleSizeRegression

The initial window (below) is used to choose between sample size calculations, or the
estimation of average or percentile of HPD lengths or coverages for a series of predetermined
sample sizes.

Egﬁample Size Calculation for Accuracy around Linear Regression Parameter' E - 10| x|

Run Help

Welcome to SampleSizeRegression

Sample size calculations

i Estimate HPD lengthsfcoverages for a series of sample sizes

The next form Sample Size Calculations for Linear and Logistic Regression

will first be N N 5
used to select -~ -~

between Select the regression model of your choice by clicking the appropriate button below
linear or T R - Logislic R -
Iogistic Inear heqgression 0gIstic Regression
regression by The model is Y~ N[ XB. o2 Ig] The madel is ¥~ Bemaulli(7 ;)

clicking the e model is B, o° Iq e model is ¥~ Bernoulli( T ;

; . . , P
corresponding where f isthe vector of regression coefficients, cherelogif © )= § ¢ E §
label. X isthe design matrix, [ 0 ko

k=1
lq isthe g x g identity matrix and BEI is the intercept
& 15 3 fecleluel shancere iy B1J vy B arethe regression coefficients
P

and ¥ 71N k=1



In the context of linear Egﬂayesian sample Size Calculations for Linear and Logistic Regression
regression, the form will Help

then be used to enter the
prior distribution on the
standard deviation of
then (independent) error
terms.

Linear Regression

2

The maodel is¥~ N[ X, o Iq]

where B is the vector of regression coefficients,
X isthe design matrix,
lq isthegxgidentity matrix and

o isthe residual standard error

with o =~ Uniform(a, b)

where a = 0.5 and b=

The remaining of this section illustrates the entry form in the context of linear regression. This
entry form and the following forms will be very similar in the context of logistic regression; the
form entries specific to the logistic model will be introduced in section 3.2.

You will next be asked whether or not you wish to include an intercept in your model and
whether the independent variables X; = (X;1, X2, ..., X;p) come from a multivariate normal
distribution or not. In epidemiological studies, independent variables will often include
dichotomous (e.g., gender) or class variables (e.g., socio-economic status, race) which obviously
cannot be modeled through a multivariate normal distribution.

If the distribution for X; is assumed to be multivariate normal, then the next step (below) will
be to enter the number of independent variables, the variable names (second form below) and
the parameters associated with the X; distribution (third form below).



Select a distribution for the i.i.d, vectors & x MNP, X)
1

S (% PEEIPREE S Lp=g-1 " other (to be defined through yaur own
P R code, next form)

How many independent variables do you wish to include in the model?

v|
1
Z
kil
5
G

™ variable names

Please fill in alternative variable names or
labels {(optional)

Variable # | Variable name/label

age %

w2

%3




Variable Mean Covariance matrix

Wariable name | tean
w1 [wall]
M2 [wall]
w3 [l

The parameters of the prior density for X; are the P means and the P X P covariance matrix,
by default; you can alternate between covariance and precision matrices through the top menu
item Switch to Precision (Covariance) matrix entry.

ﬂgPrecisiun,.-"l:uvariance Matrix

Edit Precision/Covariance matriz  Help

Round-off Covariance Matrix entries r
Set Covariance Off-Diagonal elements to 0

Clear Covariance Makrix entries

pper triangular matrix elements can be visited  »
Imwert mateix and display Brecision matri

Covariance matrix

Yariable name | Mean | %1 | %2

w1 [rill] [ 4 [rwall] [rwall]
2 3 i [ire ™ W [roall) faull
- P "l




Precision matrix
Scale parameters can be equally

entered through acovranceors |

precision matrix. %1 %2 E
w1 [rwall] [rwall] [rull]
4 w2 [rall] [rwall] [;: [rull]

[Fuall] [rall] [rull]

The next form (below) will be used to enter a prior distribution for uncertainty around each

independent variable that is measured with some error. Note that all can also be considered as

being measured exactly.

‘ By default, each variable is considered to be measured exactly.

If one or mare variables is measured with error, select it from the list below
and enter the prior distribution for the standard deviation of the
measurement errar,

4

‘ Yariahle
w1l  is known exactly modeled as measured value ~ Nitrue value, s.d. = @)
%2 (?[%is measured with errar with @ ~ Uniformia, b)

‘ N N e e

The next form (below) is for entry of the parameters of the multivariate normal prior
distribution for the B regression parameters. It is similar to the entry form for the X;

multivariate distribution and also allows the choice of entry through a covariance or a precision

matrix.



Parameter Prior Means Covariance matrix

Parameter | Mean Row name | Intercept | betalx.1] | betalx.2] | betalx.3]
4 Intercept [rwdll] » Intercept [rwall] [rwall] [rwall] [rwall]
betalx.1] [rudll] beta(x.1] [rwall] [rwall] [ruall] [rwall]
betalx. 2] [rwdll] beta(x.2] [rwall] [rwall] [rwll] [rwall]
betalx.3) [rwdll] betax.3) [rwall] [rwall] [rwall] [rwall]

If sample size determination was selected in the initial window, the next form (below) allows
selecting one of the ten sample size criteria available. This window is also used to specify the
fixed or target (depending on criterion selected) HPD length and coverage for the parameter of
interest, also selected from this form.

_iBix)

Help

Lo - - "
. Criterion Targets
ALC ¢ ayerage length criterion P
: HFC
ACC T
" Average coverage criterion length
MLC ¢ Median length criterion I
B MCC ¢ Median coverage criterion
= " I HFD
- Mwoc © Modified worst outcome criterion caverage
> [ Use Mixed BavesianfLikelihood approach ID Y

F e i " F v -
I Monitored parameter E




When the Mixed Bayesian/Likelihood approach is chosen in form above, the prior distributions
for B and o will be used at the design stage (to generate data) but different prior distributions
(called analysis prior distributions) will be used at the analysis stage (that is, in the WinBUGS
model written to estimate the posterior distribution for B): these analysis prior distributions
would be collected later through forms similar to those already presented.

Note that it is also possible to base sample size calculation on a linear combination of
regression parameters rather than on a single regression parameter as illustrated above.
Indeed, clicking the tick box labeled infer on a linear combination of regression parameters will
modify the elements displayed in Monitored parameter frame: you can then click on the
regression parameters of your choice in the list box displayed an assign a weight to the selected
regression parameter by entering it in the text box to its left. In the example below, we first
click b(x.1) and assign it a +1 weight, and then click b(x.3) and assign it a -1 weight to build the
difference b(x.1) — b(x.3). Note that the text to the right of 0 gives the expression of the
regression parameters linear combination such defined.

b Monitoreo parameter Monnored paramewer
Regression term Regression term |17
weight for WE|ght faor B

hix. 1)

g 8= parameter of interest (linear comhbination of k()'s* ‘ o=

¥ _infer on a linear combination of regression parameters v m‘“" an a ||r'|ear ~~mhination rf “sgres-

F v W i, Mo, arame.
Matwewred paramew.,

Regression term Iﬂi weight for
‘ WEIght for

‘ Regression term
b(x.3)

= blx11- bix.
8= bix1) ‘ a (.17 - bix.3)
X

W irt 3 linear “mation of ssiop
¥ noaline hinatior Trassion - -- -

) A



In the context of logistic regression, that
feature could also be used to base sample
size calculation on the Odds Ratio of a
variable on a different scale than the
default one-unit OR. The opposite image
illustrates an example where the interest
would be on the Odds Ratio for age
expressed in terms of a 10-years
difference.

4 Monitar. . arameter

Fegression term Ir
weight for I

biage]

D

8= 10%b{age)

¢

infer on a linear combination of regression r



The next window allows the
user to specify the
preposterior sample size and
the number of burn-in and
monitored iterations of the
Gibbs sampler algorithm that
is used throughout.
Changing these values is
optional, the default values
will usually provide
reasonable estimates.

When SampleSizeRegression
is used to calculate sample
sizes, this form also allows
the user to specify whether
the optimal sample size
should be found via a
bisectional search or with a
so called model-based
algorithm. The latter, the
default choice, usually
converges to the optimal
sample size neighbourhood
with fewer steps.

In either case, the first three
sample sizes for which the
outcome of interest (e.g.
average HPD length) will be
estimated are based on a
bisectional search, after
which this option comes into
effect.

M Technical settings

Help

Search algorithm
&+ model-hased

i~ hisectional

"l

i

Monte Carlo Markov chain specifications

1000 Preposterior sample size
2000 Mumber of monitared iterations

Anon Mumber of burn-in iterations

J‘.
Lt

AT

¥

Sample size

0.

200 Starting walue

100 Initial step

15000 Maximum feasible size

20 Lower sample size to estimate
[protection against WinBUGS cras hes )

J‘.
L

AT

i

™ Use all of the ahove parameters as default

"%

infi* e runs.

=10l x|

-
.

?

L]
L

1

Finally, a Problem Reviewal form (below) allows the user to review each parameter entered
through the different forms and modify any, if necessary, by clicking the appropriate Change

button.




ﬂgProhlem Reviewal

Qutput  Help

This page summarizes all of the infarmation you have entered. Please check all information and labels carefully.

If all is correct, begin calculating your sample size by clicking on the "Proceed to sample size calculations" button.
If you want to change any of the inputs you have provided, click on the appropriate "Change" button, which will

bring you back to that parameters input screen.

MCMC Settings

Incdependent data distribution
Model-based search algorithm Regression error

2000 iterations will be monitored after a burn-in ofiRegression parameters prior distribution

Measurement error

Preposterior sample size: 100
Sample size criterion

Initial sample size: 500

Initial step: 100
Maximum feasible sample size: 10000 '
Number of additional samples taken from preposterior for each re-estimation: 100

The above form is also used to select the output file location, either by selecting the top-left
menu item File/Save as... or by clicking the Output location link in the lower left portion of the
form.




3. I Entering prior distribution for regression parameters in the
context of logistic regression

In the context of logistic regression, the prior distribution for the 3 regression parameters can
be entered through its mean vector and covariance or precision matrix as illustrated in the
context of linear regression in section above, or through the 95% limits of prior intervals for the
Odds Ratio of each independent variable included in the regression model, as shown in figure
below.

eter(s) prior distribution

ancematrix  Help

95% prior interval for from: to:
Pr{Outcome =1 | x.cont = avg, x.dichotomous =0} I 0.25 I 0.6
Odds Ratio
95% prior interval for Odds Ratio from: to: Summary J Pick list
exp(b(x.2)) | oa | " exp(b(x. 1)): 0.6 to 3

exp(b(x.2)): 0.8 to ?

exp(b(x.3)): 7to ?

The top 2 boxes are used to enter the 95% interval for the prior probability of a positive
outcome (Y; = 1) when the continuous independent variables are equal to their average and
the dichotomous independent variables are 0’s. The other values to enter are the 95% prior
intervals for each of the independent variables’ Odds Ratios (per one unit change): this is done
by first clicking a X variable name in the right box labeled Odds Ratio Summary / Pick list, and
then entering the lower and upper limits of its 95% Odds Ratio prior interval. The prior
information contained in the above 95% limits on OR’s is turned into a multivariate normal
distribution with independent components, with mean and sd (y;, 0;) for regression parameter
B; such that expiiliu; + 2 o250;) are equal to the two endpoints of the 95% prior interval for £3;,
i=1, 2,..., P, and (g, 0g) such that expii€iuy + zg 9250¢) are equal to the logit() value of the two
endpoints of the 95% prior interval for Pr{Y = 1 | continuous X variables = their average and
dichotomous X variables = 0}.



3. 2 Saving and running scripts

Once a problem is fully described by completing the appropriate forms, the actual
computations can be launched right away by clicking the [Run now] Proceed to Sample Size
calculations or saved for future submission by clicking the [Run later] Register Problem
Description button, both found in the lower right corner of the Problem Reviewal form.
Problems saved for future computation will be saved as script files, identified by a label entered
by the user in the next form.

Register Problem
Description >>

The initial form of ESample Size Calculation for Accuracy around Linear Regression Param

SampleSizeRegression IH Help

allows the user to run

one or more previously Resumerepeat previous aukput file, ..

registered scripts Yalidation of Mormal approximation to posterior distribution in problem analvzed in past outpu

F—_— - ~ -
through the Run/From ! Welcome to SampleSizeRegress:
e |

script... top-left menu
item.

y

-lg ci

Running and submitting a script is useful when computing sample sizes for a number of variants
(e.g., with different criteria or with different prior distributions), in that it eliminates delays
between each run.



Select the scripts you ™ scripts List =10] x|

wish to run now by Sort Help

clicking the appropriate

script label(s) from the

list and click the Run>>

button. Please pick fram the list below a
series of scripts to run or delete

Note the tick box below

the Run>> button which & SRS . -
can be ticked if you wish “ W ——
to delete the script files I Deletes criptis)

when the calculation is after

completed complation

By default, the scripts are

listed in order of entry @
date and time. Clicking

the two-sided arrow

button to the left of the ’ e
= =a|

B
list will reverse the order T S, -

4. Examples of running SampleSizeRegression
4.1 Sample size calculation

ICl on va illustrer 'utilisation du GUI pour répéter un exemple tiré de I'article.




4.2 Running sample size calculations on problems where X is not
multivariate normally distributed

The independent variables X; = (X;1, Xi2, ..., X;p) do not necessarily come from a
multivariate normal distribution, as discussed in Section 2.1. In many applications to medicine
and other fields of application, categorical variables will be present, meaning that the
multivariate normal density is not appropriate. As the algorithm needs to sample from the X;
distribution (again, see Section 2.1), you will be asked to provide R code to sample from the X;
distribution.

Following the second form, where you indicate that X; does not come from a multivariate
normal distribution, you will need to enter/load your R data-generating code: you can load your
R code through the top-left menu item or enter (or cut and paste) your R code into the main
text box of the form illustrated below.

ﬂgllndependent variables generating R code

Help | R Code

Save as..,

Enter your own data generating R code

Remember that M is reserved far the predetermined sample
size and can be used as such in your code

gender..age.mean <- c(72, 65) # female and male expected age means ;I
gender . age . sd <- o4, 5) # female and male expected age =ads

male.prop <- 0.4

gender <- rhinom(MN, 1, male.prop)

age <- rnorm(N, wean=gender.age.mean[l+gender], sd=gender.age.sd[l4+gender])

BMI <- rnorm(N, mean=25, sd=2.5)

¥ - data.frame (gender, age, BMI)

Do MOT include the interceptinyour design ratriz (itwill be added awmomat clly by the program)

Enter a label for B Code above

: |
S
=5




The generating-data R code from example above is reproduced below to ease readability:

gender.age.mean <- ¢(72, 65) # female and male expected age means
gender.age.sd <-c(4,5) #female and male expected age sds

male.prop <- 0.4

gender <- rbinom(N, 1, male.prop)

age <- rnorm(N, mean=gender.age.mean[1+gender], sd=gender.age.sd[1+gender])
BMI <- rnorm(N, mean=25, sd=2.5)

x <- data.frame(gender, age, BMI)

The above code will sample values for three independent variables, namely gender, age and
BMI. The proportion of males in the study is expected to be 40% and the age for women is
expected to be 72 years old on average, with an SD of 4, while men’s age is expected to be
slightly lower with mean 65 years old and with an SD of 5. BMI is expected to be normally
distributed (with mean 25 and s.d. 2.5) for both men and women.

As can be seen in the R code above, the fourth line uses the reserved variable name N, used for
the sample size. N is a reserved variable name in the sense that it should NOT be used in your
code for any variable other than sample size. The object defined on the last line of your code (x,
in the above example) should be a data frame containing each variable to be used in the linear
regression model. Obviously, your R code should be thoroughly tested before you use it in
SampleSizeRegression as no debugging for this code is done by the program itself.

We suggest that you enter a label in the text box under the label Enter a label for R code above:
doing so will make the use of your R code only one click away the next time you run
SampleSizeRegression.

Note that the use of class variables with K > 2 classes in SampleSizeRegression is possible only
through the use/definition of K — 1 dummy variables in the R data-generating code.
Categorical variables not defined in this way will be treated as continuous variables. This
limitation arises from the way WinBUGS treats categorical data.




4.3 Validating the normal approximation to the posterior density
of the regression parameter of interest

The calculation of HPD interval length or coverage for the parameter of interest (one of the
slopes in the regression model) is based on the normal approximation of its marginal posterior
distribution. It is hence a good idea to validate the appropriateness of that approximation in the
context of your problem for your final sample size.

From the initial ﬂgﬁample %ize Calculation for Accuracy around Linear Regression Paramete

form, select the Run Help

Run/Validation of ~ From seript...
Normal : Resume/repeat previous oukpuk File. .,
approximation... p alidation of Mormal appraximation ta posterior distribution in prablem analyzed in past output File. ..

toprleftmenu Welcome to SampleSizeRegression

item.




The next form Eg'h'alidating Mormal approximation to posterior distribu
allows the user to
enter the number
of values sampled = - .
from preposterior " “falidate Mormal approximation for problem addresszed in

to assess the —  CAPatrick\S ampleSizehS ampleSizeR egressionhprogrammers. comerloghS Size
S earch-dranarn. bkl
normal
approximation for
the posterior Yalidation Sarmpling
density of the Y
Mumber of values sampled from prepozterior to aszess the
parameter under approwimation of the postenor distribution by a Marmal I B0
study. dizbribution:

Mumber of plotz per page:

|3 "I rows ¥ |4 "In::n:nlumns

Even though a
large preposterior
sample size (of the
magnitude of
thousands of
samples) was used
in the original
problem, this time
the sample does
not need to be very
large to form an
opinion on the
appropriateness of
the normal
approximation.

[T Use parameters above as default in future runs

Save output plokto file:

i

¥

. w

We suggest to run it for 60 samples by default, but this can of course be changed. Remember,
however, that a histogram of the values obtained in the MCMC WinBUGS program run will be
drawn for each sample, with the distribution function of the best-fitting normal density
superimposed. This means we have to monitor and save the values of the parameter of interest
for each WinBUGS iteration, which is demanding in terms of both computer time and memory.
By default, each page of the pdf output file will display 3 rows and 4 columns of histograms, but
this can also be changed in the above form.

The trace OF XX and YY will also be saved, allowing the user to monitor the appropriateness of
the chosen number of burn-in and monitored iterations, among other options.

Click the Save output plot to file item in the lower section of the form to select the pdf output
file location: make sure not to overwrite an already existing pdf file. When done, click the Ok>>
button.




The next form
displays the
optimal sample
size obtained for
this problem.

Sample size n= 206 was found to be optimal for this
problem.Y¥ou can add more sample sizes to the list of
sample sizes for which to validate the Normal

Approximation to the posterior distribution for bix 2],

Close rote [add sample sizes]

By default, the normal approximation validation check will be run for that optimal sample size
only, but you can also add additional sample sizes, should you consider sampling more or less
subjects than indicated and wish to validate the normal approximation for these alternative
sample sizes as well. Click the Close note [add sample sizes] button and then the Next>> button
to proceed with optimal sample size only.

A Problem Reviewal form will be displayed, allowing you to modify the parameters entered.
Some parameters, however — such as number of burn-in and monitored iterations — are not
modifiable as it would not make sense to check the convergence and mixing with technical
parameters different from those used in the original problem.

Click [Run now] Proceed>> when ready.

Upon completion, a form will pop-up, offering you links to the (now modified) main html output
file, the .pdf file with the normal approximation superimposed on the histograms and the traces
OF XYZ.

A link to the normal approximation validation check pdf output file will be added to the main
html output file. Below is an excerpt of the normal approximation validation check pdf output
file: the four figures display, respectively, the histogram for 8; values sampled in the WinBUGS



MCMC run for four samples with N = 206: the superimposed orange lines show the
distribution function of the best-fitting normal distributions and all show a more than decent
fit, which should reassure the user of both the appropriateness of the normal approximation for

the posterior distribution for f;and for the appropriateness of the optimal sample size
returned, given the prior information at hand. Each histogram represents the results from one

sample of X;’s,i = 1,2, ..., N.

N =206 N =206 N =206 N = 206

. T - .
- © - = ] o @ = ™

- g © [' ] z 2
g g o , g g o
(3] - l“ 1 o™ -
= I'1r| |-1|_.. o o

S T 717 711

ICl peut-etre presenter des traces et les commenter sommairement??

4.4 Running SampleSizeRegression with pre-determined sample

sizes

SampleSizeRegression can also be used to estimate a given outcome (e.g. the average coverage
of HPD regions of fixed length) for fixed sample sizes. Indeed, suppose one knows it will not be
subjects in a study, but would still like to obtain an idea,

possible to recruit more than
in the same context as that

beforehand, of the coverage of HPD regions of fixed length
illustrated in section



From the initial form of ESample Size Calculation for Accuracy around Linear Regression Parameter

SampleSizeRegression, Run  Help
click the second box.

Welcome to SampleSizeRegression

L3
')

Sample size calculatio

Estimate HPD lengthsicoverages for a series of sample sizes

= N

i

The next forms are identical to those presented in section 3 and are used to enter the number
of independent variables, the prior distribution for 8, etc. We therefore omit discussion of
these steps here, proceeding to the next form where there is a difference from the procedure
for sample size calculations.

The next form ﬂgHPD computation for specified sample sizes

Use Analysis prior different from
‘gn prior

-

allows the Heln

user to pick = -
the outcome

of interest Compute Parameter of interest
and specify " average length

either of the " average coverage h(x2)
fixed HPD @ dian | h

length or median lengt hixl)
coverage, as ~ (" median coverage

well as to pick « | o5 thpercentile for length b(x3)

the o 95 th percentile for coverage

regression g

parameter of

interest. . of HPD intervals of fixed coverage I 0.95



The next form is used to (¥ List of sample sizes

specify the sample sizes for Help
which the above-specified
outcome is to be estimated.

Series of sample sizes for which
outcome is to be estimated:

Add a sample size:

I jv

Enter 500 in the Add a

sample size text box and Help
click the button underneath
to register this sample size.

— ___d‘

Series of cample sizes for which
outcome is to be estimated:

Add a sample size:




Proceed the same
way for each
sample size of
interest.

Click Next>>
when done.

Series of sample sizes for which

outcome is to be estimated: Drop list
Select sample .
‘ sizes to be '
X 360 dropped from list
500

Add a sample size:

: [ v

Click this button to

register new sample :
: Drop sample size
sizes entered above s .
-

0




The next form — Technical L=

settings — is simplified Help
compared to that
presented in section 3, as
the sample size search
algorithm settings are
irrelevant here. 100 Preposterior sample size

Monte Carlo Markov chain specifications

2000 MNumber of monitored iterations

‘_..' 500 MNumber of burn-in iterations

™ Use all of the above parameters as default
in future runs.

The last form is the Problem Reviewal form, similar to that presented in section X.Y.

When done, ESampleSizeRegressinn Output Files
SampleSizeRegression - ————

will pop-up a form with '
links to the main html
output file and to

S ampleSizeR egrezsion autput file was zaved ta file
seconda ry graphical C:\Patrick\MoPrajecthS anpleSizell etermination B etal. bkl

pdf output files.

Scatter plat of Coverages we Sample Size:
C:/Patrick/MuProject!S armpleSizel etermination/B etal -5 catterPlat pdf

Whether this form will
be opened full size or
minimized (then only " Hiztogram(z) of HPD Coverages:;

noticeable in the C:A\Patrick\MuProjectsS ampleSizel etermination B etal AL C-HPD Cova. pof
taskbar) depends on

the corresponding

option in the Problem

Reviewal form.




When running multiple scripts through the Run from script... top-left menu from the initial
form, the above final form with links to output files will NOT appear.

4.5 Resuming/repeating a previous analysis

It is easy to resume or repeat a problem that was already run with SampleSizeRegression. This
can be useful if one wants to modify the prior distribution previously used for one or more
parameters, or to check how the sample size may change under a different sample size
criterion, for example.

The top-left M sample Size Calculation for Accuracy around Linear Regression Par

menu from | Run Help

the initial From scripk. ..

form offers Resume;repeat previous output file.,.

the option to _'-.-'alidatiu:un of Mormal apprnximftiun to podterior distribubion in pr_-:ul:ulem analyzed in past output file, ..
resume or : Welcome to SampleSizeRegression
repeat a

problem that

Wwas

previously

run.

4.5.1 Resuming a previous analysis

Some errors, such as due to a computer crash, to the need to reboot your system while
SampleSizeRegression was still running, or if you inadvertently stopped a WinBUGS script that
was launched by SampleSizeRegression, might lead you to want to continue running a previous
instance of the program. Regardless of the reason for an interruption of the program, an error
message such as the one reproduced below will be printed at the bottom of the html output
file.

Error message

FProgram started an Wed Jul 31 16:22:10 2013.

Program aborted on Wed Jul 31 16:22:22 2013,
Cannot read WinBUGS output file (C:lsersiPatrick. BelislewppDataiLocalTem35Red 201 307 31-16221 0-whstats )

To resume calculations started above, open SampleSizeRegression and browese to this file through the top-1eft menu
itern Completeirepeat past output file... from the initial form.



To resume the problem, select the Resume/repeat previous output file... top-left menu item
from the initial SampleSizeRegression form and load the incomplete html output file:
SampleSizeRegression will then resume from where it stopped (or was stopped!).

If the same error occurs again, it might be a sign of a problem inherent to
SampleSizeRegression. Please do not hesitate to contact us if you cannot think of a solution to
the problem or if the error message is unclear. See our contact email address at the end of this
document.

4.5.2 Repeating a previous analysis

The Resume/repeat previous output file..., as its name indicates, can also be used to repeat an
analysis previously done with SampleSizeRegression. If the original analysis was done with fair
precision (i.e., with a large number of samples from preposterior and a decent number of
monitored iterations), there is not much interest in actually repeating the same analysis (even
though you would almost surely obtain at least slightly different results by doing so, as the
whole process is subject to Monte Carlo error). This option, however, can advantageously be
used to rerun an analysis with slight modifications, such as different hyperparameters for the
prior distribution of one or more parameter, a different sample size criterion, or even for
focusing the inference on a different regression parameter. When loading a
SampleSizeRegression html output file that completed with success, this option will bring you
directly to the final Problem Reviewal form which, as already seen earlier in this document,
allows the user to modify almost every single problem description parameter.

4.1 Iterative html output file updates

Whether you are running SampleSizeRegression for a sample size calculation or for outcome
estimation for a series of predetermined sample sizes, you may be interested in having a look at
intermediate results while SampleSizeRegression is running. The main html output file is
updated after the outcome of interest is estimated for each sample size, and viewing it in your
favorite browser is possible at any point in time.



Results obtained along the mar¢

Sample size W Average HPD coverage

1000
Tal
250
284
aga
314
329
356

sored by samplis 78!

240
284
a4
a9
356
aga
740
1000

ShowiHide Scatter plot

0.93134
098023
0.939011
0940

0.96103
0.94875
093625

[y FURRNG

0.939011
0940100
0.9487450
0936240
Ml ranning
0.961030
0.980230
0.981340

The output section labeled Results obtained along
the march to optimal sample size is divided into
two subsections: the upper portion lists the series of
sample sizes along with their corresponding
estimated outcome, in the order in which they were
run. This is followed by a subsection where the same
results are listed in ascending order of sample size,
which may be easier to follow. Note that if the
outcome had to be re-estimated for a given sample
size (along the search for optimal sample size), that
sample size will appear two or more times in the
upper section, once per re-estimation, while only
the final estimate (which summarizes information
from each intermediate outcome estimate) will
appear in the lower (sorted) section.

Finally, a link labeled Show/Hide Scatter plot opens a scatter plot (see example below) which
helps visualize the relationship between outcome and sample size; it may even give enough
information to the user with regards to the final sample size, even though the program has not
formally reached convergence, and the user may decide to stop the program before it does
converge. Note that when SampleSizeRegression finishes, a .pdf document presents the same
scatter plot with a little bit more information.
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§. Troubleshooting

Sample size

5.1 Avoiding trap errors from permission settings on Windows 7
and Windows Vista platforms

If you are working on a Windows 7
or Windows Vista platform and
have run WinBUGS before, you may
have already run into the cryptic
Trap #060 error message illustrated
to the right. This is due to restricted
write permissions in c:\Program
Files, where you may have installed
WinBUGS.

BlackBox

trap #060

- Converters, Export (pc=0000049z2, Fp=0025F36C)

- StdDialog. MiewHook. ReqgisterView (pc=000011ED, fp=0023F530)
- Views, Reqgister (pc=000032CC, Fp=0028F7A0)

- Views, Registerview (pc=00003314, fp=0023F700)

- Reqistry, Store (po=00000FS7, Fp=0023FBF4)

- Reqistry, 4% (pc=00000014, Fp=0023FC04)

- Kernel, Quit {pc=00002C15, Fp=0023F_24)

- HostMenus, Loop (pc=00003036, fp=0028FCa3)

- Kernel,Start (pc=0000ZB50, Fp=00Z8F_73)




WinBUGS must be installed in a directory where you have write permissions (e.g.C:\Users\user
name \Documents) for SampleSizeRegression to run smoothly.

5.2 Illegal Vista platforms write

You may bt a llegal memory e

write error message (prompted by

WinBUGS) for high dimensional illzqal memary write [ad = 00000234]

problems. This typically happens - HostFiles Directary, Temp (pc=00002645, Fp=0025F350)
when WinBUGS tries to save results - TextModels, Dpenspill (pc=00000C24, Fp=0028F35C)
. . . - TextModels, WriteSChar (pc=00005110, fp=0028F233)
to disk (just before closing) when - TextModels, Stdwriter,WriteChar (pc=0000544D, Fp=0028F9BC)
the number of monitored iterations - TextMappers, Faormatker WriteChar (pe=000019C4, fp=0028F2C0C)

: . ~ : - Reqistry, Store (pc=00000CEA, fp=0025FEF4)
is large; the work-around is to save - Registry. $4 (pCo0000001A, FomDOZEFCO4)

intermediate results and clear - Kernel.Quit (pc=00002015, Fp=0028FC24)

WinBUGS memory after a certain - HostMenusLoop {pc=00003036, Fp=0025FCEE)
. . - Kernel.Start (pc=0000ZB80, Fp=0028FC73)

number of iterations. By default,

this is done after each 1000

iterations, but that may not be

sufficient in complex problems.

The necessary frequency of WinBUGS memory wash-outs depends on the agreement table size and
your system environment. If wash-outs at every 1000 iterations are not sufficient, we suggest that
you try with wash-outs at every 500 iterations, 200 iterations, and so on, until
SampleSizeRegression runs to completion. Changing the maximum number of iterations before

each memory clear is done through the Technical settings form, as shown below.



Click the More button in the
Monte Carlo Markov chain
specifications box.

=10l

Help

Search algorithm
&« model-hased

" hisectional

Bl
= e Monte Carlo Markov chain specifications

1000 Preposterior sample size :
B000  Mumber of monitored iterations
o Mumber of burn-in iterations .

=
& b

Then modify the value of Maxznum number of iterations before memory clear.

al settings

Search algorithm
& model-based

¢ hisectional

Maonte Carlo Markov chain specifications

| 1000 Preposterior sample size

I 500 Maximum number of iterations before memaory clear

I 5000 MNumber of monitared iterations
I 500 MNumber of burn-in iterations
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