
© The Author(s) 2018. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

Original Article

Expostats: A Bayesian Toolkit to Aid the 
Interpretation of Occupational Exposure 
Measurements
Jérôme Lavoué1,2,*, Lawrence Joseph3, Peter Knott4, Hugh Davies5,  
France Labrèche1,6, Frédéric Clerc7, Gautier Mater7 and Tracy Kirkham8

1Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 
2375, chemin de la Côte Ste-Catherine, Montréal, Québec, H3T1A8, Canada; 2University of Montreal hospital 
research center, 850 rue St-Denis, Montréal, Québec, H2X 0A9, Canada; 3Division of clinical epidemiology, 
McGill University Health Centre, 2155 Guy Street, Montreal, Québec, H3H2R9, Canada; 4GCG Health 
Safety Hygiene, 7/34 Navigator Place, Hendra, QLD 4011, Australia; 5School of Population & Public Health, 
University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T1Z3, Canada; 6Institut de 
recherche Robert-Sauvé en santé et en sécurité du travail, 505 boul. De Maisonneuve Ouest, Montréal, 
Québec H3A3C2, Canada; 7Institut National de Recherche et de Sécurité pour la prévention des accidents 
du travail et des maladies professionnelles (INRS), 65 boulevard Richard Lenoir, 75011 Paris, France; 8Dalla 
Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario, M5T3M7, Canada

*Author to whom correspondence should be addressed. E-mail: jerome.lavoue@umontreal.ca

Submitted 12 July 2018; revised 1 November 2018; editorial decision 5 November 2018; revised version accepted 13 November 2018.

Abstract

Introduction: Interpretation of exposure measurements has evolved into a framework based on the 
lognormal distribution. Most available practical tools are based on traditional frequentist statistical 
procedures that do not satisfactorily account for censored data and are not amenable to simple 
probabilistic risk statements. Bayesian methods offer promising solutions to these challenges. Such 
methods have been proposed in the literature but are not widely and freely available to practitioners.
Methods: A set of computer applications were developed aimed at answering typical inferential 
questions that are important to occupational health practitioners: Is a group of workers compliant 
with an occupational exposure limit? Are some individuals within this group likely to experience 
substantially higher exposure than its average member? How does an intervention influence the 
distribution of exposures? These questions were addressed using Bayesian models, simultaneously 
accounting for left, right, and interval-censored data with multiple censoring points. The models are 
estimated using the JAGS Gibbs sampler called through the R statistical package.
Results: The Expostats toolkit is freely available from www.expostats.ca as four tools accessible 
through a Web application, an offline standalone application or algorithms. The tools include a variety 
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of calculations and graphical outputs useful according to current practices in analysis and interpretation 
of exposure measurements collected by occupational hygienists. Tool1 and its simplified version Tool1 
Express focus on inferences from data from a similarly exposed group. Tool2 evaluates within- and 
between-worker components of variability, as well as the probability that an individual worker might be 
overexposed. Tool3 compares exposure data across groups, e.g. evaluates the effect of an intervention. 
Uncertainty management includes the calculation of credible intervals and produces probabilistic 
statements about the exposure metrics (e.g. probability that over 5% of exposures are above a limit).
Discussion: Expostats is the first freely available toolkit that leverages the flexibility of Bayesian 
analysis to perform an extensive list of calculations recommended in several international guidelines 
on the practice of occupational hygiene.

Keywords:   exceedance fraction; 95th percentile; lognormal distribution; occupational exposure compliance; risk 
assessment; sampling strategies

Introduction

It has been long understood that levels of workplace 
exposure can vary considerably across both location 
and time. Statistical methods developed to address the 
challenge posed by such variability started to appear in 
the scientific literature in the 1960s (Kerr, 1962; Roach, 
1966; Breslin et al., 1967), and coalesced into guidelines 
published by several institutions that inform the practice 
of occupational hygiene in various countries (Leidel et al., 
1977; Hawkins et al., 1991; BOHS, 1993; BOHS-NVvA, 
2011; INRS, 2018). The European community recently 
updated recommendations (CEN, 2018). These methods 
are all based on the assumption that environmental 
variability is adequately modelled by a lognormal 
probability distribution. This model assumes that, for 
a given population (e.g. stainless steel welders in a parts 
manufacturing facility), the ensemble of exposure levels 
experienced by workers over a period of relatively stable 
work conditions follows a lognormal distribution. Despite 
this well-established theoretical framework, surprisingly 
few practical lognormal statistics tools have been available 
to support practitioners (Waters et al., 2015).

Bayesian analysis has been proposed for use in the 
interpretation of workplace measurements, because it 
permits quantitative integration of expert judgement 
into the assessment (Ramachandran and Vincent, 
1999; Hewett et al., 2006; Sottas et al., 2009; Banerjee 
et al., 2014) as well as information gained from pre-
existing measurements (Jones and Burstyn, 2017; Quick 
et al., 2017). In addition, Bayesian analysis provides 
direct probabilistic statements about the questions 
and parameters of interest, more easily conveyed to 
non-statisticians than traditional hypothesis tests or 
confidence intervals (CI). Finally Bayesian analysis 
can account for non-detects in a theoretically optimal 
manner, a longstanding challenge in occupational hygiene 
(Wild et al., 1996; Mcbride et al., 2007; Ogden, 2010; 

McNally et al., 2014; Huynh et al., 2016). While these 
characteristics render this approach promising for the 
interpretation of occupational exposure data, it currently 
remains mostly unavailable to practitioners in our field.

A set of computer applications were developed, 
assembled into the Expostats toolkit (freely available from 
www.expostats.ca in the form of algorithms as well as 
online and standalone applications), aimed at supporting 
practitioners in calculating inferences using Bayesian 
models that provide: (i) estimates for all metrics currently 
recommended in national and international guidelines; (ii) 
inferences in the form of direct probabilistic statements 
amenable to easy risk communication; and (iii) inferences 
that account for left (<x), right (>x) and interval [(a–b)] 
censored data. This paper describes the Expostats toolkit’s 
main features as well as a list of available analyses and 
Bayesian models used.

Methods

This section briefly presents: (i) a list of the lognormal 
exposure parameters recommended for decision 
making in industrial hygiene, which form the basis 
of the calculations included in the Expostats tools, 
(ii) the framework proposed in Expostats to manage 
uncertainty in exposure estimates, and (iii) the Bayesian 
models themselves.

Recommended exposure parameters for the 
interpretation of measurements
Because it is unrealistic to assess each worker, most 
risk assessment strategies rely on grouping workers 
performing similar tasks in the same environment into 
so-called homogenous (Mulhausen and Diamano, 1998) 
or similar exposure groups (SEG) (Ignacio and Bullock, 
2008), in which only a fraction of the workers is sampled. 
The result of the assessment (e.g. estimation of exceedance 
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fraction or 95th percentile) is then deemed valid for the 
whole group). While they could in theory be estimated for 
single workers’ exposure distribution, the first two metrics 
described below are most often calculated for an SEG.

The term OEL is used here as a generic term to 
describe a threshold selected for air concentrations by the 
occupational health practitioner. It could be a regulatory 
OEL, a recommendation, or any arbitrary value judged 
relevant for the situation at hand. If no value is available, 
parameters of the lognormal distribution can still be 
estimated in Expostats using a value of 1.

Proportion of exposures exceeding a specific value 
(exceedance fraction)
This parameter is directly related to NIOSH’s early 
proposal that less than 5% of exposures should exceed 
the occupational exposure limit (OEL) (Leidel et al., 
1975, 1977). Applied to shift-long exposures, the 
exposure distribution of interest would comprise all 
time-weighted-averaged (TWA) exposures occurring 
during a period of stable conditions. One would then 
collect a random sample from this exposure distribution 
and estimate the proportion of days expected to be 
associated with exposure over the OEL. This proportion 
is referred to as the exceedance fraction. The calculation 
of exceedance fraction is recommended by the Institut 
national de recherche et de sécurité (INRS) in France, 
the British and Dutch occupational hygiene societies 
(BOHS/NVvA) and the European committee for 
normalization (CEN), and forms the basis of the current 
French regulation (République Française, 2009; BOHS-
NVvA, 2011; CEN, 2018; INRS, 2018). Comparing 
exceedance fraction to 5% is numerically equivalent to 
comparing the estimated 95th percentile to the OEL. 
The latter calculation is recommended in the current 
AIHA guidelines (Jahn et al., 2015). Overexposure, i.e. 
a situation requiring intervention (or qualified as ‘poorly 
controlled’), is hence defined as either exceedance 
fraction ≥ 5% or 95th percentile ≥ OEL.

Long-term arithmetic mean of the exposure distribution
Toxicokinetic models show that the arithmetic mean 
(AM) of the long-term distribution of exposure 
levels is a more appropriate risk metric for evaluating 
cumulative damage from exposure to chronic toxicants 
than estimates from the upper tail of the distribution 
(Rappaport, 1991). Within this framework, one would 
compare the AM of the exposure distribution with the 
OEL: overexposure is defined here as AM ≥ OEL. There 
has been some debate about the use of this parameter, 
as it is claimed that comparing AM to the OEL is less 
conservative than comparing exceedance fraction to 5% 

(Lyles and Kupper, 1996; Hewett, 1997; Tornero-Velez 
et al., 1997). The current guidelines from the AIHA 
recommend this approach in the rare cases where the 
exposure limit has explicitly been defined as a long-term 
cumulative dose index (‘LTA-OEL, Long-term average 
OEL’) (Jahn et al., 2015).

Probability of individual overexposure: probability 
that a random worker within the group would be 
overexposed despite an acceptable exposure distribution 
for the group as a whole
Following seminal work by Kromhout, Rappaport, 
and Symanski in the late 1990s (Kromhout et  al., 
1993; Rappaport et al., 1993; Symanski et al., 2006), 
it was recognized that the practice of grouping workers 
into SEGs could result in underestimation of risk for 
some members of the group. Strategies to integrate 
between-worker variations in groups into decision 
making were then proposed (Rappaport et al., 1995; 
Lyles et al., 1997a,b). They involved estimating the 
probability that a random worker within the group 
would be overexposed, an estimate that we call the 
probability of individual overexposure. The British-
Dutch guidance defines overexposure for a worker as 
having their individual 95th percentile above the OEL 
(or equivalently, their individual exceedance fraction 
above 5%), whereas the earlier proposal by Rappaport 
et al. defined overexposure for a worker as having their 
individual AM above the OEL (Rappaport et al., 1995; 
BOHS-NVvA, 2011).

Uncertainty management framework
Appraisal of uncertainty is an essential component of 
decision making in industrial hygiene (Waters et al., 2015). 
For example, even if the point estimate of exceedance 
fraction for a group of workers is below 5%, how sure 
can we be that the true value is indeed <5%? This has 
traditionally been tackled through the use of confidence 
intervals and hypothesis tests. As an illustration, formulas 
to estimate a 95% upper confidence limit on the 95th 
percentile were proposed (Selvin et al., 1987). If this value 
is lower than the OEL, the practical (though not formally 
correct) interpretation is that one can be 95% certain that 
the true underlying 95th percentile is indeed < OEL.

An alternative and more direct statement about 
uncertainty could be made. For example, calculating 
the probability that the true 95th percentile is below 
the OEL, which should be high (>95% in the above 
example), or, conversely, the probability that the true 
95th percentile is above the OEL, which should be 
low (<5% in the example above). This seems both 
informative, and easy to convey to workers or employers 
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as it provides a direct answer to the question ‘what are 
the chances that exposure is too high?’.

The Expostats toolset implements Bayesian analysis 
that leads to direct statements about the degree of 
uncertainty in conclusions that can be drawn from data. 
It relies on three steps leading to a decision whether 
exposure is adequately controlled.

Step 1
Define overexposure, i.e. which characteristic of the 
exposure distribution corresponds to an unacceptable 
situation. Several criteria can be investigated:

	•	 Exceedance fraction ≥ 5%
	•	 95th percentile (P95) ≥ OEL
	•	 AM ≥ OEL

Step 2
Analyse the observed data and draw inferences from it. 
Instead of parameter point estimates with confidence 
intervals or hypothesis test, this is done through the 
estimation of the probability that the overexposure 
criterion is met, e.g. what is the probability that true 
95th percentile is ≥ OEL given the data. This quantity is 
hereafter called the overexposure risk (see Table 1 for a 
glossary of terms used in this manuscript). This quantity 
can be used as a direct input for exposure management: 

is overexposure risk low enough that it is possible to 
consider exposure well controlled, or is it high enough 
that some action should be triggered (e.g. consider 
implementing exposure controls)?

Step 3 (optional)
Although overexposure risk provides complete 
information about uncertainty, risk managers often 
prefer results in the form of a dichotomy: does this 
situation require an intervention, yes or no? The 
last step implemented in Expostats permits to reach 
such a conclusion. It requires setting a threshold for 
overexposure risk: the situation can then be declared 
either adequately controlled if overexposure risk is 
lower than the selected value, or poorly controlled 
otherwise. That threshold is called the overexposure 
risk threshold and should be set before the analysis. It 
is used to separate ‘low enough’ as mentioned in step 2 
from ‘not low enough’. The widely accepted value for 
this threshold is 5%: the overexposure risk should be 
lower than 5% to declare a situation acceptable (Jahn 
et al., 2015). To illustrate the correspondence between 
this and more traditional statements of uncertainty, we 
shall use the example of P95 ≥ OEL as the overexposure 
criterion. An overexposure risk below 5% is equivalent 
to ‘the chances that the true 95th percentile is above 
the OEL are below 5%’, which, in turn, means that 

Table 1.  Glossary of terms.

Exceedance fraction Proportion of exposures levels in the population of interest that are above the exposure limit. 

Equivalently, probability for a single random exposure value to be above the OEL

95th percentile The 95th percentile of a distribution is defined as the value below which lies 95% of the distribution

Overexposure Characteristic of an exposure distribution that is unacceptable, i.e. which would trigger preventive 

action.

Exceedance threshold Proportion of exposure levels over the OEL used as threshold to define overexposure (traditionally 5%)

Critical percentile Percentile of the exposure distribution that will be compared to the OEL to evaluate overexposure 

(traditionally 95th percentile)

Overexposure risk Probability that the criteria used to defined overexposure is met (e.g. 95th percentile ≥ 5%). Practically: 

probability of an unacceptable exposure situation

Overexposure risk 

threshold

Maximum allowable overexposure risk. This value, chosen a priori by the user, is used to create a 

dichotomy between ‘adequately controlled’ and ‘poorly controlled’ based on the overexposure risk. 

A traditional value used in the field of statistics would be 5%. The French OEL compliance definition 

is equivalent to an overexposure risk threshold of 30%

Probability of Individual 

overexposure

Probability that a random worker within a group would have their individual exposure distribution 

corresponding to overexposure (e.g. probability that a random worker within a group has his 

individual 95th percentile above the OEL).Can also be stated as: Proportion of workers with their 

individual exposure distribution corresponding to overexposure

Credible interval While not formally equivalent, Bayesian credible intervals are usually interpreted in a similar way as the 

more traditional confidence intervals

R ratio R ratio has been defined by Rappaport et al. as the ratio of the 97.5% percentile of the distribution of 

workers’ individual AM divided by the 2.5th percentile of the same distribution
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we are at least 95% certain that the 95th percentile is 
below the OEL, which, finally, is equivalent to ‘the 95% 
upper confidence limit (or the upper credible limit if 
Bayesian analysis was used) on the 95th percentile is 
below the OEL’ (a more traditional statement). The 
current British-Dutch and European guidelines, as well 
as the French regulation, recommend comparing the 
70% upper confidence limit on the exceedance fraction 
to 5%, which is equivalent to a 30% overexposure risk 
threshold with the overexposure criterion: Exceedance 
fraction ≥ 5%.

The uncertainty analysis involving calculation of 
between- and within-worker variability has an added 
layer of complexity: such analyses yield estimates 
of the probability of individual overexposure, i.e. 
the probability that a random worker would have 
an unacceptable individual exposure distribution. 
A  threshold for this quantity was proposed: i.e. 
probability of individual overexposure should be < 20% 
(BOHS-NVvA, 2011). However, as this probability 
is estimated, it is uncertain. Therefore, instead of only 
comparing the point estimate of the probability of 
individual overexposure to 20%, one can evaluate the 
chances that the true value is ≥ 20%, i.e. the chances that 
an intervention would be required. Expostats calculates 
this probability (one can use the thresholds of 5% or 
30% mentioned above to reach a decision).

Bayesian models
Expostats relies on two different Bayesian models: 
Model 1 estimates parameters from a single lognormal 
distribution. It is used to analyse data for SEGs. 
Model 2 is a hierarchical model used in cases when 
there are repeated measurements on some workers. 
It allows estimating two components of variance (i.e. 
within- and between-worker variability) and applying 
recommendations from the British-Dutch guidance and 
from Rappaport et al. (1995).

Both models allow for three types of censored data: 
left-censored values correspond to non-detects or values 
reported as <Limit of quantification (LOQ), right-
censored values correspond to values reported as >X, 
interval-censored values correspond to data reported as 
between two limits [e.g. (a–b)].

Bayesian analysis requires the specification of prior 
distributions across all parameters. For model 1, this 
implies a prior for the geometric mean (GM) and the 
geometric standard deviation (GSD). For model 2, it 
implies priors for the group GM and both the within- 
and between-worker GSDs. For variability, priors 
for model 1 and 2 were derived from McNally et al. 
(McNally et al., 2014). For GM, a standard weakly 

informative uniform distribution was used, as described, 
e.g. in Huynh et al. or Banerjee et al. (Banerjee et al., 
2014; Huynh et al., 2016).

The mathematical statements of the models and 
detailed information and discussion of the selected 
priors are presented Supplementary Appendix A in 
the Supplementary Material (available at Annals of 
Occupational Hygiene online).

Software implementation
Expostats is a web-based application available freely 
from www.expostats.ca as an online set of applications 
or standalone package. The tools were programmed 
through the combined use of (i) JAGS statistical package, 
serving as a Bayesian engine; (ii) the R statistical package 
and rjags extension, used to process data, make calls to 
JAGS, and create numerical and graphical results; and 
(iii) the SHINY application, which serves as an interface 
between R and users online. All algorithms underpinning 
Expostats are available upon request.

Expostats is currently available in both English and 
French, and it is constructed to allow translation to 
other languages.

Results

The Expostats toolkit contains four sub-applications. 
Tool1 (full and simplified versions), includes calculations 
useful for the analysis of exposure data from a SEG. 
Tool2 includes calculations in Tool1 plus accounts for 
within and between-worker variability, and evaluates 
the probability that some workers within the group are 
overexposed. Tool3 includes calculations in Tool1 and 
permits evaluation of the association of exposure levels 
with a single categorical variable.

The following sections provide an overview of each 
tool, along with example of numerical and graphical 
outputs.

SEG analysis (Tool1 and Tool1 express)
Tool1 would be the main tool for routine interpretation 
of industrial hygiene data where a set of measurements 
is available to estimate the exposure distribution for 
a SEG. For a given dataset and associated OEL, the 
first tab in Tool1 provides descriptive statistics, and a 
quantile-quantile and box and whisker plot to identify 
outliers and assess the adequacy of the lognormal 
model. The next three tabs present results based on 
the preferred exposure metric (exceedance fraction, 
exposure percentile, or AM, Table 2). In each case, 
users are provided with point estimates and credible 
intervals for GM, GSD, and the metric of interest. In 
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Table 2.  Technical characteristics of the tools included in Expostats.

Tool 1 Tool 2 Tool 3

Model

Estimation of a single lognormal exposure distribution ✓ ✓ ✓
Estimation of a simple hierarchical model, where each worker has his own exposure 

distribution

✓

Estimation of n lognormal exposure distributions (one for each category of a nominal 

variable)

✓

Distributional parameter estimates (point estimate and Crl) for a group | individual | category

GM ✓| - | - ✓|✓| - ✓| - |✓
GSD ✓| - | - ✓|✓| - ✓| - |✓
Exceedance fraction of the OEL ✓| - | - ✓|✓| - ✓| - |✓
Percentile of the exposure distribution (i.e., critical percentile, default 95%)) ✓| - | - ✓|✓| - ✓| - |✓
AM ✓| - | - ✓|✓| - ✓| - |✓
Components of variance estimated (point estimate and Crl)

Parameters quantifying between-worker differences

  Within-worker GSD ✓
  Between-worker GSD ✓
  Within-worker correlation coefficient ✓
  R ratio ✓
Parameters quantifying the possibility that some workers are overexposed

  Proportion of workers with their individual exceedance fraction above the exceedance 

threshold

✓

  Proportion of workers with their individual critical percentile > OEL ✓
  Proportion of workers with their individual AM > OEL ✓
Decision on Exposure Acceptability

Probability of overexposure for the following criteria for a group | individual | category

  1) Exceedance fraction ≥ exceedance threshold ✓| - | - ✓|✓| - ✓| - |✓
  2) Critical percentile ≥ OEL ✓| - | - ✓|✓| - ✓| - |✓
  3) AM ≥ OEL ✓| - | - ✓|✓| - ✓| - |✓
Probability of individual overexposure for the following criteria accounting for between-worker variability:

  1) Exceedance fraction ≥ exceedance threshold ✓
  2) Critical percentile ≥ OEL ✓
  3) AM ≥ OEL ✓
Chances that the probability of individual overexposure is above a selected criteria (e.g. 

20% for BOHS-NVvA)

✓

Comparative analysis for two categories

For any two categories of a selected variable:

  Ratio GM1/GM2 and Crl ✓
  Ratio GSD1/GSD2 and Crl ✓
  Ratio critical percentile1/critical percentile2 and Crl ✓
  Ratio AM1/AM2 and Crl ✓
  Exceedance fraction difference (exceedance fraction1-exceedance fraction2) and Crl ✓
For any of the above ratios or differences, the probability that they are above or below a 

pre-specified value is also calculated. E.g., probability that GM1/GM2 > 2

✓

Graphical evaluation of the data for a group | individual | category

Descriptive plots

  Quantile-quantile (Q-Q) plot ✓| - | - ✓|✓| - ✓| - |✓
  Box and whisker plot ✓| - | - ✓|✓| - ✓| - |✓
Plots assessing risk based on overexposure criteria (exceedance fraction, 95th percentile, long-term AM)

  Riskmeter - the probability that the exposure is too high (overexposure risk) ✓| - | - ✓|✓| - ✓| - |✓
  Exceedance plot - the expected proportion of exposures that would exceed OEL ✓| - | - ✓| - | - - | - | -
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addition to the point estimates and CrIs, Tool1 presents 
the overexposure risk and the final decision (adequately 
versus poorly controlled exposure situation) based on a 
default (albeit customizable) overexposure risk threshold 
of 30% in all three tabs.

Tool1 also provides graphs to help convey 
information useful for risk communication about the 
exposure distribution (Fig. 1). The exceedance plot 
shows the proportion of cases that would correspond 
to exposure>OEL imagining a large number of relevant 
exposure periods could be monitored (This could be many 
workers for many days, one worker for many days, many 
workers for many 15min periods, etc.…). The sequential 
plot shows the estimated distribution of exposure levels, 
also illustrating the case where many measurements could 
have been made. To communicate overexposure risk 
Tool1 presents a risk gauge, where a needle indicates the 
probability value within the related risk category (Fig. 2). 
Finally, the user is also shown the AIHA exposure band 
categories with their associated estimated probability, as 
initially presented by Hewett et al. (2006) and advocated 
by Banerjee et al. (2014). Probabilities are calculated 
based on the posterior distribution of the metric of interest 
(95th percentile, AM, or exceedance fraction). Tool1 was 
designed as comprehensive and highly customizable. 
A simplified version (Tool1 Express) was also created 

aiming to present succinct information that would be 
used by most practitioners.

Example
Let’s assume the following dataset represents a random 
sample from the exposure distribution: 28.9, 19.4, 
<5.5, 89.0, 26.4, 56.1, with an OEL of 150, where the 
< symbol indicates a left-censored observation. The 
Bayesian calculations provide a point estimate and 
90% credible interval for the exceedance fraction of 
5.4% (0.4–25.7). Let’s assume the assessor chooses 
an exceedance threshold of 10%: i.e. overexposure is 
defined as exceedance fraction ≥ 10%. Despite a point 
estimate (5.4%) below this threshold, the credible 
interval suggests the true underlying exceedance 
fraction could be as low as 0.4% and as high as 
25.7%. A typical conclusion from this would be ‘It is 
impossible to conclude with statistical significance that 
exceedance fraction is below 10%, or that it is above 
10%’. Tool1 also indicates overexposure risk: 29%. The 
full interpretation is as follows: the point estimate for 
the exceedance fraction is 5.4%, with a 29% probability 
that the true underlying value is ≥10%. The assessor 
can then decide whether this probability is low enough 
to conclude that exposure is adequately controlled. The 
uncertainty management final conclusion, given the 

Tool 1 Tool 2 Tool 3

 � Sequential plot – Distribution of exposure levels assuming many measurements could 

have been taken

✓| - | - ✓|✓| - ✓| - |✓

  Density plot - estimated underlying distribution of exposures ✓| - | - ✓| - | - - | - | -

 � AIHA risk band plot –distribution of the uncertainty around the overexposure criteria 

across set categories

✓| - | - ✓|✓| - ✓| - |✓

Comparative box and whisker plots

  Exposure distribution of individual workers - | - | - - |✓| - - | - | -

  Exposure distribution by categories in a selected variable - | - | - - | - | -  - | - |✓
  Exposure distribution by only two categories of a variable of interest - | - | - - | - | -  - | - |✓
Comparative plot of overexposure risk across categories ✓
Comparative AIHA risk band plot across categories ✓
Risk band plot of the distribution of uncertainty around probability of individual 

non-compliance

✓

Customizable parameters

Probability for the credible intervals (1–99.9%, default 90) ✓ ✓ ✓
Exceedance threshold (0.1–99.9, default 5%) ✓ ✓ ✓
Critical percentile (0.1–99.9, default 95%) ✓ ✓ ✓
Overexposure risk threshold (0.1–99%, default 30) ✓ ✓ ✓
Threshold for the probability of Individual overexposure (0.1–99%, default 20) ✓
Coverage of the R ratio (1–99%, default 80) ✓
Threshold for the within-worker correlation coefficient (0.01–0.99, default 0.2) ✓
Expected change in GM, GSD, Critical percentile, Exceedance fraction (any value) ✓

Table 2.  Continued
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selected 30% overexposure risk threshold, declares that 
exposure is adequately controlled given overexposure 
risk is <30% in this situation.

Between-worker differences within a SEG 
(Tool2)
Tool2’s main function is to estimate between and within-
worker variance from a set of measurements with 

repeats for some workers within a SEG (Table 2). The 
Bayesian model used is similar in spirit to a traditional 
one-way random effect analysis of variance (ANOVA) 
model initially described in Kromhout et al. (1993) and 
Rappaport et al. (1993) and subsequently adopted in the 
British-Dutch and AIHA guidelines. Three outputs aim 
at quantifying the amount of variation between workers 
within the group. First, Tool2 provides point estimates 

Figure 1.  Selected graphs illustrating the exposure distribution in Tool1.
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and associated uncertainty for the between- and within-
worker GSDs. Second, Tool2 estimates the within-worker 
correlation coefficient, which is the proportion of the total 
variance represented by the between-worker variance 
(the higher the between-worker variance, the higher 
the correlation within measurements from the same 
worker). Third, Tool2 provides the R ratio, a term first 
described as the fold range containing the middle 95% 
of the distribution of worker specific AMs (Rappaport 
et  al., 1993) (e.g. R=2 means that the ratio of the 
97.5th to 2.5th percentiles of the distribution of worker 
specific AMs is 2). In simpler terms, R is approximately 
the ratio of the AM of the most exposed worker to the 
AM of the least exposed worker. Tool2 provides an 
estimate of R for any proportion of the distribution. It 
is noteworthy that R has the same value whether one is 
interested in the GM, or any percentile of the exposure 
distribution instead of the AM. In terms of risk, Tool2 
also provides the probability that a random worker 
would have his own exposure distribution corresponding 
to overexposure according to several criteria (Table 2), as 
well as the associated uncertainty. Finally, Tool2 provides 
individual worker statistics based on the ANOVA model 
(i.e. the model assumes all worker specific distributions 
within the group share the same variability).

Example
As an example, selected results from the analysis of 
a dataset described in the British-Dutch guidance are 
presented regarding 30 cotton dust measurements 
comprised of six repeated observations for each of 
five workers (BOHS-NVvA, 2011). The between- and 
within-worker GSDs were, respectively, 1.3 (90% 

CrI 1.1–1.7) and 1.6 (90% CrI 1.5–1.8). Regarding 
criteria of homogeneity, the within-worker correlation 
coefficient point estimate was 0.19 (90% CrI 0.03–0.57). 
The R ratio (80% of the distribution, corresponding 
approximately to the ratio of the most to the least 
exposed worker in a group of 10) was 1.5 (90% CrI 
1.2–2.5), showing moderate between-worker variability. 
In terms of risk of individual overexposure, the estimated 
probability of a random worker having his own 95th 
percentile above the OEL of 0.8 mg/m3 was 74% (90% 
CrI 29–100), with 98% chances that the true underlying 
value is above 20%, the criterion set by the British-Dutch 
guidance. Expressed another way: the probability of 
individual overexposure is estimated at 74%, with 98% 
chances that the true value is above the criterion of 20%.

Figure 3 illustrates the differences between workers, 
showing actual measurements as well as the estimated 
underlying distributions.

Differences between groups (Tool3)
Tool3 was designed with the objective of providing an 
alternative to the traditional one-way ANOVA when one 
is interested in studying differences in exposure between 
groups (Table 2). The typical output of such analysis 
is a hypothesis test answering the question: are mean 
levels equal across groups? Such a question is of limited 
relevance. Hence, a true difference of 1% between means 
could be labelled as ‘significant’ in large sample sizes despite 
not being relevant in terms of prevention. Conversely, a 
large and important difference may be labelled as ‘non-
significant’ by a hypothesis test owing to lack of statistical 
power from smaller sample sizes, an important error of 
omission. Moreover, a traditional ANOVA analysis on log-
transformed exposure levels would not allow estimating 
differences between categories (including uncertainty 
in these differences) in terms of the relevant exposure 
metrics (e.g. exceedance fraction). To circumvent these 
issues, Tool3 allows estimating the probability that the 
difference between two groups is greater or smaller than 
a quantity judged relevant by the assessor (e.g. probability 
that the GM was reduced by at least a factor of 2, or that 
exceedance fraction decreased by 10%). These calculations 
are performed through the simultaneous application of the 
Bayesian model 1 to each group.

Example
We provide two examples for Tool3, using a dataset 
of formaldehyde measurements in the wood panel 
industry in Quebec, Canada, with a hypothetical OEL 
of 0.5 ppm (Lavoué et al., 2005). The first example 
illustrates how Tool3 can help assess differences between 
groups: We compared the particle board (PB, n = 118 

Figure 2.  Illustration of the riskmeter plot.
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measurements) and oriented strand board (OSB, n = 97) 
categories of the process variable. The ratio of GMs by 
process (PB/OSB) is estimated to be 4.1 (90% CrI 3.4–
4.9), with a 93% probability that the true underlying 
ratio is greater than 3.5, a hypothetical threshold of 
interest. The absolute difference in the exceedance 
fraction (PB-OSB) is estimated to be 13 (90% CrI 9.3 – 
18). The ratio of GSDs (PB/OSB) is estimated to be 0.99 
(90% CrI 0.85–1.10), showing very similar variability 
between the processes despite very different mean 
levels. The second example (Fig. 4) shows the capacity 
of Tool3 to graphically provide a comparative picture 
of overexposure risk across several groups. Comparing 
exposure levels across four different job titles in the 
wood panel plants using 95th percentile > OEL as the 
overexposure criterion, we find that the highest exposed 
job (job4) has a 99.98% overexposure risk, with the 
>OEL riskband filling the entire corresponding line 
in the comparative exposure band plot. In contrast 
to job4, job1 has only a 0.05% overexposure risk (as 
shown on the comparative overexposure risk plot). 
The corresponding risk band line provides more 
information, showing a 90% probability that the true 
95th percentile is in the (10–50%)*OEL category, with 
the remaining 10% in the (1–10%)*OEL category.

Discussion

Following major methodological developments from 
the 1970s through to the end of the 1990s, the theory 
underpinning the interpretation of measurement data 

for decision making in industrial hygiene seems to have 
somewhat stabilized for the last two decades or so. 
Despite the availability of the theory in the scientific 
literature, and even of simplified syntheses in practical 
guidelines, few tools have been made available to 
implement the rather involved required methodology. 
Arguably the best known available tool is the IHSTAT 
(https://www.aiha.org/get-involved/VolunteerGroups/
Pages/Exposure-Assessment-Strategies-Committee.aspx) 
spreadsheet application provided free of charge from the 
AIHA website. Other free and paid software appearing 
over the years, and still currently available, include 
SPEED (http://www.iras.uu.nl/speed/), ALTREX (http://
www.inrs.fr/media.html?refINRS=outil13), BWStat 
(https://www.bsoh.be/?q=en/node/89), HYGINIST 
(http://www.tsac.nl/hyginist.html), IH Data analyst 
(https://www.easinc.co/ihda-software/), and ART 
(https://www.advancedreachtool.com/). While each, with 
various degrees of refinement and complexity, represents 
a significant contribution to helping practitioners 
perform lognormal analyses, the added contribution of 
the Expostats toolkit is mainly 3-fold.

First, Expostats contains the most comprehensive 
list of lognormal calculations that might be deemed 
relevant to the interpretation of industrial hygiene data 
based on current best practice. This includes analysis 
of data from a SEG, assessment of differences between 
workers, and comparison across several groups, all 
including estimation of any percentile of the distribution, 
exceedance fraction of the OEL and the AM. Indeed, to 
our knowledge Expostats currently represents the most 

Figure 3.  Boxplot illustrating worker differences in Tool2.
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comprehensive lognormal data analysis toolset publicly 
available. In addition Expostats incorporates a high level 
of flexibility in parameter selection (Table 2), with several 
traditionally fixed parameters becoming customizable. 
As a consequence, the extensive number of numerical 
and graphical outputs might seem overwhelming for 
practitioners aiming to quickly obtain a diagnosis 
on a particular exposure situation. The creation of 
the express version of Tool1, focused on a restricted 
number of essentials, addresses this concern. The open 
source nature of Expostats, should also allow for the 
creation of applications tailored to any specific need/
complexity level.

Second, the treatment of non-detects has long been 
a thorn in the side of exposure assessors, with editorials 
published in the field of industrial hygiene advocating for 
changes in practice and the development of more rigorous 
approaches (Helsel, 2010; Ogden, 2010). Significant 
progress has been reported recently (Krishnamoorthy 
et al., 2009; Flynn, 2010; Ganser and Hewett, 2010), with 

several simulation studies comparing approaches (Hewett 
and Ganser, 2007; Huynh et al., 2014, 2016). A recent 
comparison suggested Bayesian methods are optimally 
suited for this challenge, since they allow multiple 
censoring points, and accurately estimate the inherent 
uncertainty when data values are known only up to an 
interval (Huynh et al., 2016). Expostats uses the same 
Bayesian approach as described early in Wild et al. (1996), 
and more recently in Huynh et al. (2014) and McNally 
et al. (2014), applied to all models, and extended from only 
left-censored data to interval- and right-censored data.

Third, objective management of uncertainty is central in 
all aspects of the Expostats tools. As advocated in a recent 
review by Waters et al. (2015), we propose a probabilistic 
framework for the interpretation of exposure measurements, 
where the conclusion relies on the probability that 
overexposure criteria are met rather than on point estimates 
and confidence intervals of exposure metrics. Consistent 
with the principles of risk characterization (U.S. EPA, 2000), 
Expostats uses simple probabilistic statements to improve 

Figure 4.  Comparative exposure band plot and overexposure risk plot in Tool3.
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the clarity of risk communication in the form ‘there is an 
XX% chance that our overexposure criterion is met’, to 
remove statistical jargon, use a language which is accessible 
to all stakeholders, but still describes the quantitative risk 
clearly and accurately.

Some limits of the present work should be 
acknowledged. First, the Bayesian models in Expostats 
do not make use of a powerful feature of Bayesian 
analysis, namely the use of informed prior information, 
where external knowledge is combined with the observed 
data to calculate the posterior distributions. This feature 
is used both in the ART and IH Data analyst tools. As 
discussed in detail in Supplementary Appendix A in 
the Supplementary Material (available at Annals of 
Occupational Hygiene online), several forms and sources 
of prior information can be used. While future iterations 
of the Expostat toolset may include this possibility, 
we opted to provide first a Bayesian alternative to 
current traditional frequentist tools, where information 
comes mainly from actual observations, with no prior 
information on the location of the lognormal distribution, 
and limited prior information about variability based on a 
historical database covering multiple workplaces. Second, 
Expostats is limited to the lognormal model. While this 
model is probably adequate in most workplace exposure 
situations, the more traditional normal distribution, other 
distributions (e.g. Poisson) or non-parametric procedures 
can be useful and are currently not included. Finally, it 
is worth mentioning that this paper does not represent a 
new set of recommendations for strategies in occupational 
risk assessment. Readers interested in discussions about 
the respective merits of the various metrics calculated by 
Expostats (e.g. exceedance versus AM) should consult 
the cited references. Expostats is merely a lognormal 
calculation toolset, albeit an advanced one, useful when 
the exposure assessor has decided to rely on probabilistic 
sampling and comparison with an OEL. The soundness 
of the conclusions drawn from it rely on the suitability 
of the lognormal model for the situation at hand, on the 
representativeness and quality of the samples collected, 
as well as the adequacy of priors and ‘correctness’ of the 
assumed risk model and OEL.

Conclusion

The Expostats toolset, in a way closer to knowledge 
translation than to pure novel scientific development, is 
meant to allow practitioners to utilize many theoretical 
developments formerly only available to academics. 
Interested readers are encouraged to participate in 
the ongoing evolution of this collaborative project by 
providing feedback and suggestions to the authors.

Supplementary Data

Supplementary data are available at Annals of Work 
Exposures and Health online.

Acknowledgements

Several colleagues supported the development of Expostats 
over the years, through providing feedback and suggestions 
for the design of the tools and calculations, including an 
international meeting held in Montreal in 2016. Occupational 
hygienists include Daniel Drolet, Robert Fraser, Pierrot Pépin, 
Michel Gérin, Denis Bégin, Paul Bozek, Martie Van Tongeren, 
Martine Chouvet; programmers include François Lemay, Patrick 
Belisle, Delphine Bosson-Rieutort, and Daniel Margulius. Many 
thanks to Igor Burstyn for his comments on the manuscript and 
methodological and editorial advice. This project was partially 
funded through grant number 2014-0073 from Institut de 
recherche Robert Sauvé en santé et en sécurité du travail.

Conflict Of Interest Declaration

Funding for this project was provided by J.L.’s personal research 
funds and partially by IRSST (grant 2014-0073). The authors 
declare no conflict of interest relating to the material presented 
in this Article. Its contents, including any opinions and/or 
conclusions expressed, are solely those of the authors.

References

Banerjee S, Ramachandran G, Vadali M et al. (2014) Bayesian 
hierarchical framework for occupational hygiene decision 
making. Ann Occup Hyg; 58: 1079–93.

BOHS (1993) British occupational hygiene society technical guide 
No. 11: sampling strategies for airborne contaminants in the 
workplace. Leeds, UK: H and H Scientific Consultants Ltd.

BOHS-NVvA (2011) Testing compliance with occupational 
exposure limits for airborne substances. Available at: 
https://www.arbeidshygiene.nl/-uploads/files/insite/2011-
12-bohs-nvva-sampling-strategy-guidance.pdf. Accessed 26 
November 2018.

Breslin AJ, Glauberman H, George AC et al. (1967) The accuracy 
of dust exposure estimates obtained from conventional air 
sampling. Am Ind Hyg Assoc J; 28: 56–61.

CEN (2018) BS-EN 689:2018 workplace exposure. 
measurement of exposure by inhalation to chemical agents. 
Strategy for testing compliance with occupational exposure 
limit values. Brussels, Belgium: British Standards Institution.

Flynn MR. (2010) Analysis of censored exposure data by 
constrained maximization of the Shapiro-Wilk W statistic. 
Ann Occup Hyg; 54: 263–71.

Ganser GH, Hewett P. (2010) An accurate substitution method for 
analyzing censored data. J Occup Environ Hyg; 7: 233–44.

Hawkins NC, Norwood SK, Rock JC (1991) A strategy for 
occupationnal exposure assessment. Fairfax, VA: American 
Industrial Hygiene Association.

12� Annals of Work Exposures and Health, 2018, Vol. XX, No. XX

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/advance-article-abstract/doi/10.1093/annw
eh/w

xy100/5248301 by U
niversite de M

ontreal user on 18 D
ecem

ber 2018

http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxy100#supplementary-data
http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxy100#supplementary-data
https://www.arbeidshygiene.nl/-uploads/files/insite/2011-12-bohs-nvva-sampling-strategy-guidance.pdf
https://www.arbeidshygiene.nl/-uploads/files/insite/2011-12-bohs-nvva-sampling-strategy-guidance.pdf


Helsel D. (2010) Much ado about next to nothing: incorporating 
nondetects in science. Ann Occup Hyg; 54: 257–62.

Hewett P. (1997) Mean testing: I. advantages and disadvantages. 
Appl Occup Environ Hyg 12: 339–46.

Hewett P, Ganser GH. (2007) A comparison of several methods 
for analyzing censored data. Ann Occup Hyg; 51: 611–32.

Hewett P, Logan P, Mulhausen J et al. (2006) Rating exposure 
control using Bayesian decision analysis. J Occup Environ 
Hyg; 3: 568–81.

Huynh  T, Quick  H, Ramachandran  G et  al. (2016) A 
Comparison of the β-substitution method and a Bayesian 
method for analyzing left-censored data. Ann Occup Hyg; 
60: 56–73.

Huynh T, Ramachandran G, Banerjee S et al. (2014) Comparison 
of methods for analyzing left-censored occupational 
exposure data. Ann Occup Hyg; 58: 1126–42.

Ignacio JS, Bullock WH. (2008) A strategy for assessing and 
managing occupational exposures. 3rd edn. Fairfax, VA: 
AIHA Press.

INRS (2018) Statistical interpretation of measurement results 
(in French). Paris: Institut national de recherche et de 
sécurité.

Jahn SD, Bullock C, Ignacio JS. (2015) A strategy for assessing 
and managing occupational exposures. 4th edn. Fairfax, 
VA: AIHA Press.

Jones RM, Burstyn I. (2017) Bayesian analysis of occupational 
exposure data with conjugate priors. Ann Work Expo 
Health; 61: 504–14.

Kerr  GW. (1962) Use of stat ist ical  methodology in 
environmental monitoring. Am Ind Hyg Assoc J; 23: 75–82.

Krishnamoorthy K, Mallick A, Mathew T. (2009) Model-based 
imputation approach for data analysis in the presence of 
non-detects. Ann Occup Hyg; 53: 249–63.

Kromhout  H, Symanski  E, Rappaport  SM. (1993) A 
comprehensive evaluation of within- and between-worker 
components of occupational exposure to chemical agents. 
Ann Occup Hyg; 37: 253–70.

Lavoué J, Beaudry C, Goyer N et al. (2005) Investigation of 
determinants of past and current exposures to formaldehyde 
in the reconstituted wood panel industry in Quebec. Ann 
Occup Hyg; 49: 587–602.

Leidel  N, Busch  K, Crouse  WE. (1975) NIOSH Technical 
Information: Exposure measurement action level and 
occupational environmental variability (NIOSH 76–131). 
Cincinnati, OH: US Department of Health, Education, and 
Welfare.

Leidel NA, Busch KA, Lynch CF (1977) NIOSH occupational 
exposure sampling strategy manual. Cincinnati, OH: US 
Department of Health, Education, and Welfare.

Lyles RH, Kupper LL. (1996) On strategies for comparing 
occupational exposure data to limits. Am Ind Hyg Assoc J; 
57: 6–15.

Lyles RH, Kupper LL, Rappaport SM. (1997a) A lognormal 
distribution-based exposure assessment method for 
unbalanced data. Ann Occup Hyg; 41: 63–76.

Lyles RH, Kupper LL, Rappaport  SM. (1997b) Assessing 
regulatory compliance of occupational exposures via the 

balanced one-way random effects ANOVA Model. J Agric 
Biol Environ Stat; 2: 64–86.

Mcbride S, Williams R, Creason J. (2007) Bayesian hierarchical 
modeling of personal exposure to particulate matter. Atmos 
Environ; 41: 6143–55.

McNally K, Warren N, Fransman W et al. (2014) Advanced 
REACH Tool: a Bayesian model for occupational exposure 
assessment. Ann Occup Hyg; 58: 551–65.

Mulhausen JR, Diamano J. (1998) A strategy for assessing and 
managing occupational exposures. Fairfax, VA: AIHA Press.

Ogden TL. (2010) Handling results below the level of detection. 
Ann Occup Hyg; 54: 255–6.

Quick H, Huynh T, Ramachandran G. (2017) A method for 
constructing Informative priors for Bayesian modeling of 
occupational hygiene data. Ann Work Expo Health; 61: 
67–75.

Ramachandran G, Vincent JH. (1999) A Bayesian approach to 
retrospective exposure assessment. Appl Occup Environ 
Hyg; 14: 547–57.

Rappaport SM. (1991) Assessment of long-term exposures to 
toxic substances in air. Ann Occup Hyg; 35: 61–121.

Rappaport SM, Kromhout H, Symanski E. (1993) Variation 
of exposure between workers in homogeneous exposure 
groups. Am Ind Hyg Assoc J; 54: 654–62.

Rappaport SM, Lyles RH, Kupper LL. (1995) An exposure-
assessments strategy accounting for within- and between-
worker sources of variability. Ann Occup Hyg; 39: 469–95.

République Française (2009) Arrêté du 15 décembre 2009 relatif 
aux contrôles techniques des valeurs limites d’exposition 
professionnelle sur les lieux de travail et aux conditions 
d’accréditation des organismes chargés des contrôles. J Off 
la république française Texte 35 sur 156.

Roach SA. (1966) A more rational basis for air sampling 
programs. Am Ind Hyg Assoc J; 27: 1–12.

Selvin S, Rappaport S, Spear R et al. (1987) A note on the 
assessment of exposure using one-sided tolerance limits. Am 
Ind Hyg Assoc J; 48: 89–93.

Sottas  PE, Lavoué  J, Bruzzi R et  al. (2009) An empirical 
hierarchical Bayesian unification of occupational exposure 
assessment methods. Stat Med; 28: 75–93.

Symanski E, Maberti  S, Chan W. (2006) A meta-analytic 
approach for characterizing the within-worker and between-
worker sources of variation in occupational exposure. Ann 
Occup Hyg; 50: 343–57.

Tornero-Velez R, Symanski E, Kromhout H et  al. (1997) 
Compliance versus risk in assessing occupational exposures. 
Risk Anal; 17: 279–92.

U.S. EPA (2000) Risk characterization: science policy council 
handbook. EPA-100-B-00-002. Washington, DC: Science 
Policy Council, U.S. Environmental Protection Agency.

Waters M, McKernan L, Maier A et  al. (2015) Exposure 
estimation and interpretation of occupational risk: 
enhanced information for the occupational risk manager. J 
Occup Environ Hyg; 12(Suppl 1): S99–111.

Wild P, Hordan R, Leplay A, et al. (1996) Confidence intervals 
for probabilities of exceeding threshold limits with censored 
log-normal data. Environmetrics 7: 247–59.

Annals of Work Exposures and Health, 2018, Vol. XX, No. XX� 13

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/advance-article-abstract/doi/10.1093/annw
eh/w

xy100/5248301 by U
niversite de M

ontreal user on 18 D
ecem

ber 2018


