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It is common to define a change in health status or in a disease state on the basis of a sustained rise (or decline)
in a biomarker over time. However, such observations are often subject to important variability unrelated to the
underlying biologic process. The authors propose a method to evaluate rules that define an event on the basis of
consecutive increases (or decreases) in the observations, given the presence of random variation. They examine
how well these rules correctly identify a truly rising biomarker trajectory and, conversely, how often they can
recognize a truly stable series or a slowly rising series. The method relies on simulation of realistic, sophisticated
data sets that accurately reflect the systematic and random variations observed in marker series. These flexible,
empirically based simulations enable estimation of the sensitivity and specificity of rules of consecutive rises as
a function of the underlying trend, amount of random variation, and schedule of measurements (frequency and
duration of follow-up). The authors illustrate the approach with postradiotherapy series of prostate-specific antigen,
where three consecutive rises in prostate-specific antigen indicate treatment failure; the data are described by
using a Bayesian hierarchical changepoint model. The method is particularly flexible and could be applied to
evaluate other rules that purport to accurately detect upturns (downturns) in other noisy data series, including
other medical data or other application areas.

Bayesian hierarchical model; changepoint; Markov chain Monte Carlo; noise; prostate-specific antigen; sensitivity

and specificity; simulation; trend analysis

Abbreviations: ASTRO, American Society for Therapeutic Radiology and Oncology; MCMC, Markov chain Monte Carlo; PSA,

prostate-specific antigen.

Clinical or biologic characteristics of an individual mea-
sured repeatedly are often used to assess a change in health
status or in a disease state. Examples include falloffs from
a growth curve (weight, height) to indicate a failure to thrive
in young babies and, by extension, developmental problems;
a sudden change in levels of human chorionic gonadotropin
to detect pregnancy; or the depletion of CD4 T-cells as
a marker of the progression of human immunodeficiency
virus. Similarly in oncology, biomarkers are becoming ex-
tensively used to monitor tumor growth or regrowth and

thus, by extension, disease onset or progression. Examples
include the prostate-specific antigen (PSA) for prostate can-
cer (1-3), the cancer antigen 125 for ovarian cancer (4), or
the carcinoembryonic antigen in colorectal cancer patients
(5). Following cancer treatment, the primary aim is to pre-
dict clinical recurrence, usually in the form of local or dis-
tant relapse. In such cases, a secondary treatment can be
initiated, which is usually more effective when provided
as early as possible, that is, even before local or distant
failure is observed. Biomarkers are thus particularly
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valuable because they can indicate progression (through
a simple blood test) even though no clinical progression
has been observed yet (usually through more invasive tests,
such as biopsies or bone scans). Given the variability of
biomarkers, it is thus particularly important to provide rules
that accurately detect a rise in true underlying biomarker
values.

In this paper, we propose a method to evaluate rules that
define events based on consecutive increases (or decreases)
in the values of a marker, given the presence of random
variability. We illustrate our approach by using postradio-
therapy PSA series, where biochemical failure is defined as
a recurrence of the cancer detected by rising PSA levels.
However, debate is ongoing as to the definition of a rising
PSA pattern, and, until 1996, several definitions were used.
In 1996, the American Society for Therapeutic Radiology
and Oncology (ASTRO) consensus panel proposed guide-
lines to unify the scientific community concerning the use of
a single definition that would standardize the reporting and
comparison of treatment outcomes. The panel considered
three consecutive PSA rises as an appropriate definition of
biochemical failure following radiation therapy (6). How-
ever, to date, studies investigating the performance of this
rule have focused on its capabilities to predict distant clin-
ical outcomes and have provided discordant findings (7-9);
importantly, they took the observed PSA values at face
value, which were thus analyzed as if they represented the
true PSA concentrations. For example, sensitivity was esti-
mated by the association between a specific distant outcome
(presence of metastases, vital status) and whether or not the
individual PSA series presented at least three observed PSA
rises. The observed PSA level is, however, an amalgam of
the unobservable true PSA concentration and random vari-
ation (measurement errors and short-term biologic varia-
tions unrelated to tumor size), which, similar to other
markers, can have a large effect on observed PSA series
(10, 11). Thus, PSA variability should be accounted for
when looking for a specific pattern.

It is well recognized that a rising PSA concentration pre-
cedes clinical failure by several years; for this reason, it is
often used as an indication for salvage therapy (12). Thus,
given the possible treatment implications, a fundamental
point, before one considers how well even a perfectly mea-
sured PSA trajectory correlates with clinical outcomes, is
how well this rule of three rises correctly identifies a PSA
trajectory that is truly rising and how often it can recognize
a series that is truly stable, or rising only slowly, for what it
is. It is surprising that this first-stage issue has not been
evaluated to our knowledge, given that statistical methods
have successfully described longitudinal changes in PSA to
predict either the onset of prostate cancer (13—15) or the
recurrence of the disease following treatment (16, 17).

We propose to evaluate the sensitivity and specificity of
the rule of three consecutive rises by simulating data that
mimic what is empirically observed. We performed a simu-
lated empirical evaluation of the ASTRO criterion by com-
paring observed PSA series with the underlying true PSA
trajectories. Our estimation approach relied on the simula-
tion of realistic, sophisticated data sets that accurately re-
flect the systematic and random variations observed in PSA

series. First, using a cohort of men treated for localized
prostate cancer with radiotherapy, we estimated the under-
lying true “error-free” PSA trajectories, as well as the var-
iability of the PSA measurements, by fitting a hierarchical
changepoint model. Next, we generated realistic PSA series,
that is, those that could typically be observed. In order for
our simulated series to have the most likely shapes of typical
postradiotherapy PSA series, we based our simulation pro-
cess on the estimates provided by our hierarchical model.
We then estimated the sensitivity and specificity of the rule
of three consecutive rises by comparing the simulated re-
alistic PSA series with the estimated underlying true PSA
profiles. In addition to increasing the effective sample size
and providing realistic data, this simulation strategy is par-
ticularly flexible because it allows one to evaluate the per-
formance of the decision rule under variable settings:
different schedules of measurements, different underlying
true marker trends, or different amounts of variation in the
measurements. To our knowledge, such an evaluation has
not been proposed yet. Moreover, although the rule of three
rises is the most commonly used (18), we also evaluated the
Houston rule, which has been suggested to outperform the
ASTRO criterion (19-21); this criterion is defined as an
increase of 2 ng/ml above the PSA nadir.

We also emphasize the flexibility of the Bayesian hierar-
chical changepoint models, and we show that these models
easily account for the multiple complex features of our data
including the within- and between-series variabilities, the
complex patterns of the series over time, the unbalanced
format of the data (different schedules of follow-up), and
the nonconstant precision of the measurements.

In this paper, we first describe a population-based cohort
of 470 men treated for localized prostate cancer with radio-
therapy and estimate the individual true PSA profiles, as
well as the PSA variability, by fitting a Bayesian hierarchical
changepoint model. Next, we simulate realistic PSA series
by using predictions from our hierarchical model. Finally,
we estimate the sensitivity and specificity of the rule of three
consecutive rises by comparing the generated realistic series
with the estimated true PSA profiles.

THE PSA DATA SET

The data were assembled retrospectively from a population-
based cohort identified by the Connecticut Tumor Registry.
The men were aged 75 years or younger and were residents
of Connecticut when diagnosed with localized cancer between
1990 and 1992. Men who were known to have metastatic
disease were excluded, as were men with an initial PSA level
higher than 50 ng/ml, because this population has a very high
probability of having systemic (extra prostatic or metastatic)
disease. PSA values were recorded from the ambulatory rec-
ords located primarily in urologists’ offices but also from
ambulatory records in the offices of radiation oncologists,
medical oncologists, and the Connecticut Tumor Registry,
as well as inpatient records. More details are available in
Albertsen et al. (22). We based our analysis on men treated
with radiotherapy and required each PSA series to have at
least a baseline PSA measurement and two subsequent PSA
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FIGURE 1. For four men (series A-D), log-PSA concentrations over time since the start of radiotherapy. PSA, prostate-specific antigen.

measurements. In some instances, men can receive a subse-
quent treatment, usually in the form of hormones. We ex-
cluded any PSA measurements taken following hormonal
therapy.

A total of 470 series satisfied our conditions and were
included in our analysis. The shortest and longest series
had three and 36 measurements, respectively; there were
nine PSA measurements on average, and the mean follow-up
time was 5.7 years.

Following radiotherapy, PSA levels decrease and then
start to rise again at variable rates across individuals, al-
though rates are reasonably constant within men, with close
to exponential patterns before and after the nadir (23, 24).
For this reason, a logarithm transformation is usually applied
to obtain a piecewise linear pattern. Moreover, if one uses
a base 2 logarithm transformation, then the postnadir log,.
PSA growth rate is equivalent to the number of PSA dou-
blings per year, and its reciprocal corresponds to the PSA
doubling time, a variable of particular interest to clinicians.

Figure 1 shows postradiotherapy PSA series over time for
four men, plotted on the log, scale. The time axis (x) starts at
the initiation of treatment. We use the notation log,PSA to
define the logarithm to the base 2 of the PSA concentration.
Note the typical bilinear shape of the series: following the
start of treatment, the levels drop to some nadir value and
then increase again, with important variations in rates within
and between series. In addition to this variability, analysis of
postradiotherapy data has to account for the presence of
a sudden change in PSA concentrations. If radiotherapy is

successful, PSA levels reach a nadir and remain low or
possibly rise very slowly. A sustained steeper increase usu-
ally indicates treatment failure. Given the above character-
istics, a Bayesian hierarchical changepoint model appears
particularly suited to the analysis of our data.

A BAYESIAN HIERARCHICAL CHANGEPOINT MODEL

On average, men receiving a secondary treatment reach
their PSA nadir much sooner, with a steeper postnadir PSA
growth rate, than men not receiving such treatment. For this
reason, we divided the men into two subgroups according to
whether they received a subsequent hormonal treatment.
This division enabled us to obtain two relatively homoge-
neous subgroups, simplifying the fitting of our model.

Figure 2 illustrates a prototypic PSA profile plotted on the
log, scale for a specific man i. We denote by o, By;, B2i, and
1; the log,PSA nadir; the log,PSA decline rate prior to the
PSA nadir (the slope of the first line); the postnadir log,PSA
growth rate (the slope of the second line); and the change-
point (or location of the nadir in follow-up time), respectively.
The log, scale permits a direct estimate of the individual
PSA doubling time PSAdr;, which is simply the reciprocal
of the postnadir log,PSA growth rate: PSAdt; = --.

We used a changepoint model with three hiérarchical
levels to account for the presence of a random changepoint,
as well as the wide between-subjects variations in PSA tra-
jectories (25); this model is fully described in Bellera et al.
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FIGURE 2. Individual piecewise linear model, with four individual
parameters. PSA, prostate-specific antigen.

(26). At the first level, each individual log,PSA profile was
modeled as in figure 2. Let log,PSA;; be the PSA concen-
tration on the log, scale for the jth measurement for the ith
man. We assumed that the log,PSA;; were normally distrib-
uted, with expected value p; and variance ij:

2
logyPSA;; ~ N(;j, 63), (1)
where
= { o+ Bri(tij— ),  tij <,
Yool Bt — ), > (2)

Our model included another feature of PSA data not ac-
counted for in earlier postradiotherapy PSA studies (16, 17).
We expressed the PSA variability Gizj as a function of the
PSA concentration because interassay coefficients of varia-
tion tend to be larger at lower PSA levels (10, 11). We
modeled the logarithm of the precision as a linear function
of the log,PSA level: log #ij = 0; + 0,log,PSA;;. Thus, the
variance was given by

o7 = exp[—(0; + 0a;)], (3)

where |1;; is given by equation 2.

We assumed that the individual parameters, o;, By; B
and t;, were a priori uncorrelated both within and between
subjects, although they are related through the likelihood
function. The complete model assumes the following distri-
butions (for details, refer to Bellera et al. (26)):

% ~N(ly, 00)s  Hy~N(0,100), o5~ U(0,4),

Bii~N(up,.0f,), Mp, ~N(0,100), op ~U(0,4),

Boi~N(np,.0p,). p, ~N(0,100), op ~U(0,4),

0, ~N(0,100), 6, ~N(0,100).

Finally, the prior distribution of the changepoint was
a continuous uniform distribution; the range was selected
according to prior biologic knowledge and depending on the
subgroup of men. Secondary treatment is usually initiated
when it is suspected that radiotherapy has failed, indicated
by a rising PSA pattern starting within the first 2-3 years
following radiotherapy; we thus selected a range of 5 years
for this subgroup, 1; ~ U(0, 5). Most men who do not receive
a secondary treatment are generally those for whom radio-
therapy is successful. In such cases, PSA is still produced by
the remaining healthy prostate cells, although in very small
quantities. Thus, the PSA concentrations for these men will
start to rise later, and at a very slow rate. For this reason, we
selected a uniform distribution with a 10-year range for this
subgroup: 1; ~ U(0, 10).

Estimation was implemented in WinBUGS, a statistical
software package that uses Markov chain Monte Carlo
(MCMC) to generate random samples from the relevant
posterior distributions (27). Additional details on the imple-
mentation process, sensitivity analysis, and strategy for
model checking are provided in Bellera et al. (26).

GENERATION OF SIMULATED REALISTIC PSA SERIES

In the previous section of this paper, we estimated the true
underlying PSA trajectory including the true PSA doubling
time for each man in the cohort. In this section, we simulate
realistic PSA series, that is, individual PSA series that could
typically be observed. In order for these simulated series to
have the most-likely shapes of typical postradiotherapy PSA
curves, we based our simulation process on our cohort of 470
men. We used the individual predictions provided by each
MCMC iteration obtained when fitting our hierarchical
model and then added a realistic amount of variability, reflect-
ing the typical PSA variability encountered in real settings.

Following convergence, each iteration of the MCMC pro-
cess generated one quartet of estimates (3, By;, By;,T;) for
every man i. Thus, at each MCMC iteration, the ith man’s
true PSA concentration, |1;, at every time point j, was given
by
o= g Gt Bl =T, 1 <7,

Yoo BBty =), > (4)

In addition, estimates of the variance, 61 and 62, were also
generated. Therefore, for an estimated true log,PSA concen-
tration, i, the estimated variance was given by

&7 = exp[— (0 +0aii;)]. (5)

Using these estimates, we then generated a realistic log,PSA
series. We first selected the number of measurements, j, and
thus their timing, ;;, by specifying the duration of follow-up
and the frequency of measurements. For every man i, at
every time point f;, we then generated a realistic log,PSA
concentration, log,PSA;;, by drawing a value from a normal
distribution centered at the estimated true concentration fL;:

~ 2
logoPSA;; ~ N(;;, Gj;).-
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FIGURE 3. Estimated true log,PSA trajectories (solid line) with two simulated realistic logo,PSA series (circles and triangles) for four men (series
A-D). PSA, prostate-specific antigen. The estimated PSA doubling time was shorter than 1 year for series A and B and longer than 10 years for

series C and D.

The expected true concentration [i; and the variance 51.2.

were given, respectively, by equations 4 and 5. Thus, one
MCMC iteration provided one realistic 1og,PSA series for
each man.

To have a set of independent realizations of a man’s PSA
series (i.e., several realistic PSA series), we repeated the
same process by using several MCMC iterations. Recall
that, following convergence, we ran 10,000 additional iter-
ations for each of the three chains. From these, we kept the
last 2,500 iterations per chain. To ensure independence, we
retained only those sequences generated at every 50th iter-
ation; this distance was more conservative than the depen-
dence factor suggested by the Raftery and Lewis method
(28). Therefore, each chain provided 50 (2,500/50) approx-
imately independent sets of estimates per man. Because we
used three chains, a total of 3 X 50 = 150 independent quartets
(415 Bisy By Ti)s and thus 150 estimated true log,PSA pro-
files, were available for each man, enabling us to simulate
a total of 470 X 150 = 70,500 realistic PSA series.

Each man in the cohort provided one estimated true PSA
doubling time and multiple realistic PSA series. As an il-
lustration, consider figure 3; we have represented the esti-
mated mean PSA trajectory (solid line) along with two (of
the 150) simulated realistic series for the four men initially
presented in figure 1. The estimated PSA doubling time was
shorter than 1 year for series A and B and longer than
10 years for series C and D. It is interesting to note that,

for series B, one of the generated series satisfied the ASTRO
rule (triangles), whereas the other series did not (circles).
Finally, note that, although the simulated series and the
mean PSA profiles tend to overlap for series A, C, and D,
this is not the case for series B. This difference is explained
by the fact that, for series B, only four PSA observations
were available; given the hierarchical structure of the model,
estimation of the mean profile was largely influenced by the
estimated hierarchical population parameters.

SENSITIVITY AND SPECIFICITY OF THE RULE OF
CONSECUTIVE RISES

Sensitivity and specificity were estimated by comparing
the generated realistic series with the associated underlying
true PSA profile. Because we were interested in evaluating
whether the ASTRO rule adequately detects rising PSA
concentrations, we used the underlying true PSA doubling
time as the ““gold standard” rule.

We first categorized the simulated realistic PSA trajecto-
ries according to their associated true PSA doubling time:
less than 1 year, 1-2 years, 2-5 years, 5-10 years, more than
10 years, and infinite. We estimated the sensitivity and in-
dependently for four subgroups of series depending on the
underlying true PSA doubling time (less than 1 year, 1-2
years, 2-5 years, 5-10 years). (Refer to tables 1-3 for more
details about the categorization process.) Within each
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TABLE 1. Distribution of the 470 estimated true log,PSA*
growth rates

Log-PSA growth ~ PSA doubling time Count Cumulative
rate (ds;) in years (é) No. % No. %
(; =) ©0; 1) 92 196 92 196
(0.5; 1] [1;2) 86 18.3 178 37.9
(0.2; 0.5] [2; 5) 157 334 335 71.3
(0.1; 0.2] [5; 10) 42 89 377 80.2
(0; 0.1] [10; ) 52 111 429 91.3
(—o0; 0] 0 41 8.7 470 100

* PSA, prostate-specific antigen.

subgroup, we estimated the sensitivity of the ASTRO crite-
rion as the proportion of simulated realistic series with three
consecutive PSA increases.

We estimated the specificity by using the simulated series
from men with a close-to-flat postnadir PSA curve, that is,
for the subgroup of series with an estimated true doubling
time longer than 10 years. In such instances, the postnadir
PSA curves are almost flat, indicating that men can be clin-
ically considered cured. The specificity of the ASTRO cri-
terion was estimated as the proportion of series with two or
fewer consecutive PSA rises.

We were also interested in evaluating the Houston rule,
defined as any increase of 2 ng/ml above the PSA nadir (the
lowest PSA measurement of the follow-up). To estimate the
sensitivity, we used the same approach as for the ASTRO
rule: we assessed whether the simulated realistic PSA series
satisfied the Houston criterion depending on the underlying
true PSA doubling time. We estimated the specificity in the
subgroup of series with an associated PSA doubling time
longer than 10 years as the proportion of series not satisfy-
ing this rule.

Finally, the hierarchical model provided an estimate of
the PSA variability, through the estimation of 6, and 0,.
Thus, in an additional analysis, we also evaluated the per-
formance of the ASTRO rule by assuming different amounts
of PSA variation, that is, using different values of 6, and 0.

RESULTS

The estimated log,PSA growth rate was positive for 429 of
the 470 men, providing a finite PSA doubling time (table 1).
Of these men, 377 and 52 had a PSA doubling time respec-
tively shorter and longer than 10 years. Forty-one men had
a negative estimated postnadir log,PSA growth rate, varying
between —0.4 and 0; in such cases, the PSA doubling time
was assumed to be infinite.

We estimated the sensitivity by using the generated realis-
tic series from the 377 men with a PSA doubling time shorter
than 10 years, that is, using 377 X 150 = 56,550 series. For
example, from table 1, 92 men had an estimated true PSA
doubling time shorter than 1 year. Thus, 92 X 150 =
13,800 simulated series were used to estimate the sensitivity
of the ASTRO rule when the PSA doubling time is shorter
than 1 year. Table 2 provides estimates of the sensitivity

for variable PSA doubling times and duration schedules.
For example, when PSA levels are measured every 3 months
over a 3-year period, 80.8 percent of the 13,800 series gen-
erated from the 92 men with a PSA doubling time shorter
than 1 year had three consecutive PSA rises. Thus, under this
schedule of measurements, and assuming that the PSA dou-
bling time is shorter than 1 year, the rule of three rises has
an 80.8 percent sensitivity. In the same settings, the Houston
rule has an 87.1 percent sensitivity.

The specificity for the two rules is reported in table 2.
It was estimated by using the generated realistic series of
the 52 men with a finite doubling time longer than 10 years
(52 X 150 = 7,800 series). When PSA levels are measured
every 3 months over a 3-year period, 78.2 percent of the
generated series with an estimated PSA doubling time lon-
ger than 10 years had at most two consecutive PSA rises,
providing an estimated 78.2 percent specificity. In the same
settings, the Houston rule had a specificity of 82 percent.

The ASTRO criterion requires three consecutive PSA rises
and thus a minimum of four observations. Therefore, we
did not evaluate the ASTRO criterion when the follow-up
duration was 1 year and the frequency of measurements
was 6 months only, since, in such cases, only three obser-
vations were available. In addition, the PSA nadir is reached
on average the second year after radiotherapy; the PSA
curve is therefore decreasing over the first 2 years following
radiotherapy. This biologic process explains the early low
sensitivities observed for the two rules, and similarly their
high specificities.

When the first 2 years were ignored (the PSA decline
period), the sensitivity was improved for both rules, longer
follow-up periods, and shorter intervals between measure-
ments; these results are intuitively reasonable. Indeed, given
a fixed true doubling time and a fixed follow-up duration,
a 3-month interval between measurements provides twice as
many PSA readings as a 6-month interval between measure-
ments. Therefore, the probability of observing three consec-
utive PSA rises is higher, which is equivalent to a larger
sensitivity. Similarly, given a fixed doubling time and a fixed
interval between measurements, an increased follow-up
duration provides more PSA observations and thus increases
the chance of observing three consecutive PSA rises.
Conversely, the specificity decreases with longer follow-up
and increases when intervals between measurements are
extended.

Overall, the Houston criterion had better classification
properties than the ASTRO criterion. For illustration, we con-
structed a “‘receiver operating characteristic-like” plot to
compare both rules when the true PSA doubling time lies
between 1 and 2 years (figure 4). Using a 3-month interval
between the measurements, we observed that the Houston
rule performs systematically better than the ASTRO criterion.

Finally, and as expected, performance of the rule of three
consecutive rises decreased as PSA variability increased
(table 3).

DISCUSSION

In this paper, we have proposed a method to evaluate rules
that define an event on the basis of consecutive rises (or
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TABLE 2. Sensitivity and specificity (%) of the ASTRO* and Houston criteria

Duration of follow-up (years)

1 2

3

4 5 6 7

Sensitivity, given an interval of 3 months between PSA* measurements

PSA doubling time in years and rule

;1)

ASTRO 7.9 50.8 80.8 93.2 97.5 98.7 99.1
Houston 24.7 66.1 87.11 94.01 98.81 99.61 99.61
;2
ASTRO 1.1 19.0 452 66.1 80.3 89.6 94.4
Houston 11.3 37.2 61.81 78.31 88.11 92.81 96.51
[2; 5)
ASTRO 0.8 11.2 271 42.9 56.0 66.7 75.3
Houston 4.0 15.4 29.61 43.6 56.61 67.41 75.31
[5; 10)
ASTRO 0.7 8.0 20.6 32.8t 43.7t 52.6t 61.2t1
Houston 5.0 13.3 2111 28.2 35.4 41.5 47.2
Sensitivity, given an interval of 6 months between PSA measurements
PSA doubling time in years and rule
(0; 1)
ASTRO 24.0 75.2 90.5 96.7 98.2 98.8
Houston 18.9 61.1 85.51 93.31 98.61 99.51 99.61
;2
ASTRO 6.7 34.0 58.9 76.0 86.9 92.9
Houston 5.7 27.2 53.21 73.61 85.91 91.61 95.81
[2; 5)
ASTRO 22 14.2 28.1 41.4 53.6 63.4
Houston 1.6 8.5 19.2¢1 32.61 46.4t 59.31 69.01
[5; 10)
ASTRO 1.1 8.0 15.6 23.9 32.11 39.31
Houston 22 6.9 12.3t 18.2t 25.01 32.0 38.3
Specificity, given 3- and 6-month intervals between PSA measurements
Interval and rule
Every 3 months
ASTRO 99.1 90.6 78.2 67.1 57.2 48.3 41.2
Houston 93.5 87.2 82.0t1 771t 71.9t1 68.11 63.61
Every 6 months
ASTRO 98.0 91.4 84.1 76.3 69.3 63.2
Houston 96.4 91.9 88.3 84.9% 80.51 76.81 72.8t1

* ASTRO, American Society for Therapeutic Radiology and Oncology; PSA, prostate-specific

antigen.

t The criterion with the best sensitivity or specificity.

decreases), given the presence of random variation. We used
the example of postradiotherapy PSA series, where three
consecutive PSA rises indicate treatment failure; we also
evaluated a rule relying on both the nadir and the subsequent
trend. We estimated the sensitivity and specificity of both
rules as a function of the true marker doubling time, the PSA
random variability, and the schedule of measurements.

This study emphasizes the role of simulation models in
decision analysis. These models are commonly used to eval-
uate the benefit of screening and surveillance strategies,
such as in ovarian cancer (29, 30). The natural progression
of the disease is simulated, and various screening programs
are superimposed by using either Monte Carlo methods or
Markov modeling. In such cases, the working data sets are
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FIGURE 4. Sensitivity and specificity for the American Society for
Therapeutic Radiology and Oncology (ASTRO) and Houston criteria
when the prostate-specific antigen (PSA) doubling time lies between 1
and 2 years and PSA is measured every 3 months. e, ASTRO rule; m,
Houston rule. The five circles represent the performance of the
ASTRO rule when the duration of follow-up varies from 3 years
(leftmost circle) to 7 years (rightmost circle). Similarly, the perfor-
mance of the Houston rule is shown by the squares.

simulated on the basis of previously reported population
parameters (e.g., the incidence of cancer).

Similarly, we relied on a simulation model to evaluate
a decision rule aimed at detecting rising marker series; how-
ever, our simulation process was more complex because we
relied on real data. For each man in our original cohort,
these simulations provided 150 prototypic patients from
which to simulate data. The advantages were threefold.
First, we could create a much more realistic data set than
if fewer patients had been used for the original modeling and
data simulation. Second, allowing repeats, that is, 150 sim-
ulations per man instead of a single one, increased the ef-
fective sample size, and thus the precision of the estimates,
while still retaining realism. Note that even while using the
same prototypic patients’ parameters, we drew different val-
ues from the posterior distribution of their parameters, as if
different patients with slightly different underlying data
were used. Third, the simulation enabled us to estimate
the performance of the decision rules under variable study
settings that may affect the sensitivity and specificity (dif-
ferent schedules of measurement, different underlying true
PSA trends, and different amounts of PSA variability).
Another issue in implementing the ASTRO rule is unequally
spaced observations, which similarly could be generated by
using our simulation process. We have shown poor results
for this rule with equally spaced observations and would
suppose that unevenly observed results through time would
decrease sensitivity and specificity because observations
closer in time will have fewer real differences between
them, elevating the importance of the measurement error.

The Bayesian hierarchical changepoint model was partic-
ularly appropriate for describing longitudinal data because it
easily accounted for the between- and within-men variabil-
ities, as well as other complex features, such as the presence
of a random changepoint, and nonconstant variance. Pre-

TABLE 3. Performance (%) of the ASTRO* rule assuming
small and large amounts of PSA* variability

Duration of follow-up (years)
3 4 5 6 7

Sensitivity
PSA doubling time in years and amount of variation
©; 1)

Small 86.8 94.8 98.0 99.0 99.2
Large 68.4 87.1 95.2 97.6 98.4
1,2
Small 82.0 92.8 96.7 98.8 991
Large 26.0 48.4 66.7 80.3 88.8
[2; 5)
Small 60.8 77.8 85.1 88.5 90.0
Large 12.2 244 36.5 47.9 57.9
[5; 10)
Small 27.2 44.0 54.6 62.1 67.1
Large 7.8 15.2 23.2 30.8 37.9
Specificity
Amount of variation
Small 79.3 66.5 57.2 50.6 46.4
Large 91.7 84.5 77.0 70.3 64.4

* ASTRO, American Society for Therapeutic Radiology and
Oncology; PSA, prostate-specific antigen.

t The hierarchical model provided estimates of the variance
parameters that led to coefficients of variation of 60% and 10% at
logoPSA concentrations of 1 and 4 (26). Additional simulations were
performed by assuming first little PSA variation (using variance
estimates that led to coefficients of variations of 7% and 1% at
logo.PSA concentrations of 1 and 4) and then large PSA variability
(using variance estimates that led to coefficients of variations of 90%
and 20% at logoPSA concentrations of 1 and 4).

dicted profiles suggested that the model fit the data well,
and the sensitivity analysis confirmed that the estimates pro-
vided by the model were not driven by the choice of the
prior distribution (26).

Although our model does appear to fit the data well, other
choices can be made as in any complex modeling situation. For
example, PSA readings have been modeled in different ways.
Some authors have modeled the logarithm of the PSA obser-
vation (16, 31); others have advocated fitting log(PSA + 1) to
diminish the influence of extremely small PSA readings (32).
Even though the latter transformation does reduce the var-
iability, it does not remove it entirely. We preferred to fit the
logarithm because the PSA variability was a parameter that
we wanted to describe, not eliminate, so that we could eval-
uate the decision rules accordingly. Another modeling
strategy involves modeling the raw PSA data by using a non-
linear model such as the exponential decay—exponential
growth model in the form PSA = a; exp(—bit) + a,
exp(b,t), where ay, a,, by, and b, > 0 are the parameters
of interest and In 2/by, In 2/b,, and a; + a, provide, respec-
tively, the PSA half-life, the subsequent PSA regrowth, and
the posttreatment PSA level (33, 34). However, information
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on subject status is necessary because, in the case of cured
patients, the parameter b, is set to zero.

Similarly, several strategies are available for modeling the
PSA variability. To our knowledge, residual variability has
been modeled generally as constant over time in hierarchical
changepoint models or, in some cases, as constant within the
pre- and postchangepoint phases but different between the
two phases (35). We have shown that the model can easily
handle another level of complexity by allowing the variance
to be a function of the level of the marker. This modeling
strategy is sensible given the reported lower precision of the
measurement tools at low concentrations. Moreover, it en-
abled us to evaluate the performance of the ASTRO rule
according to different amounts of variation. Our choice to
model the logarithm of the precision enabled us to ensure
that the resulting estimate is positive, but, alternatively, one
can impose range constraints. Finally, we assumed corre-
lated measurement errors, because independence appeared
a strong assumption. The use of measurement tools poorly
scaled might, for example, result in correlated measure-
ments; such known or unknown factors of variability should
not be ignored.

In addition to determining whether a marker is indeed
rising, it is of equal interest to detect when the increase takes
place. In the case of postradiotherapy PSA data, the ASTRO
panel defined the timing of PSA failure as the time midway
between the posttreatment PSA nadir and the first of the
three rises. Although this rule has been widely criticized
because of the backdating that it imposes, Bayesian model-
ing could provide an alternative definition because it gives
posterior distribution for all parameters of the model. Thus,
some have proposed using the posterior distribution of the
changepoint to estimate the timing of biochemical failure
7).

We estimated the specificity of the rule of consecutive rises
from men with a PSA doubling time longer than 10 years,
that is, with a close-to-flat PSA curve. Our reported estimates
can be compared with rates that would be obtained by assum-
ing a completely flat underlying profile. In such cases, it is
possible to use exact estimation methods developed in the
context of nonparametric runs tests. These procedures en-
able one to test whether a sequence of observations comes
from a random process and to estimate exactly the proba-
bility of observing a specific number of consecutive rises
when the underlying pattern is flat, as described by
Olmstead (36) and Levene and Wolfowitz (37). Adapting
Olmstead’s results to our problem, we find that if 13 PSA
measurements are taken (corresponding, for example, to
measurements every 3 months over a 3-year period), and
assuming that the underlying PSA pattern is flat, then by
chance alone, the probability of observing at least three
consecutive rises is 27 percent (i.e., 73 percent specificity),
close to our estimate (78 percent). These results emphasize
the impact of random variations on the specificity estimates.
If, on the other hand, the observations follow some rising
(decreasing) trend, these nonparametric results do not apply
and exact methods are particularly difficult to derive analyt-
ically, since they imply complex multiple integrations. Our
empirically based simulation approach enables estimation
of such probabilities.

In conclusion, both our model and our simulation process
were particularly flexible to evaluate the measurement prop-
erties of a decision rule based on consecutive rises. Our
approach can be applied to evaluate decision rules that pur-
port to rapidly and accurately detect upturns (downturns)
in noisy series, such as in other medical data, and even
other application areas, including, for example, economics,
where expansion (or recession) phases are defined as periods
during which economic activity tends to trend up (or
down) (38).
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