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Summary. We investigate the sample size problem when a binomial parameter is to be estimated,
but some degree of misclassi®cation is possible. The problem is especially challenging when the
degree to which misclassi®cation occurs is not exactly known. Motivated by a Canadian survey of
the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is
desired that a marginal posterior credible interval for the prevalence of width w has coverage 1ÿ �,
using a Bayesian sample size criterion. The degree to which the misclassi®cation probabilities are
known a priori can have a very large effect on sample size requirements, and in some cases
achieving a coverage of 1ÿ � is impossible, even with an in®nite sample size. Therefore, inves-
tigators must carefully evaluate the degree to which misclassi®cation can occur when estimating
sample size requirements.
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1. Introduction

Sample size determination is one of the most frequent applied statistical problems, and a vast
literature is available on the subject. In many sampling situations encountered in practice,
however, speci®c methodology is lacking. For example, although standard formulae are
available for calculating sample size requirements for binomial parameters, it is less clear
how to adjust the sample sizes for misclassi®cation errors. Consider the following prototypic
example, which motivated the development of our methodology.
An accurate estimation of the prevalence of the microscopic parasite Toxoplasma gondii is

critical for making informed decisions about whether to initiate a prenatal screening pro-
gramme. A study is being planned to estimate the prevalence of this parasite among pregnant
women in the province of Quebec, Canada. Suppose that we would like to determine the
sample size needed such that a 95% interval will be of total width w � 0:10. A serological kit
that detects antibodies will be used as the diagnostic test. If the diagnostic test is error free,
and therefore the number of infected women in the sample is equal to the number who test
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positively, then the well-known sample size formula based on the normal approximation to
the binomial distribution can be used. This gives

n �
�
2Z�=2

w

�2

��1ÿ ��, �1�

where � is the prevalence, Z�=2 is the upper 100�1ÿ �=2� percentile of the normal distribution
and n is the sample size required. For example, using equation (1) with Z�=2 � 1:96, � � 0:5
and w � 0:1 gives n � 384. The conservative value of � � 0:5 was used, since very little is
currently known about the rate of Toxoplasma gondii among pregnant women in Quebec,
and a rate of 50% is not impossible.
Although the diagnostic test which will be used in the study is among the best available, the

assumption of perfect sensitivity (the probability of a positive test result in truly positive
subjects) and speci®city (the probability of a negative test result in truly negative subjects) is
unrealistic, so some misclassi®cation is expected. In a previous study using the same diag-
nostic kit, 65 out of 68 women who had Toxoplasma gondii tested positively, while all 22
women who did not have the disease tested negatively (Wilson and Ware, 1991). Suppose that
the sensitivity is exactly 65=68 � 95:5% and the speci®city is 22=22 � 100%. Let p be the
probability of testing positively for a test with sensitivity s and speci®city c. Since each
positive test is either a true positive or a false positive result,

p � �s� �1ÿ ���1ÿ c�: �2�
From equation (2), it is easy to show (Rahme and Joseph, 1998) that knowing p to within a
width of w�s� cÿ 1� is equivalent to knowing � to within a width of w. The sample size can
then be derived by a small modi®cation to the standard formula (1), giving

nadj �
�

2Z�=2

w�s� cÿ 1�
�2

p�1ÿ p�: �3�

Using this formula with s � 0:955, c � 1 and p � 0:5 raises the sample size to 422. In this case,
the values of s and c were both equal to or near 1, so the modi®cation causes only a small
increase in sample size compared with the standard formula. Smaller s� c values will lead to
larger increases, however, and in the extreme case of a completely uninformative test �s� c � 1�
even an in®nite sample size cannot estimate the prevalence to the desired accuracy.
Equation (3) requires point estimates of � (or p), s and c. The conservative value of � or p

equal to 0.5 may lead to unnecessarily large sizes for rare conditions, making the choice of �
problematic. Another concern is that the normal approximations implied in equations (1) and
(3) may not hold for rare conditions. Moreover, the values for s and cwere only estimates from
relatively small samples, and in general the sensitivity and speci®city of a test are only rarely
known exactly. Properly accounting for the uncertainties in s and c can have a very substan-
tial e�ect on the sample size requirements. Consider, for example, a sample size of 384, and
suppose that we were to observe 100 positive tests. From the usual binomial considerations,
assuming perfect tests �s � c � 1� gives a prevalence estimate of 100=384 � 0:26, with a 95%
equitailed credible interval (CI) of (0.22, 0.31). If we instead assume that s � 0:955 and c � 1,
we now estimate the prevalence to be 0.27, with a 95% CI of (0.23, 0.32). Taking into account
the uncertainty in the s- and c-values by using beta prior densities based on the data from
Wilson and Ware (1991), however, gives a point estimate of 0.25, with a considerably wider
95% CI of (0.13, 0.31). See Section 3 for the origin of these beta prior densities.
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A ®nal problem with both equation (1) and equation (3) is that they fail to consider that
the data are unknown at the planning stage of the study, which produces a further random
component. Even if s and c are ®xed constants, di�erent data sets will produce di�erent
estimates of p and �, leading to reports of di�erent interval widths.
In this paper we shall discuss a solution to this problem that combines recent research from

two di�erent areas. In particular, Bayesian sample size criteria for interval widths (Adcock,
1988, 1997; Gould, 1993; Joseph et al., 1997) will be integrated with methods for estimating
the prevalence of a disease using data from an imperfect diagnostic test (Joseph, Gyorkos and
Coupal, 1995). Starting from a prior distribution on �, s and c that summarizes what is
known about the prevalence and the test properties at the time of study planning, we shall
calculate the smallest sample size for which a 1ÿ � posterior CI for the prevalence will have
total width w with high probability.
Various Bayesian sample size criteria and methods to estimate disease prevalence are

reviewed in Section 2, before presenting the methodology to determine sample sizes for
diagnostic test studies. An important conclusion is that even small uncertainties about the
sensitivity and the speci®city of a diagnostic test may lead to a large increase in the sample
size that is needed to reach the desired accuracy, and that in certain cases this accuracy
cannot be reached even when s� c > 1. Section 3 illustrates the methods by returning to the
toxoplasmosis study discussed above, and the paper concludes with a discussion.
Although we present our methodology in terms of the diagnostic testing application for

which it was developed, the ideas that are presented here can be directly applied to any
situation where misclassi®ed binomial data arise.

2. Methods

2.1. Bayesian sample size criteria
Let � belonging to the space � denote the parameter of interest, f��� the prior density on �
and x the observed data from data space X . Let the likelihood function be given by l �xj��,
and let the posterior distribution for � given x of sample size n be given by f��jx, n). In
general, we are looking for the minimum n such that the posterior credible set of width w has
coverage probability of at least 1ÿ �. For example, letting d � w=2, we might like to ®nd the
smallest n such that � �̂�d

�̂ÿd
f��jx, n� d�5 1ÿ �,

where �̂ is the posterior mean. For any given n, however, �̂ and the coverage probability of the
CI ��̂ÿ d, �̂� d � depend on the data x, which are unknown at the planning stage of the study.
To side-step this problem, we can select n such that the expected posterior coverage prob-
ability is at least 1ÿ �, where the expectation is over the marginal distribution of x induced
by the prior distribution, given by

m�x� �
�

�

l �xj�� f��� d�: �4�

Therefore, Adcock (1988) suggested seeking the smallest n satisfying�
X

�� �̂�d
�̂ÿd

f��jx, n� d�
�
m�x� dx5 1ÿ �, �5�
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where the integral becomes a sum if the space X is discrete. This criterion involves a weighted
average of coverage probabilities of ®xed length CIs, with weights given by m�x�, and hence
has been termed an average coverage criterion (ACC) by Joseph, Wolfson and du Berger
(1995) and Adcock (1997). If � is univariate, then the use of inequality (5) is straightforward.
Although closed form solutions are often not available, the left-hand side of inequality (5)
may be calculated for any given n, and a bisectional search over n may be used to ®nd the
minimum sample size satisfying criterion (5).
The parameter of interest, �, may often be one component from a vector, in which case

further integration is necessary to ®nd the marginal posterior density of the component of
interest. This occurs in diagnostic testing situations whenever the sensitivity and speci®city of
the test are not exactly known, which is almost always so. In the next section, we describe a
simple but e�cient method to approximate these integrals. E�ciency is important, since the
integral will typically be calculated hundreds or thousands of times for each sample size
problem.
Although in what follows we shall use the ACC, other criteria could also be examined. For

example, an average length criterion (ALC) can be de®ned (Joseph et al., 1997) that, con-
versely to the ACC, averages variable interval lengths of ®xed coverage intervals. The ALC
and the ACC often produce similar sample sizes. In some situations, we may prefer a
conservative sample size, which instead of averaging over X guarantees the desired coverage
and interval length over all possible x that can arise. Although here we have de®ned the ACC
in terms of posterior CIs of the form �̂� d, highest posterior density (HPD) intervals could
also be used. See Joseph, Wolfson and du Berger (1995) for a comparison of sample sizes
from HPD and symmetric intervals in the context of simple binomial sampling. Decision
theoretic criteria (Lindley, 1997) and sample sizes based on average power of hypothesis tests
(Spiegelhalter and Freedman, 1986) have also been considered. See Chaloner and Verdinelli
(1995) for a recent review of Bayesian optimal design and Adcock (1997) for an up-to-date
review of both frequentist and Bayesian sample size criteria.

2.2. Bayesian estimation of prevalence of disease when the sensitivity and the
speci®city are unknown
If x positive tests are observed in n subjects, then from equation (2) the likelihood function is

l �xj�, s, c� / f�s� �1ÿ �� �1ÿ c�gxf��1ÿ s� � �1ÿ ��cgnÿx:
From Bayes's theorem, if the joint prior distribution of �, S and C is given by f��, s, c), the
joint posterior density becomes

f��, s, cjx� � f ��, s, c, x�
m�x� � f��, s, c� l �xj�, s, c�

m�x� ,

where the marginal (predictive) distribution of x is

m�x� �
�1
0

�1
0

�1
0

f��, s, c, x� ds dc d�:

The marginal posterior density of � is then

f��jx� �
�1
0

�1
0

f ��, s, cjx� ds dc: �6�
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It will often be reasonable that �, S and C are a priori independent, given that the test
methodology (e.g. the cut-o� values for continuous tests) remains ®xed. This is because the
performance of the test within positive and negative subgroups of patients may not be
a�ected by the prevalence of the disease in the population, and prior knowledge about the
sensitivity and speci®city given any ®xed cut-o� usually is gained by independently applying
the test to known positive and negative subjects, as in Wilson and Ware (1991). If indepen-
dent, beta densities may be conveniently used as prior distributions of �, S and C, which
are restricted to a [0, 1] range, although the usual advantage of conjugacy does not apply.
A parameter � follows a beta density with parameters j and k if

f��� �
1

B� j, k� �
jÿ1�1ÿ ��kÿ1�, 0 4� 4 1, j, k > 0,

0, otherwise,

8<:
where B� j, k) is the beta function evaluated at � j, k). The mean of this density is j=� j� k�,
whereas the variance is jk=� j� k�2� j� k� 1�. If the prior parameters for �, S and C are
given by � j�, k��, � jS, kS� and � jC, kC) respectively, then the marginal posterior density (6) for
� becomes

f��jx� / f�s� �1ÿ ���1ÿ c�gxf��1ÿ s� � �1ÿ ��cgnÿx� j� �1ÿ ��k�s jS �1ÿ s�kSc jC �1ÿ c�kC : �7�
Since in general there is no closed form solution to equation (6) or even to expression (7),
Joseph, Gyorkos and Coupal (1995) used the Gibbs sampler (Gilks et al., 1996) to estimate
the marginal posterior density of the prevalence given beta prior distributions for �, S and C.
This method is computationally intensive, however, and not suitable for algorithms that
require repeated use. For example, n� 1 applications of the Gibbs sampler would be required
here to estimate the average posterior coverage for each step with sample size n in the
bisectional search. Below we describe a more e�cient algorithm.

2.3. Bayesian sample size determination for prevalence studies
We used the non-iterative Monte Carlo algorithm recently described by Ross (1996) to
estimate the posterior average coverages. The algorithm proceeds as follows. First, a random
sample of size k is drawn from the joint prior density of (�, S, C ), where k is typically 1000 or
greater. Label these points (�i, Si, Ci), for i � 1, 2, . . ., k. A weight function !i�x�, i � 1,
2, . . ., k, is attached to each sampled point, where !i�x� is proportional to the right-hand side
of expression (7). The posterior mean given x is then estimated by

�̂�x� �Pk
i�1
�i!i

�Pk
i�1
!i:

The coverage for each x, coverage�x; d�, is then estimated by the total normalized weights of
points � �i!i, where the summation is over points i with values �i that fall within the interval
��̂ÿ d, �̂� d �. Finally, the average coverage is approximated by the weighted average of the
above coverage probabilities

coverage�d� � Pn
x�0

coverage�x; d�m�x�,

where the marginal probability function of x is estimated by

Sample Size Determination 123



m�x� �Pk
i�1

!i

k
:

The ACC sample size is given by the smallest n such that coverage�d � is at least 1ÿ �.
Software written in the S-PLUS language that implements this algorithm to calculate average
coverages given beta prior distributions for �, S and C is available from the authors or from

http://www.blackwellpublishers.co.uk/rss/

The algorithm can also be applied when the sensitivity and speci®city are known, by simply
®xing the sampled points Si and Ci at their true values in each ��i, Si, Ci) triplet. This gives the
Bayesian analogue to the frequentist sample size given by equation (3).
Although instances with exactly known S and C are rare in practice, it is instructive to

examine the e�ect that less than perfect knowledge about the sensitivity and speci®city of a
test has on average coverage probabilities. To illustrate this e�ect, consider a uniform prior
density on the range [0, 0.1] for �, which would be appropriate for a rare condition that is
known to occur in less than 10% of the population. For w � 0:04 and ®xed s � c � 0:9, a
sample size of n � 1473 is required such that the average coverage probability is 0.95.
Keeping this sample size ®xed, we then investigated the e�ects on the average coverage
probability of using uniform prior densities on S and C with varying support.
The results are displayed in Table 1. As expected (see the example in Section 1), uncertain-

ty about the values of S and C can substantially reduce the coverage probabilities. It is
especially interesting to note that if the prior information implies that the sensitivity and the
speci®city of the diagnostic test must be larger than a given ®xed value (here 0.9), but the
exact values are not known, then the coverage probability still substantially decreases even
though we are averaging over tests with better properties. This is seen by comparing the ®rst
row with the third row in Table 1. To gain an intuitive understanding why the uncertainty
about the test properties has a larger e�ect than the values of the properties themselves,
consider the following two extreme cases.
Suppose that s � c � 0, so that the test is guaranteed never to provide the correct diagnosis

(extreme case I). Although this test is as poor as can be, since we assume that we know its
properties exactly, equation (2) reduces to p � 1ÿ �, so in fact this test provides as much
information as a perfect test with s � c � 1.
Now consider a near perfect test, where s 2 �0:99, 1.0] and c 2 �0:99, 1.0] but the exact

values are unknown (extreme case II). This test is superior by a wide margin compared with
the test in case I but clearly provides less information, since some uncertainty is added by the
slight lack of precision in S and C. Hence it is easy to see how tests exactly known to be bad
can `outperform' excellent tests whose properties are inexactly known.

124 E. Rahme, L. Joseph and T. W. Gyorkos

Table 1. Variation in the average coverage probabilities with
increasing uncertainty in the estimation of the sensitivity S and
speci®city C, for d � 0:02{

n S C Coverage

1473 0.9 0.9 0.950
1473 U �0:85, 0:95� 0.9 0.947
1473 U �0:9, 1� U �0:9, 1� 0.618
1473 U �0:85, 0:95� U �0:9, 1� 0.595
1473 U �0:85, 0:95� U �0:85, 0:95� 0.589

{The prior distribution on � is U[0, 0.1].



For low prevalences (here less than 10%), the uncertainty about the speci®city has more
e�ect on the coverage probabilities than the uncertainty about the sensitivity. The reason for
this is found in equation (2). Since S is multiplied by �, when � is small the e�ect of changing
values of S is also small, and therefore the e�ect of the uncertainty about C is larger.

3. Estimating the prevalence of toxoplasmosis

Consider again the prevalence study of Toxoplasma gondii discussed in Section 1. A uniform
prior density on the interval �0, 1� (equivalent to a beta(1, 1) density) was considered appro-
priate for �, since there had been no recent or representative data from Quebec, and expert
opinion varied widely. If we ®x s � 65=68 � 0:955 and c � 22=22 � 1, then a sample size of
309 is adequate to attain 95% average coverage for intervals of width w � 0:1. The ACC
ensures the desired coverage only on average, and so provides a sample size that is less than
those given by either equation (1) or equation (3). This is because � � 0:5 is the most con-
servative value leading to the smallest coverage probability, whereas the ACC averages
coverage probabilities over prevalence values across the interval �0, 1�. A conservative
Bayesian criterion (see Joseph et al. (1997)) that ensures the desired coverage over all data
which may arise in this case will provide a sample size estimate that is similar to that
produced by equation (3).
Owing to the conjugacy of the beta family of densities with the binomial likelihood function,

the j and k prior parameter values from a beta density (see Section 2.2) can be considered as
equivalent to a previously observed number of successes and failures respectively. See Gelman
et al. (1995), p. 40. Therefore, from Wilson and Ware (1991), reasonable prior densities for
the sensitivity and speci®city of this test may be S � beta�65:1, 3.1) and C � beta�22:1, 0.1)
respectively. These arise from disturbing each count in the observed data by the equivalent of
a tenth of an extra observation, avoiding the beta(22, 0) density, which is degenerate. By the
algorithm of Section 2, a sample size of approximately 580 is needed for the average posterior
coverage probability of CIs of width 0.1 to be at least 0.95. Therefore, taking into account
even the relatively small uncertainties about the values of S and C leads to a substantially
larger sample size, compared with any of the other methods that ignore this source of
uncertainty.
Accurately determining what is known about the test properties is crucial, as the ®nal

sample sizes (and reported prevalence estimates) can greatly depend on this exercise. For
example, suppose that S � beta�66, 4) and C � beta�23, 1) were used instead of the prior
densities given above. These would also be a reasonable choice, since they arise from up-
dating initial uniform prior densities with the data that were available at the time of the
study. For w � 0:1, and again assuming a uniform prior density for �, we computed the
average coverage probability for values of n ranging from 100 to 2000 with increments of 100,
and with Monte Carlo size of k � 1000.
The results, presented in Fig. 1, indicate that the posterior average coverage probability

does not reach 0.95 even with a sample size of 2000. This is because, whereas increasing the
sample size always improves the precision in estimating p, past a certain point, larger sample
sizes do not provide improved estimates of the sensitivity and the speci®city of the diagnostic
test, essentially because the problem is non-identi®able. Although some updating of the prior
distributions for S and C is possible even in the presence of misclassi®cation, these will not
converge to a single point even with an in®nite sample size (Joseph, 1997). Since estimating �
depends on knowledge about S and C, increasing the sample size does not always provide
increased accuracy in estimating �. Although there are three parameters to estimate ��, S and
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C ), only 1 degree of freedom is available when x positive tests are observed in a sample size of
n subjects. Walter and Irwig (1988) and others have suggested using several independent tests,
and when three or more tests are used all the parameters can be simultaneously estimated
without constraints. Increasing the number of diagnostic tests used may not always be
feasible, however, and, if only one or two tests are used, Bayesian estimation provides the
best possible estimates which use all of the available prior information and correctly accounts
for all inherent uncertainty (Joseph, Gyorkos and Coupal, 1995; Neath and Samaniego,
1997). The marginal posterior density for � does not necessarily converge to a point mass as
the sample size increases, however, unless S and C are a priori exactly known (Joseph, 1997).
Kuha (1997) has discussed the problem of how many subjects should be veri®ed with a gold
standard test to validate the test.
The sample size beyond which further sampling provides little additional precision in

estimating � is a complex function of the prior information that is available on �, S and C:
Given data such as that presented in Fig. 1, however, it may be possible to construct a
regression model to estimate the sample size beyond which further sampling does not
substantially improve the estimation of �, as well as the maximum possible average coverage
probability. As the average coverage probabilities must be between 0 and 1, a generalized
linear model with logit link may be appropriate. Since the average coverage probability, as a
function of n, seems to have an asymptote with value smaller than 1, we looked for a model
of the form

log

�
�

1ÿ �
�
� u� vp

n
, �8�

where � is the average posterior coverage probability minus the prior coverage probability of
an interval of width w, and where u and v are estimated from the data.
We considered a quasi-likelihood model (McCullagh and Nelder, 1989) with logit link and

constant variance. The latter was considered appropriate, since we hypothesized that a large

126 E. Rahme, L. Joseph and T. W. Gyorkos

Fig. 1. Posterior average coverage probabilities for w � 0:10, from n � 100 to n � 2000: Ð, values of the
average coverage probabilities predicted by a logistic regression model



component of the residual error in this model arises from using the Monte Carlo approx-
imation, whose error varies more with k than with n. Of course, the Monte Carlo error can be
made as small as desired simply by increasing k.
Let n0 be the sample size after which the average coverage probability will not improve by

more than a given � > 0; even if the sample size were to increase to 1. From equation (8)
simple algebra leads to

n05
�
v

�
log

�
exp�u� ÿ �f1� exp�u�g

exp�u� � �f1� exp�u�g exp�u�
��2

: �9�

Since the prior distribution on � was uniform, the prior coverage probability of the interval of
width w � 0:1 is also 0.1. Using the data from Fig. 1, the estimated coe�cients were u � 1:799
and v � ÿ15:303, so the upper limit of the average coverage probability is approximately

exp�1:799�=f1� exp�1:799�g � 0:1 � 0:958:

From inequality (9), the sample size that is needed for the posterior average coverage
probability to be within � � 0:008 of this upper limit, i.e. to reach an average coverage of
0.950, is 56506. We also calculated the posterior average coverage probability predicted by
the model for n � 3000; 4000, 5000. These values were 0.920, 0.926 and 0.930 respectively,
whereas the corresponding values given by the Monte Carlo approximation were 0.920, 0.920
and 0.921 respectively. Therefore, the model still seems to predict reasonably well, even far
outside the range of the data from which it was estimated.
The main di�erence between the two sets of prior distributions is the lower limit of the

speci®city of the test. With data on only 22 subjects, the choice of the `non-informative' prior
distribution plays a large role. Of course, we cannot be certain of the accuracy of the upper
limit of 0.958 given by the logistic regression model, but it is clear that if the second set of
prior densities is used a very large sample size is needed to achieve the accuracy desired. In the
end, a sample size near n � 580 subjects was selected, but a main conclusion was that it will
be very worthwhile to gather more data on the properties of the test. For example, if twice as
much prior data had been collected on the test properties, then, assuming that the same
proportions were observed, S � beta�130:1, 6:1� and C � beta�44:1, 0:1� prior densities could
have been used, leading to a sample size of only 385. If twice the prior information is com-
bined with uniform prior distributions (S � beta�131, 7�, C � beta�45, 1� and � � beta�1, 1��,
the sample size is 605, a substantial reduction from 56506 obtained earlier. Prior knowledge
about the prevalence, when available, can also be useful. For example, if the prevalence is
known a priori to be between 10% and 50%, so that a beta�6, 14� prior density on � is
appropriate, then the sample size further reduces to 348 from 385.

4. Discussion

Estimating a binomial parameter is the aim of many studies. When no misclassi®cation is
possible, standard binomial formulae can be used to determine the sample size required to
estimate the parameter to any desired accuracy. Unfortunately, misclassi®cation often
occurs, and in general one does not know the exact magnitude of the errors so simple
formulae like equation (3) cannot be applied. In this case, a Bayesian approach can be used to
determine the sample size requirements. In particular, we have shown that it is important
when planning a study to estimate the magnitude of misclassi®cation errors as accurately as
possible, since the sample size estimates are highly sensitive to uncertainty about their values.
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In many cases, it may not be possible to estimate a parameter to the accuracy desired with the
information that is currently available, when all uncertainty is fully accounted for. Copas
(1988) investigated misclassi®cation errors in binary regression models.
Although in this paper we considered data from diagnostic tests, the methods can easily be

applied to any similar situation. For example, suppose that a political election poll is being
planned, but it is suspected that not everyone polled will give their true voting intentions. If
we are willing to specify prior distributions on the error rates, the correct sample size for the
precision desired can be calculated.
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