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Abstract

Background: Biomarker series can indicate disease progression and predict clinical endpoints. When a treatment is

prescribed depending on the biomarker, confounding by indication might be introduced if the treatment modifies the

marker profile and risk of failure.

Objective: Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte

Carlo framework. For this purpose, we monitored the prostate-specific antigens in prostate cancer patients treated with

external beam radiation therapy. In the presence of rising prostate-specific antigens after external beam radiation therapy,

salvage hormone therapy can be prescribed to reduce both the prostate-specific antigens concentration and the risk of

clinical failure, an illustration of confounding by indication. We focused on the assessment of the prognostic value of

hormone therapy and prostate-specific antigens trajectory on the risk of failure.

Methods: We used a two-stage model within a Bayesian framework to assess the role of the prostate-specific antigens

profile on clinical failure while accounting for a secondary treatment prescribed by indication. We modeled prostate-

specific antigens using a hierarchical piecewise linear trajectory with a random changepoint. Residual prostate-specific

antigens variability was expressed as a function of prostate-specific antigens concentration. Covariates in the survival

model included hormone therapy, baseline characteristics, and individual predictions of the prostate-specific antigens

nadir and timing and prostate-specific antigens slopes before and after the nadir as provided by the longitudinal process.

Results: We showed positive associations between an increased prostate-specific antigens nadir, an earlier changepoint

and a steeper post-nadir slope with an increased risk of failure. Importantly, we highlighted a significant benefit of

hormone therapy, an effect that was not observed when the prostate-specific antigens trajectory was not accounted

for in the survival model.

Conclusion: Our modeling strategy was particularly flexible and accounted for multiple complex features of longitudinal

and survival data, including the presence of a random changepoint and a time-dependent covariate.
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1 Introduction

Medical studies can generate both repeated measurements of a variable marker and event history data, in which
times of clinical events are recorded. The observed biomarker series can be an important indicator of disease
progression and a predictor of clinical endpoints. Examples include the monitoring of CD4 counts in relationship
with time to AIDS or measurements of serum prostate-specific antigens (PSA) for the surveillance of prostate
cancer patients after treatment.

Following external beam radiation therapy (EBRT) in patients with prostate cancer, the PSA levels decrease up
to a nadir value and then start to rise again. A sharp PSA rise following the initial PSA decline is used as an
indicator of treatment failure and clinical failure is expected to follow. A salvage hormonal treatment (HT) can be
initiated, which is usually more effective when provided as early as possible, that is, even before clinical failure is
observed. As such, PSA is both an intermediate variable and a time-dependent confounder in the relation between
HT and the risk of failure, an illustration of confounding by indication.1,2 This type of bias should be accounted
for when estimating the prognostic value of PSA and the potential benefit of HT.

Assessment of prognostic factors of clinical failure is particularly relevant for the clinicians to improve patients’
surveillance and management after EBRT. Post-treatment characteristics, such as the PSA nadir and PSA slopes,
as well as HT, could help refine prognostic models based on baseline factors only. Aside from the well-known
baseline prognostic factors such as baseline PSA, Gleason score and T-stage, studies have also focused on
characteristics of the post-EBRT PSA trajectory. Although interassay coefficients of variation tend to be larger
at lower PSA values,3,4 most studies did not account for the PSA variability. Survival models were fitted with the
PSA nadir or the post-nadir slope included as exploratory variables, where the PSA nadir was defined as the lowest
observed PSA concentration and the post-nadir PSA slope was calculated by fitting least squares regression lines
to the observed PSA series.5–11

The two-stage modeling approach allows estimation of the regression coefficients in a time-dependent Cox
model, while addressing the limitations with the knowledge of the true marker trajectory.12 In the first stage, the
longitudinal process is modeled using a repeated measures component model, such as a random effects model. In
the second stage, estimated characteristics of the longitudinal marker trajectory, such as slopes, are included as
covariates in a survival model to assess their prognostic value.

Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte
Carlo (MCMC) framework. We applied this model to assess the prognostic value of the PSA profile (level and
timing of the nadir; pre- and post-nadir slopes) as well as HT on the risk of clinical failure following EBRT in the
presence of confounding by indication. We first present the longitudinal hierarchical PSA model that we developed
earlier.13 This model was particularly flexible since it allowed us to account for the presence of a random
changepoint as well as the modeling of the residual variability as a function of the PSA concentration. We next
extend the longitudinal model to a two-stage model by using estimated parameters of the longitudinal process as
covariates in a Cox proportional hazards model to assess prognostic factors of clinical failure including baseline
characteristics, PSA trajectory, and HT.

2 The PSA data sets

We worked with a dataset of 2384 men included in three cohorts: University of Michigan, Ann Arbor, MI, USA
(UM)14; Radiation Therapy Oncology Group (RTOG 9406)15,16; and William Beaumont Hospital, Detroit, MI,
USA (WBH).17 All eligible cases had clinically localized prostate cancer of clinical stage T1 to T4, were node and
metastasis negative, and were treated with external beam radiation therapy (RT). Patients with baseline or planned
HT were ineligible. All patients were required to have one year of follow-up without clinical recurrence or salvage
HT and at least two PSA measurements before the end of follow-up. All PSA measures were collected after RT
until the end of follow-up (minimum time to clinical recurrence or lost to follow-up) or initiation of salvage HT
was analyzed. Complete PSA, clinical failure, and salvage therapy histories were individually assessed for data
consistency. All PSA measures were logarithmically transformed (base 2) to satisfy normality assumptions for
inclusion in the statistical models. Prognostic factors included individual baseline characteristics such as initial
T-stage (T1–T2 versus T3–T4), Gleason score (scores< 7, ¼ 7, > 7), and pre-treatment log2PSA level (continuous
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variable), as well as radiation dose received (defined as the sum of all fractional doses given during therapy). To
reduce biases resulting from follow-up variations between cohorts, a common clinical failure criterion was applied
as any of the following: distant metastases, nodal recurrence, or any palpable or biopsy-detected local recurrence
three years after radiation; any local recurrence within three years of RT if the most previous PSA was> 2 ng/ml;
and death from prostate cancer. This definition was intended to allow for the possibility of residual local disease.
In patients with more than one clinical recurrence, only the first event was used. Additional details can be found in
Proust-Lima et al.18

3 Two-stage estimation

In the first stage, we described the post-EBRT log2PSA profile using a piecewise linear model with a random
changepoint, based on PSA data observed before the initiation of HT. In the second stage, estimated
characteristics of the longitudinal process as well as baseline factors and HT were included as covariates in a
survival model to assess prognostic factors of clinical failure.

3.1 Longitudinal process

Following EBRT and before initiation of HT, the PSA levels decrease to a nadir value and then start to rise again
at varying rates between individuals. These rates are reasonably constant for a single man, with close to
exponential patterns before and after the nadir.19,20 The base 2 logarithm transformation leads to a piecewise
linear pattern, with the reciprocal of the post-nadir log2PSA growth rate equivalent to the PSA doubling time
(PSAdt), a variable of particular interest to clinicians. Similarly, the negative of the reciprocal of the log2PSA
decline rate before the nadir corresponds to the PSA half-life. To illustrate the piecewise linear trajectory typically
observed, we have plotted the longitudinal PSA observations for 20 men (Figure 1).

We used a hierarchical piecewise linear model to describe the longitudinal process,13 an approach particularly
flexible to account for the presence of a random changepoint and the wide between-subjects variations in PSA
trajectories.21 In the presence of confounding by indication, the longitudinal process is estimated based on the PSA
data available prior to HT. Adjusting for post-HT PSA data would yield an estimate of the HT effect beyond that

Figure 1. PSA trajectories for 20 men (log2 scale) following initiation of radiotherapy. PSA: prostate-specific antigen. Observations

are shown in black before initiation of hormonotherapy, and in grey thereafter.
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due to the longitudinal process, and as such provide biased estimate of HT effect. We denote by ��i , �
�
1i, �

�
2i and �

�
i ,

the log2PSA nadir, the log2PSA decline rate prior to the PSA nadir (the slope of the first line), the post-nadir
log2PSA growth rate (the slope of the second line), and the changepoint (or location of the nadir in follow-up
time), respectively, for the ith individual (Figure 2). For a given cohort, let log2PSAij be the log2PSA concentration
for the jth measurement for the ith man. We assumed that the log2PSAij were normally distributed, with expected
value �ij and variance �2ij, as well as an unstructured correlation to describe the series of j observations among each
ith individual. The model was as follows

log2 PSAij � Nð�ij, �
2
ijÞ, ð1Þ

where

�ij ¼
��i þ �

�
1iðtij � �

�
i Þ, tij 5 ��i ,

��i þ �
�
2iðtij � �

�
i Þ, tij � �

�
i

�
ð2Þ

We expressed the individual random parameters as linear functions of k covariates

��i ¼ �i þ �11 � x
ðiÞ
11 þ � � � þ �1k � x

ðiÞ
1k

ð3Þ

��1i ¼ �1i þ �21 � x
ðiÞ
21 þ � � � þ �2k � x

ðiÞ
2k ð4Þ

��2i ¼ �2i þ �31 � x
ðiÞ
31 þ � � � þ �3k � x

ðiÞ
3k

ð5Þ

��i ¼ �i þ �41 � x
ðiÞ
41 þ � � � þ �4k � x

ðiÞ
4k

ð6Þ

where �mn for m ¼ 1–4 and n ¼ 1 to k, are regression parameters, and xðiÞmn for m ¼ 1–4 and n ¼ 1 to k are the k
individual baseline covariates for the ith individual. We assumed normal distributions for the individual
hierarchical parameters: �i � Nð��, �

2
�Þ, �1i � Nð��1 , �

2
�1
Þ, �2i � Nð��2 , �

2
�2
Þ, �i � Nð��, �

2
� Þ. We assumed that

the individual parameters �i, �1i, �2i and �i were a priori uncorrelated, both within and between subjects, although
they are related through the likelihood function. We assigned noninformative normal priors for the mean
(intercept) parameters ��, �� , ��1 , ��2 and noninformative uniform prior distributions on the standard
deviation parameters ��, ��, ��1 , and ��2 .

22

Interassay coefficients of variation tend to be larger at lower PSA values.3,4 We thus expressed the PSA
variability �2ij as a function of the PSA concentration. Specifically, we modeled the logarithm of the precision
as a linear function of the log2PSA level,13 with thus the variance given by

�2ij ¼ exp½�ð�1 þ �2�ijÞ� ð7Þ

Figure 2. Individual piecewise linear model with four parameters.
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where �ij is given by equation (2). Finally, we assigned noninformative normal priors for the regression parameters
�1 to �4 and the variance parameters �1 and �2.

The longitudinal model was first fit independently to each cohort. Next, after pooling the three cohorts, we
fitted the same model and replaced �i, �1i, �2i and �i by cohort-specific parameters to account for heterogeneity.

4 Risk process

Once the longitudinal model was defined, we used a Cox proportional hazards model to asses the association of
pre-treatment prognostic factors, longitudinal pattern of PSA, and HT with time to clinical failure. We fitted the
following model:

lðtÞ ¼ l0ðtÞexpð	Zi þ 
WiðtÞÞ ð8Þ

where d and 
 denote regression parameters, Zi are individual fixed covariates and WiðtÞ are time-dependent
covariates. In a first simple survival model, individual fixed covariates included Gleason, PSA, T-stage, and
dose of radiation received. HT was included as a time-dependent covariate set to zero before HT, and 1 after
HT. In subsequent survival models, characteristics of the longitudinal PSA pattern were added as fixed covariates,
namely the PSA nadir, the timing of the nadir, the slopes before and after the PSA nadir. These four quantities
were estimated by the longitudinal model based on the individual predicted means.

Following a manual forward selection approach, each of the four PSA parameters was added one by one to the
simple survival model, thus leading to four additional survival models. We retained the model with the PSA
parameter that led to the best model improvement based on the deviance information criterion (DIC). We next
tested the addition of each of the three remaining parameters, and so on. For exploratory purpose, the final model
obtained through this manual forward selection approach was compared to the model obtained through a
backward selection approach.

5 Implementation

Estimation was implemented in WinBUGS, a statistical software package that uses MCMC to generate random
samples from the relevant posterior distributions.23 For each model, we generated three chains with distinct sets of
overdispersed initial values. Convergence was monitored using visual inspection of the trace plots and the Gelman-
Rubin statistics.24 We relied on the Raftery and Lewis criterion to confirm that three samples in the MCMC pocess
provided the desired accuracy in parameter estimation.25 Once convergence was reached, chains were pooled to
estimate the posterior distributions for each parameter. Point estimates of parameters were assessed using the
median of the posterior distribution, and 95% credible intervals (CI) were reported based on the 2:5th and 97:5th

percentiles of the posterior distribution. We performed sensitivity analysis to investigate the impact of various
prior distributions for the parameters of the longitudinal process. Additional details on the implementation
process, sensitivity analysis, and strategy for model checking are described in Bellera et al.13

6 Results

Characteristics of the patients are summarized in Table 1. A total of 22,356 PSA measurements were available for
2,384 men, leading to a median of 9 measurements per man. Median age was 72 years. With regards to baseline
prognostic factors, median PSA concentration was close across the cohorts (7.7 ng/mL). The proportion of
patients with T3-T4 stage was 4.6%. The proportion of patients with Gleason 7-10 was 33%. Median radiation
dose was 70.2 Grays. Median follow-up time was 5.4 years. Between 6.8% (RTOG) and 16.6% (UMRT) of the
patients experienced clinical failure, leading to 315 events overall (13.2%) that were observed around four years
post-EBRT. Salvage HT was prescribed in 11.2% of the population.

With regards to the longitudinal process, we first fitted a hierarchical changepoint model unadjusted for
baseline characteristics, that is, assuming no covariate in equations (3) to (6). Estimated parameters are
presented in Table 2. Point estimates were relatively close across cohorts. Median log2PSA nadir was �0.30
(0.7 ng/mL on the PSA natural scale) and was reached about one year post RT treatment. The estimated pre-
nadir slope was �2, equivalent to a PSA half-life of 0.5 year. The population post-nadir slope was 0.29, equivalent
to a PSAdt doubling-time of 3.5 years.

The estimated values for the variance parameters �1 and �2 were 1.65 and 0.19, respectively. The estimated value
for �2 was positive, suggesting, as expected, increased PSA variability at lower PSA concentrations. For
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Table 1. Description of the study cohorts.

Cohort UM RTOG WBH All patients

Period of recruitment 1988–2004 1994–2001 1987–2003 1987–2004

Number of patients 501 615 1268 2384

Total number of PSA measurements 4562 6413 11381 22356

Number of PSA per patient 8 11 8 9

(3; 19) (4; 17) (3; 19) (3; 18)

Age 69.8 69.0 73.0 72.0

(years) (56.1; 78.7) (54.0; 77.0) (61.0; 83.0) (57.0; 81.0)

Baseline PSA 8.2 7.4 7.7 7.7

(2.3; 46.4) (2.6; 19.2) (2.3; 38.2) (2.3; 35.5)

Baseline T-stage

1 163 (32.5%) 348 (56.6%) 431 (34.0%) 942 (39.5%)

2 288 (57.5%) 253 (41.1%) 792 (62.5%) 133 (55.9%)

3 48 (9.6%) 14 (2.3%) 45 (3.5%) 107 (4.5%)

4 2 (0.4%) 0 0 2 (0.1%)

Baseline Gleason score

2–6 275 (54.9%) 421 (68.5%) 902 (71.1%) 1598 (67.0%)

7 187 (37.3%) 156 (25.4%) 252 (19.9%) 595 (25.0%)

8–10 39 (7.8%) 38 (6.1%) 114 (9.0%) 191 (8.0%)

Total dose 70.4 78 66.6 70.2

(Gray) (66.0; 77.8) (70.3; 82.4) (66; 77.4) (66.4; 81.2)

Clinical recurrence 83 (16.6%) 42 (6.8%) 190 (15%) 315 (13.2%)

Time to clinical recurrence 2.9 4.2 4.3 3.9

(years) (1.3; 8.0) (1.7; 8.1) (1.4; 9.8) (1.4; 8.9)

Hormonotherapy 44 (8.8%) 47 (7.6%) 176 (13.9%) 267 (11.2%)

Follow-up timea 5.3 5.4 5.3 5.4

(years) (1.3; 12.0) (2.6; 9.7) (1.5; 11.3) (1.5; 11.0)

Note: Quantitative variables are described using the mean and the 95% reference interval. Qualitative variables are described using counts and

proportions. PSA: prostate-specific antigen.
aTime to date of clinical recurrence or loss of follow-up.

Table 2. Estimation of the PSA features (level and timing of the nadir, and slopes before and after the nadir) based on the unadjusted

hierarchical changepoint model.

Cohort-specific parameters
Multilevel

UM RTOG WBH analysis

Log2PSA nadira (�̂�) �0.25 �0.54 �0.21 �0.30

(�0.37; �0.13) (�0.64; �0.43) (�0.29; �0.14) (�0.33; �0.28)

Timing of the nadirb (�̂�) 1.12 1.18 0.98 1.06

(1.06; 1.19) (1.12; 1.24) (0.93; 1.02) (1.03; 1.09)

Pre-nadir slope (�̂�1
) �1.97 �1.77 �2.13 �2.00

(�2.09; �1.85) (�1.87; �1.67) (�2.22; �2.05) (�2.06; �1.95)

Post-nadir slope (�̂�2
) 0.45 0.12 0.30 0.29

(0.37; 0.52) (0.06; 0.19) (0.25; 0.35) (0.27; 0.30)

�1 (variance parameter) – – – 1.65

(1.62; 1.68)

�2 (variance parameter) – – – 0.19

(0.18; 0.21)

Note: Point estimates with 95% credible interval (mean and 95% reference range of the posterior distribution). PSA: prostate-specific antigen.
alog2 scale.
bIn years.

6 Statistical Methods in Medical Research 0(0)



illustration, coefficient of variations (i.e. �=�) were 40% and 7% for mean log2PSA concentrations 1 and 4,
respectively (2 and 16 ng/mL on the PSA natural scale).

In a second longitudinal changepoint model, we investigated whether expressing each of the random parameter
as linear functions of baseline covariates led to model improvement. We therefore included baseline Gleason score,
PSA and T-stage, as well as radiation dose as covariates in equations (3) to (6). Although we highlighted some
associations, estimations for the variance parameters (�2�, �

2
�1
, �2�2 and �2� ), residual variance parameters (�1

and �2), and deviance information criterion (DIC) were relatively close (data not shown). Since this modeling
strategy did not lead to improved precision, we concluded that the additional complexity induced by the adjusted
model compared to the unadjusted model did not result in an improved fit. The unadjusted hierarchical
changepoint model appeared sufficient to describe the underlying PSA profile and was thus retained for the
subsequent two-stage analysis.

A first Cox PH model included pre-EBRT factors, irradiation dose, and HT. The model revealed associations
between baseline covariates and the risk of clinical failure; the multilevel analysis is presented in the first column in
Table 3. A T-stage of 3–4, a greater baseline PSA level, and amore severe Gleason grade increased the risk of clinical
failure. On the other hand, this risk was reduced with increased radiation dose. When looking at the per-study
analysis, similar trends were observed although not systematically significant (data not shown). This can be partly
explained by the reduced sample size for some classes of the prognostic factors investigated. HT was associated with
an increased risk of clinical recurrence in the RTOG cohort (Hazard ratio [HR]: 4.29; 95% credible interval [CI]:
[1.67; 8.61]), but no such association was observed for the other two cohorts, nor in the multilevel analysis.

After inclusion of the baseline covariates and HT in the survival process, each of the four parameters of the
longitudinal process was introduced one by one. Introducing the post-nadir slope led to the greatest reduction in

Table 3. Hazard ratios for prognostic factors of risk of clinical failure following radiotherapy for prostate cancer patients: parameter

estimates based on a simple Cox survival model and four two-stage models.

Cox Two-stage Two-stage Two-stage Two-stage

Model model 1 model 2 model 3 model 4

Baseline T stage T3-T4a 2.19 1.61 1.26 1.23 1.30

(1.54; 3.15) (1.10; 2.31) (0.84; 1.83) (0.82; 1.79) (0.54; 6.13)

Baseline PSAb 1.31 1.19 0.96 1.01 0.91

(1.19; 1.43) (1.07; 1.31) (0.86; 1.07) (0.90; 1.13) (0.75; 2.40)

Baseline Gleason 7c 2.14 1.69 1.80 1.79 1.95

(1.66; 2.74) (1.29; 2.22) (1.38; 2.35) (1.37; 2.33) (1.37; 16.9)

Baseline Gleason 8–10c 1.66 1.10 1.28 1.23 1.22

(1.16; 2.33) (0.74; 1.57) (0.87; 1.84) (0.84; 1.75) (0.70; 7.87)

Radiation dosed 0.93 0.97 0.98 0.98 0.98

(0.90; 0.95) (0.94; 1.00) (0.95; 1.01) (0.95; 1.01) (0.66; 1.02)

Hormotherapye 1.04 0.31 0.23 0.21 0.18

(0.74; 1.46) (0.20; 0.46) (0.16; 0.34) (0.14; 0.30) (0.06; 0.30)

Post-nadir slopef – 4.44 4.52 4.65 5.40

(3.69; 8.23) (3.90; 5.26) (4.00; 5.45) (4.29; >100)

log2PSA nadirf – – 1.50 1.38 1.66

(1.35; 1.67) (1.22; 1.56) (1.38; 7.67)

Timing of the nadirf – – – 0.73 0.94

(0.55; 0.92) (0.65; 16.30)

Slope prior to the nadirf – – – – 0.59

(0.37; >100)

DICg 5597 5167 5113 5108 5088

Note: Point estimates with 95% credible interval (mean and 95% reference range of the posterior distribution). Significant hazard ratios are reported in

bold. PSA: prostate-specific antigen.
aReference is T1–T2 stage.
bContinuous and centered, log2 transformed.
cReference is Gleason 2–6.
dContinuous and centered, total cumulative dose in Gray.
eTime-varying covariate.
fIndividual parameter estimated from the longitudinal model.
gDeviance information criterion.
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DIC (Table 3, second column). The model suggested a close to five-fold increase in the risk of clinical failure for
each unit increase in the log2 PSA slope. In contrast to the simple survival analysis, the two-stage model revealed
the protective role of the implementation of HT (68% risk reduction; HR¼0.32; 95% CI¼[0.20; 0.46]). Of the
other three PSA parameters, the log2PSA nadir was the next parameter that led to the greatest reduction in the
DIC value. The model with the post-nadir slope and the nadir indicated that the log2PSA nadir was associated
with an increased risk of failure (HR¼1.50; 95% CI¼[1.35; 1.67]) while associations between the post-nadir slope
and HT with failure were attenuated (Table 3, third column). Finally, the timing of the PSA nadir also appeared as
an independent prognostic factor of clinical failure (Table 3, last column) with still strong associations for the log2
post-nadir slope, the log2PSA nadir, and HT. Introducing the slope prior to the nadir led to a small reduction of
the DIC; however, time to convergence was significantly increased, and the resulting confidence intervals for some
parameters were much larger due to the underlying correlation between parameters of the longitudinal process. As
such, the model based on three parameters, the slope after the nadir, the nadir, and its timing, was retained (two-
stage model 3 in Table 3). Based on this last model, all other factors held equal, patients with a log2 PSA slope of 2
(i.e. PSAdt¼ 6 months) had a close to five-fold increased risk of failure compared to patients with a log2 PSA slope
of 1 (i.e. PSAdt¼ 2 years). Similarly, increasing the log2 PSA nadir from 1 to 2 (e.g. PSA increase from 2 to 4 ng/
mL) increased the risk of failure by 40%. Finally, each reduction of one year in the delay to reaching the nadir was
associated with a 27% risk reduction. Finally, variables of the model obtained from a backward selection process
were the same as those selected from the forward selection procedure. Computational time for our final model was
approximately five days on an INTEL XEON X5650 2 processors computer.

7 Discussion

We have investigated the prognostic value of the post-irradiation PSA trajectory on the risk of clinical failure in
patients treated with EBRT for prostate cancer, while accounting for hormonotherapy, a salvage treatment
prescribed by indication. Identifying prognostic factors of clinical failure while relying on the underlying PSA
pattern can provide valuable information for patients’ management. We showed that the PSA nadir, its timing,
and the post-nadir PSA slope are strong prognostic factors of clinical failure. These variables, especially the nadir,
are expected to happen about one year after EBRT, much earlier than clinical failure, usually four to five years
after EBRT. Thus, these parameters should be carefully monitored to guide the surveillance of treated patients, in
addition to the usual baseline prognostic factors (Gleason, PSA, stage). Interestingly, we have shown that the
prognostic value of these baseline factors was attenuated once the PSA profile was accounted for. Second,
compared to a model that ignored the underlying PSA pattern, initiating HT was associated with an important
risk reduction.

With regards to the underlying PSA model, we relied on large dataset which allowed us to build an appropriate
model with reasonable estimations, including the PSA post-nadir slope, even for those series with fewer data points
or shorter follow-up. The log-PSA profile follows a piecewise linear trajectory and thus once PSA starts to
increase, the pattern is quite linear and quite deterministically driven. Finally, the PSA process was estimated
based on the PSA data available before initiation of HT only. Adjusting for post-HT PSA data would yield an
estimate of the HT effect beyond that due to the longitudinal process, and as such provide biased estimate of HT
effect.

Previous works that focused on the PSA profile were based on observed PSA measurements and hence ignored
the marker variability when estimating the individual nadir and slopes.5–11 Our hierarchical changepoint model
relies on borrowing the strength from the whole population to give more precise estimates for each subject. Our
Bayesian hierarchical model was also flexible enough to express the residual PSA variability as a function of the
marker level, a strategy consistent with the reported lower precision of the measurement tools at low
concentrations3,4 and confirmed by our estimates of the variance parameters. Piecewise linear modeling is
commonly used to model longitudinal processes. However, the novelty of the methodology lies on the fact that
(i) the variability of the PSA is modeled as a function of the PSA concentration and (ii) predictions of the
longitudinal model are now linked to the survival model as these, including the random changepoint, are used
as covariates. Interestingly, this approach could be relevant for additional clinical applications including, for
example, the modeling of cognitive decline to predict onset of dementia or modeling tumor size to predict
cancer recurrence/progression.

Estimation of the two-stage model is usually addressed through a frequentist approach.12 Yet, the Bayesian
approach based on MCMC sampling is particularly natural and straightforward since it can avoid some complex
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approximations required by the frequentist approach. Our approach offers an advantage with regards to the
estimation process. Indeed, since the longitudinal model does not have a continuous derivative at the
changepoint, estimation within a frequentist framework is limited, while the Bayesian approach is more
straightforward. In addition, in the longitudinal process, there exists a non-zero probability of no change
(i.e. change on the last point), which can cause the frequentist estimation problem to be non-identifiable.
Bayesian methods get around this via the use of prior information which is used to separate out more likely
from less likely parameter values, not possible from the likelihood alone. With non-informative priors, maximum
likelihood-type estimates can be obtained. The MCMC estimation approach was particularly flexible as it easily
accounted for the multiple complex features of longitudinal data including within- and between-series variabilities,
complex longitudinal patterns, unbalanced format of the data, non-constant precision of the measurements, as
well as inclusion of time-varying covariates in the Cox PH model. The few studies that used a two-stage model in
prostate cancer data relied on a frequentist approach.2,18 Although the longitudinal model and the modeling of the
PSA variance were slightly different, hazard ratios for HT were close to our findings.

The two-stage model presents some limitations as it does not correct for event-dependent drop-out, and
uncertainty in the estimated parameters is not carried forward to the survival model. As a result, our reported
credible intervals might be too narrow. An alternative approach consists in estimating the longitudinal model at
each failure time using only measures up to each failure time.12 It requires fitting as many random-effects models as
there are event times. It is however computationally more intensive and presents some limitations. First, the model
parameters for prediction change at each time point. Moreover, if the time to event outcome is associated with the
longitudinal marker, the risk sets increasingly become a selected set of subjects and the normality assumption for
the random effects may not be satisfied for all the models estimated. Sequential stratification and marginal
structural methods have been addressed, but comparison works have shown that the two-stage model performs
reasonably well and can be used.2,26 Finally, an alternative, more unified approach is to base estimation and
inference on the likelihood from a joint model of both the longitudinal marker data and survival data.27 Under
mild and gross misspecification of the underlying marker profile, the two-stage model tends to overestimate the
baseline hazard but underestimates the association parameter while the joint model performs reasonably well with
the association parameter being quite robust to such model misspecificiation.28 We can therefore expect that the
estimates provided by our two-stage model, in particular the strong negative association with the risk of clinical
failure of an increased nadir, an earlier changepoint, and a shorter PSAdt, as well as a benefit due to HT, could
have been underestimated. A joint model, although computationally more intensive, could refine these estimations.

8 Conclusion

We used a two-stage model within a Bayesian framework to assess the role of a marker profile on a time-to-event
endpoint while accounting for a treatment prescribed by indication. This approach was particularly flexible to
implement and accounted for multiple complex statistical features. Our model highlighted that in patients treated
with EBRT for prostate cancer, post-EBRT characteristics are important prognostic factors of clinical failure and
accounting for the underlying PSA trend highlighted the protective effect of HT.
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