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For reasons of ef®ciency and ethics, sample size calculations are an important part of the design of
all clinical trials. This paper highlights the statistical issues inherent to the estimation of sample size
requirements in superiority trials particular to SLE. Calculations based on statistical power for
testing hypotheses have historically been the method of choice for sample size determination in
clinical trials. The advantages of using con®dence intervals (CI's) rather than P-values in reporting
results of clinical trials is now well established. Since the design of a trial should match the analysis
that will eventually be performed, sample size methods based on ensuring accurate estimation of
important parameters via suf®ciently narrow CI widths should be preferred to methods based on
hypothesis testing. Methods and examples are given for sample size calculations for continuous and
dichotomous outcomes from both a power and con®dence interval width viewpoint. An
understanding of sample size calculations in association with expert statistical consultation will
result in better designed clinical trials that accurately estimate clinically relevant differences
between treatment outcomes, thereby furthering the treatment of patients with SLE.
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Introduction

Sample size calculations are an important part of the
design of all clinical trials. Superiority trials attempt
to establish the clinical superiority of a new
therapeutic agent when compared to either the current
standard of care or a placebo. Sample size estimation
in such trials is both clinically and ethically relevant.
While too few subjects may jeopardize the ability of a
study to accurately estimate a clinically important
difference between two treatment arms, it is also true
that by including too many patients, more than the
minimum necessary number may be exposed to risks
or harm through randomization. In this era of cost
restraint, calculating the minimum required number of
patients also provides a scienti®cally valid way of
reducing the costs of clinical research and the length
of time to the completion of clinical studies.

One of the ®rst steps in the planning of a controlled
clinical study is the identi®cation of the primary
outcome measure or measures of interest. Of course,
these measures should be both clinically relevant to
the disease and potentially modi®able by at least one
of the interventions under study. In patients with
systemic lupus erythematosus (SLE), trial design is
in¯uenced by multiple factors. The protean manifesta-
tions of SLE means that subsets of patients with
organ-speci®c disease may require different therapeu-
tic modalities, and the number of patients available
and willing to enter into controlled trials for treatment
of any speci®c organ disease may be limited. Lupus
nephritis is one of the few organ speci®c manifesta-
tions of SLE that has been well studied in randomized,
controlled clinical trials.1 ± 3 Other than objective
outcome parameters de®ning nephritis and renal
function in these patients,4 the precise meaning of
`clinically relevant change' in an individual patient
with more generalized disease who may be respond-
ing to a novel therapy is dif®cult to determine.
Outcome measures have been standardized in other
rheumatological diseases, including ankylosing spon-
dylitis5 and rheumatoid arthritis.6 For example, a
`responder index' has been developed for rheumatoid
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arthritis, which enables cross-study comparisons and
simpli®es the design of clinical research trials.7

Although a wide variety of outcome measures exist
for measuring disease activity, damage and health
related quality of life in patients with SLE, no clear
consensus has emerged as to the most appropriate
measure or set of measures for use in ongoing clinical
trials.8 A marker for a responder index in SLE has
been proposed,9 but has yet to be validated in clinical
studies. Due in part to the heterogeneity of this disease
and to the lack of a consensus for clinical outcome
measures, the construction of a randomized controlled
clinical trial studying the superiority of therapeutic
agents or interventions is a challenging endeavour. In
the context of current development and investigations
of newer treatment modalities in SLE, however, the
number of such clinical trials is likely to increase
substantially.

Although a complete description of the multitude
of methods for sample size calculations is beyond the
scope of this paper, several general overview articles
and textbooks which have appeared in the biomedical
literature10 ± 12 are good starting points for further
reading. This paper highlights the statistical issues
inherent to estimation of sample size in superiority
trials particular to SLE. Sample size calculations
based on traditional testing of the null hypothesis of
no group difference, leading to P-values, has been the
method most often used in SLE clinical trials to date.
The advantages of using con®dence intervals rather
than P-values in reporting results of clinical trials is
now well established,13,14 with some leading epide-
miology journals deciding not to publish P-values at
all.15 One can argue, therefore, that sample size
methods based on ensuring suf®ciently narrow con-
®dence interval widths should be preferred to methods
based on hypothesis testing, since the design of a
study should match the analysis that will eventually be
performed. This is especially true since very different
sample sizes can be suggested by the two different
methods, even for the same trial.16 Nevertheless, for
completeness, in this paper we present both ap-
proaches, beginning with power calculations for
sample sizes in hypothesis testing, followed by
estimation of sample sizes based on con®dence
interval widths. We begin with a brief comparison
of the inferences available following the calculation of
P-values and con®dence intervals.

Hypothesis tests versus con®dence intervals in
the planning of clinical trials

In traditional hypothesis testing, one typically starts
by asserting a null hypothesis that the outcomes in two

different treatment groups are equivalent, at least on
average. Of course, one then hopes that this assertion
will be contradicted by the data, as measured by a
small P-value. While clinicians often misinterpret a P-
value as providing the probability that the null
hypothesis is true after accounting for the information
provided by the data, this interpretation is far from
correct. In fact, the P-value is calculated assuming
that the null hypothesis is true! Given that the null
hypothesis is true, the P-value simply provides the
probability of obtaining a result as or more extreme
than that observed in the trial (i.e. further from what
the null hypothesis would predict), if the trial were to
be repeated over and over, each time with the null
hypothesis in fact being true. The P-value is neither
directly nor indirectly related to the probability that
the null hypothesis is correct, and in fact can be many
orders of magnitude different from this quantity.17

Given the unnatural interpretation of a P-value,
however, it is no wonder that clinicians often
misinterpret it as the quantity they would more
naturally desire, the probability of the null hypothesis.
In fact, only Bayesian analysis is able to provide this
latter quantity.14

In superiority trials, the null hypothesis states at the
outset that the two treatments in question are on
average equal (H0 : m0� m1, where m0 refers to the
mean of the outcome variable in the control group and
m1 refers to the mean of this variable in the treatment
group), while the alternative hypothesis states that the
proposed treatments are not equal (H1 :m0 6� m1). The
Type I error in a statistical hypothesis test refers to the
possibility of rejecting a null hypothesis that two
treatment groups are equivalent when, in fact, a
difference due to the treatment does not exist. In
designing studies, the probability of a Type I error,
donated by the Greek letter a, is often set to a value of
5%. While this value is conventional, there is nothing
special about a� 5%, and often it may be more
appropriate to select smaller values for a (e.g. a� 1%)
to reduce the possibility of falsely stating that the
treatment is effective when, in fact, it is not. As the
number of hypothesis tests performed increases, one
increases the probability of falsely rejecting at least
one true null hypothesis, so that setting a smaller
value for a may be considered in these cases.

A Type II error occurs when one fails to reject the
null hypothesis when the new treatment, in fact, does
have a different effect than the standard or placebo
treatment. The probability of a Type II error is
denoted by the Greek letter b, and is often set equal to
10% or 20% in the medical literature. The probability
of rejecting the null hypothesis when it is, in fact, false
is termed the power of the study, which then occurs
with probability 1ÿb. The power of a study depends

Sample size for superiority trials in SLE
AD Moore and L Joseph

613

 at MCGILL UNIVERSITY LIBRARY on December 3, 2011lup.sagepub.comDownloaded from 

http://lup.sagepub.com/


both on the sample size and on the true average
difference on the measurement scale between the
treatment and control groups. All else being equal, as
sample size increases, b decreases and the power
(1ÿb) increases. In an unbalanced study, there is a
decline in power as the number of patients in one
group is increased at the expense of the second group
so that, for a given total number of patients, the power
of a superiority trial is maximized when there are
equal numbers of patients in the two study groups.
Power may also be increased by including repeated
measurements in the same patients, and by using
outcome measures that have smaller standard devia-
tions.

The failure of a clinical study to reject a null
hypothesis may be due to the use of insensitive
outcome measures or to sample sizes that are too
small.18 Felson et al19 reviewed a number of early
randomized clinical trials in SLE which compared the
use of steroids with immunosuppressive drugs versus
steroids alone in the treatment of lupus nephritis and
determined that multiple false negative conclusions
were reached because of small sample sizes (less than
or equal to 50 patients per study). Only by pooling this
data were they able to show a statistically signi®cant
bene®t to combined therapy in the treatment of lupus
nephritis. The authors also performed a power
analysis which showed that, for a study to prove that
an immunosuppressive agent is 50% superior to
steroids alone in preventing renal deterioration, 100
high-risk patients would need to be enrolled.

In any study in which the null hypothesis is not
rejected, it is always important to calculate a
con®dence interval for the true treatment difference,
in order to draw correct conclusions. Non-rejection of
a null hypothesis may be due to there truly being no
important difference between the two treatment arms
of a trial, or may be due to lack of power, or a
combination of these reasons. The P-value alone does
not allow one to distinguish between these very
different conclusions, but a con®dence interval does.
For example, a con®dence interval whose upper and
lower limits are both near the null value of a zero
treatment difference shows that there is likely to be no
important difference between the treatments. A wider
con®dence interval, however, may not necessarily
imply no difference, as potentially important ®ndings
are not ruled out. Hence this latter ®nding is more
properly interpreted as inconclusive, rather than
negative, despite the `non-signi®cant' P-value. In
general, con®dence intervals provide more informa-
tion than P-values, since they focus attention on the
range of values compatible with the data, on a scale of
direct clinical interest. Given a con®dence interval,
one can assess the clinical meaningfulness of the

result, as can be seen in Figure 1. Depending on where
the upper and lower con®dence interval limits fall in
relation to the upper and lower limits of the region of
clinical equivalence, different conclusions should be
drawn. The region of clinical equivalence, sometimes
called the region of clinical indifference, is the region
inside of which two treatments would be considered
the same for all practical purposes. The point 0,
indicating no difference in results between two
treatments, is usually included in the region of clinical
equivalence, but values above and below 0 are usually
also included. How wide this region is depends on
each individual clinical situation. For example, if a
new treatment is very costly or has important side-
effects, a large bene®t in the main outcome would be
required before this drug becomes an attractive choice
compared to current therapy leading to a wide region
of clinical equivalence.

Figure 1 summarizes the ®ve different conclusions
that can be made after a con®dence interval has been
calculated:

(1) The CI includes zero, and both upper and lower
CI limits, if they were the true values, would not
be clinically interesting. Therefore, this variable
has been shown to have no important effect.

(2) The CI includes zero, but one or both of the upper
or lower CI limits, if they were the true values,
would be interesting clinically. Therefore, the
results of this variable in this study is incon-
clusive, and further evidence needs to be
collected.

(3) The CI does not include zero, and all values inside
the upper and lower CI limits, if they were the

Figure 1 Clinical relevance of con®dence intervals.
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true values, would be clinically interesting.
Therefore, this study shows this variable to be
important.

(4) The CI does not include zero, but all values inside
the upper and lower CI limits, if they were the
true values, would not be clinically interesting.
Therefore, this study shows this variable, while
having some small effect, is not clinically
important.

(5) The CI does not include zero, but only some of the
values inside the upper and lower CI limits, if they
were the true values, would be clinically interesting.
Therefore, this study shows this variable has at least
a small effect, and may be clinically important.
Further study is required in order to better estimate
the magnitude of this effect.

Non-signi®cant P-values can be associated with
both situations 1 and 2 of Figure 1, but a P-value
alone cannot distinguish between the very different
conclusions reached from interval 1 compared to
interval 2. Similarly, a `signi®cant' P-value can arise
from situations 3, 4, or 5, but again cannot distinguish
between these very different situations. For this
reason, once a con®dence interval is known, the P-
value provides little additional information, if any,
while knowing a con®dence interval is crucial even
after calculating a P-value. This is the main reason for
the trend away from hypothesis testing and towards
con®dence intervals in the medical literature and,
indeed, in all ®elds where statistical analyses are
applied. Nevertheless, since one still ®nds power
calculations in the literature, below we will demon-
strate how power calculations are performed, before
going on to show how sample size calculations may
more usefully be carried out using con®dence interval
widths.

Power calculations

Power calculations for continuous outcomes

The goal of a power calculation is to determine an
appropriate sample size such that in testing the null
hypothesis (H0) with a predetermined probability of
Type I error (a), the probability of a Type II error (b)
is reduced to a reasonable value. For continuous
outcome measures, aside from a and b, the required
inputs to a power calculation are d� |m1ÿm0|, which
denotes the `minimal clinically important difference'
between the two treatments that is worthwhile to
detect, and s0 and s1, the standard deviations of the
outcome measure in the control and treatment groups,
respectively. These standard deviations are often

dif®cult to estimate at the planning stage of a study.
If one has upper bounds for these quantities, however,
these limits can be used to ®nd a conservative sample
size, in the sense that the desired power will be at least
1ÿb for all standard deviations equal to or less than
those used. Pilot data can be very useful for estimating
upper bounds for the standard errors.

Determination of the minimum clinically important
difference, d, is usually based on a combination of
previous experience (such as a pilot study), published
reports, and clinical experience. When multiple
variables are used as outcome measurements then
the sample size should be calculated for each of these
variables, and the maximum sample size across these
calculations can be used.

Previous clinical trials in SLE have looked at a
variety of outcome measurements. Historical end-
points in randomized, controlled studies of patients
with lupus nephritis have included time to end-stage
renal failure and changes in immunological markers.4

The former endpoint is clinically valid but great
strides in the care of patients with SLE has markedly
increased the follow-up time necessary to register
clinical deterioration.20,21 The latter endpoint is easy
to measure but for common markers (DNA binding,
complement levels) is of uncertain clinical relevance.
The Canadian Hydroxychloroquine Study Group,22

for example, looked at the effect of discontinuing
hydroxychloroquine sulfate in patients with stable
SLE and chose time to ¯are as the outcome measure
of interest. Based on previously published reports, the
authors estimated that up to 70% of patients in the
placebo group would manifest worsening disease, and
concluded that a 50% reduction in the rate of ¯ares
would be a clinically important difference. In another
study of hydroxychloroquine in the treatment of
arthropathy in SLE,23 outcome measures included
the continuous variables of subjective joint pain and
both physician and patient rated disease activity
(based on 5-point scales of severity) in addition to
indices of joint count and joint swelling. Their data
were suggestive only of some decrease in pain in the
patients taking hydroxychloroquine, although the
authors state that a Type II error may have been
possible. Due to the small number of patients in the
study, only very large (> 52%) differences in joint
indices would have been signi®cant (i.e. P< 0.05).

Given a, b, d, s1 and s0, the required sample size,
N, for a test with Type I error equal to a to have a
power of 1ÿb is given by:

N � Z1ÿa=2 � Z1ÿb
ÿ �2 s2

0 � s2
1

ÿ �
�m1 ÿ m0�2

� Z1ÿa=2 � Z1ÿb
ÿ �2 s2

0 � s2
1

ÿ �
d2

�1�
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The value n� 2N is then the total number of
patients required for the study, assuming equal-sized
groups. The values Z1ÿa=2 and Z1ÿb are taken from
normal distribution tables. For example, Z1ÿa=2�
1.64, 1.96 or 2.58 for a� 0.10, 0.05 and 0.01,
respectively, and Z1ÿb� 0.84 or 1.28 for b� 0.2 or
0.1, respectively.

Equation (1) represents the basic form used to
estimate sample sizes for superiority trials of con-
tinuous outcomes. By simple algebraic rearranging of
this equation, formulae may also be obtained for d or
1ÿb (power) given a sample size, N, which may aid
the investigator in determining the feasibility of a
study if he knows in advance approximately how
many patients he can expect to enroll. For example, in
an anticipated 6 year study of plasmapheresis in
severe lupus nephritis2 in which 125 patients were
expected to enroll over four years, and based on a
mortality rate of 0.3 per year, the authors calculated a
power of 88% if they were able to reduce the death
rate by a factor of 2 in the treatment arm. This trial
was eventually terminated based on an interim
analysis showing no bene®t with plasmapheresis and
after calculating estimates of conditional power for
detecting a signi®cant difference had the study
continued.24

For example, suppose one wishes to calculate the
number of SLE patients with arthritis that need to be
included in a study evaluating the effect of a novel
analgesic (say, a cyclooxygenase-2 inhibitor) on pain.
Assume that pain is reported by the patient on a visual
analogue scale (VAS) from a value of 0 (no pain) to
100 (the worst pain ever experienced), and that in a
pilot study with this medication patients experienced a
mean decrease in their pain score of 30 points (d� 30)
which was thought to be a minimally clinically
relevant decrease. Suppose that the standard deviation
for the decrease in pain was 20 in both the control
(say, those patients on a well-known anti-in¯amma-
tory agent) and new treatment groups. The required
sample size, given a� 0.05 and b� 0.10 (where
Z1ÿa=2� 1.96 and Z1ÿb� 1.28, from standard tables)
can be written as:

N � �Z1ÿa=2 � Z1ÿb�2 �s0
2 � s1

2�
302

� �1:96� 1:28�2 2�202�
900

� 9:3 � 10 per group

Power calculations for binary outcomes

Binary outcomes occur when the results of the study
may be expressed as quantities that are either present
or absent, such as the occurrence of one or more ¯ares

in a given period of time, which either occurs or does
not occur in each patient in each arm of the trial. Let
P0 be the expected proportion of occurrences of the
event of interest in the control group and let P1 be the
expected proportion in the treatment group. These
estimates can be based on a pilot study or the best
available literature. Under the null hypothesis, we
assume H0 : P0�P1�P, say. Unlike the normal
distribution, the variance of a binomial parameter is
entirely determined by the proportion of outcomes, P,
so that it does not need to be separately speci®ed.
Given a Type I error a, a Type II error b, and the
expected proportions in the treatment and control
groups, P0 and P1, respectively, we can calculate the
sample size as follows:

N �
Z1ÿa=2

��������������������
2 �P�1ÿ �P�

p
� Z1ÿb

�����������������������������������������������
P0�1ÿ P0� � P1�1ÿ P1�

p� �2

�P1 ÿ P0�2
�2�

where P is the average of the expected rates in the
treatment and control groups, P� (P0�P1)=2.

For example, suppose that a pilot study suggests
that a treatment may reduce progression to dialysis
over 5 years in patients with lupus nephritis to 25%
from a control value of 50%, i.e. d�P1ÿP0� 25% or
0.25. Note that we are establishing a de®nite time
frame within which to calculate proportions. If we are
measuring `time-to-dialysis', then other calculation
methods are applicable (see below). In this case we
would calculate N, assuming a� 0.05 and b� 0.10,
as:

N �
1:96

���������������������������������������
2�0:375��1ÿ 0:375�p � 1:28

������������������������������������������
0:5�0:5� � 0:25�0:75�p� �2

0:252

� 76:5 � 77 per group

The formulae described above are estimates
calculated by approximating a binomial distribution
with the closest ®tting normal distribution. This
approximation is very accurate for large sample sizes.
More sophisticated techniques are available for
situations in which very small numbers of binary
variables are involved, or in which very small
proportional outcomes (e.g. < 0.05) are anticipated.11

Power calculations for incidence ratios

When the variable of interest is the `time to an event',
such as time to death or time to the next ¯are in
disease, then the required sample size can be based on
group differences between the incidence rates, often
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expressed as events per person-years of risk.25 We can
let l0 denote the incidence rate in the control group,
and let l1 be the incidence rate in the treatment group.
For mathematical simplicity, we often assume that the
distribution of times to events in each of these groups
follow exponential distributions, and that the sampling
distribution of mean time to an event is well
approximated by a normal distribution. The latter
assumption is usually reasonable for large sample
sizes, but the exponential distribution, which implies a
constant hazard rate, may not always be appropriate.
If not, other distributions such as the Weibull may be
used. Under these conditions, it can be shown that:

N �
Z1ÿa=2

�������
2�l2

p
� Z1ÿb

�����������������
l1

2 � l0
2

p� �2

�l1 ÿ l0�2
where �l � �l1 � l0�=2

�3�

Any observation or follow-up that is terminated
before the expected event has occurred is referred to
as having been censored. Equation (3) does not take
into account censoring, however, and refers only to
the situation in which each patient is followed until
the event in question has occurred. Time to event
analysis with censoring is of obvious importance in
superiority studies in patients with SLE where
enrollment into the study is terminated at one point
in time, but follow-up continues for a speci®c number
of years. This methodology is of particular use in
studies on lupus nephritis where extended follow up is
required to witness progression to worsening disease
and end-stage renal failure or for those studies which
attempt to reduce the mean risk of a ¯are in patients
with SLE over time. More complex statistical analysis
reveals the following:11

N �

Z1ÿa=2
�����������
2f ��l�

q
� Z1ÿb

��������������������������
f �l1� � f �l0�

p� �2

�l1 ÿ l0�2
�4�

where
f �l� � l3T= lT1 ÿ eÿl�TÿT1� � eÿlT

ÿ �
for which subjects are enrolled for T1 years and the
total duration of the study is T years.

For example, suppose that a new immunosuppres-
sive agent is introduced to treat patients with severe,
life-threatening lupus. If we estimate that the
mortality rate in this select group of patients is
l0� 0.3 per patient-year and we are hoping to reduce
this rate by a factor of 2 (such that l1� 0.15) then we
can calculate the required number of patients based on

an anticipated 3 year enrollment and 6 year total
follow-up, and assuming a power of 80% and a Type I
error rate of 5%. We calculate:

f ��l� � 0:0804

f �l0� � 0:1230

f �l1� � 0:0463

N � �1:96
�������������������
2�0:0804�p � 1:28

��������������������������������
0:0463� 0:123�p 2

�ÿ0:15�2
� 76:6 � 77 per group

Sample size based on con®dence intervals

As discussed above, there has been a strong trend
away from hypothesis testing and P-values towards
the use of con®dence intervals in the reporting of
results from biomedical research.26 Since the design
phase of a study should be in sync with the analysis
that will eventually be performed, sample size
calculations should be carried out on the basis of
ensuring adequate numbers for accurate estimation of
important quantities that will be estimated in our
study, rather than by power calculations.

The calculation of sample size via con®dence
interval widths often results in different sample sizes
compared to power calculations, since the focus shifts
from simply showing that one can reject a null
hypothesis to accurately estimating treatment differ-
ences in important outcomes. The question of how
accurate is `accurate enough' (i.e. how narrow we
should ensure the widths of the con®dence intervals
will be) can be addressed by carefully considering the
results you would expect to get and making sure your
con®dence interval will be small enough to land in
intervals numbered 1,3 or 4 of Figure 1 with high
probability. The determination of an appropriate width
is a non-trivial exercise, requiring careful thought
about what is likely to be observed in the trial and
about what is an appropriate region of clinical
equivalence.

Sample size calculations for continuous outcomes

In order to estimate sample size for continuous
variables, let m1 and m2 be the means of two
populations being compared. Assume that we wish
to estimate the difference m1ÿm2 to an accuracy of a
total CI width of o, so that we will be able to report a
con®dence interval of the form `estimate� d', where
d�o=2. As before, let Z1ÿa=2 be the appropriate
normal distribution quantile (for example, Z� 1.96 for
a 95% con®dence interval). Let s1 and s2 be the
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standard deviations in the treatment and control
populations, respectively, for the measure of interest.
The required sample size per group is then calculated
as:

N � Z2
1ÿa=2�s1

2 � s2
2�

d2
� 4Z2

1ÿa=2�s1
2 � s2

2�
o2

�5�

For example, suppose we look again at the study
that compares two different analgesics on painful
arthropathy in patients with SLE. Assume that the
standard anti-in¯ammatory reduces pain by 30 points
(on a 0 to 100 visual analogue scale) with a known
standard deviation of 20, but that the new therapy is
expected to reduce pain by a factor of 50 points with
an estimated standard deviation of only 15 points. We
would like to estimate this true difference between
treatments to within a value of d� 10 and by so doing
hope to detect differences of 20 points. The 95% CI
will also be far enough away from 0 (at least 10
points) to derive some clinical relevance from the
results (assuming our predictions of the pain reduction
rates are correct). The number of patients needed per
group, N, is:

N � Z2
1ÿa2�s1

2 � s2
2�

d2
� 1:962�202 � 152�

102

� 24:01 � 24 patients per group

Sample size calculations for binary outcomes

Calculation of sample size for proportions proceeds in
a similar fashion. Let P1 and P2 be the two proportions
whose difference we would like to estimate to a total
CI width of o� 2d; then:

N � Z2
1ÿa=2�P1�1ÿ P1� � P2�1ÿ P2��

d2

� 4Z2
1ÿa=2�P1�1ÿ P1� � P2�1ÿ P2��

o2

�6�

where N represents the required sample size for each
group.

For example, suppose we would like to design a
study with two types of immunosuppressive regimens
to measure the difference in progression to dialysis
over a period of 5 years. Assume that the standard
therapy gives a P1� 0.5 (50%) rate of progression to
dialysis, and that the new treatment may improve this
to P2� 0.25 (25%). We would like to estimate the true
difference in treatments to within d� 0.15 so that not
only will we be able to detect the expected difference
of 25%, but the 95% con®dence interval will be far
enough away from 0 so that we can make a more
de®nitive conclusion as to the clinical utility of the
new technique (recall Figure 1). We calculate:

N � Z2
1ÿa=2�P1�1ÿ P1� � P2�1ÿ P2��

d2

� 1:962�0:5�1ÿ 0:5� � 0:25�1ÿ 0:25��
0:152

� 74:7 � 75 per group

Discussion

Sample size calculations for several additional study
designs deserve mention. The estimation of sample
size in studies where the patients may serve as their
own controls (such as in paired or crossover studies) is
particularly useful in certain studies in SLE when total
patient numbers may be limited. This method takes
into account the previously estimated correlation
between the two responses of an individual patient
(expressed as the correlation coef®cient r).10,12 N is
®rst calculated per group for the appropriate outcome
variable of interest, and then the total number of
patients required in a crossover study is n�N(1ÿr).
Such study designs reduce the total number of patients
required, and are especially useful for chronic
conditions such as pain or time-to-¯are. Obviously,
crossover designs cannot be employed for non-
reversible outcomes such as dialysis or death. In
addition, the individual treatments must have no
carry-over effects on the patients that would bias
outcomes after crossover.

Specialized methods for the calculation of sample
size for the situation in which the outcome variable of
interest is categorical, such as a Likert scale or a
simple rating scale have been described.27,28 Often,
however these outcomes can be considered to be close
enough to continuous measures so that simpler
formulae can be applied.

One factor of particular relevance in studies of
patients with SLE is the number of patients who fail to
complete a study, especially given the length of
anticipated follow-up time required to establish a
reasonable incidence of certain end-points (progres-
sion to dialysis, for example). If N is a sample size
calculated assuming no drop-outs, then Nd�N=
(1ÿD)2 is the sample size required in a population
whose drop-out rate is expected to be D.10 Here,
patients who drop out of the study are assumed to take
on the event rate of the control group once they are
out of the study. If loss to follow-up is a central issue,
and if it can be assumed that loss to follow-up will
occur at an equal rate per group (rate L), and if there
is no bias in loss to follow-up, then a simple
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sample-size adjustment, NL�N=(1ÿL), can be used.
More sophisticated and exact calculation methods are
available.12,29,30

One of the `catch-22's of sample size calculations is
that estimates need to be provided for parameters that
are clearly never known before the experiment is
performed (otherwise the experiment would not need
to be performed!). Obviously, the sample size esti-
mates will vary greatly depending on these unknown
inputs, so that robustness to these inputs becomes a
concern. A conservative sample size estimate may be
derived by selecting the values of the parameters which
lead to the maximum possible sample size within their
feasible range. Alternatively, Bayesian sample size
calculations are available which explicitly take into
account the uncertainty in the inputs.31

Finally, while it is important for the clinician to
appreciate the calculation of sample size in superiority
trials and to become familiar with these estimates,
sample size considerations should usually be dis-
cussed with an experienced statistician. Many factors
can in¯uence the sample size in practice, so the choice
is not as simple as selecting values to plug into
formulae. For example, a statistician may suggest an
alternate design for answering the clinical question of
interest that may be much more ef®cient, or easier to
carry out in practice. Many sample size tables and
software packages are available which offer easy
calculations, given the values of the relevant para-
meters. Expert statistical consultations and more
advanced statistical software have, for the most part,
replaced the need for manual calculations on the part
of the clinician, but no sample size calculations can
obviate the need for a well-designed controlled
clinical trial that measures standardized, clinically
relevant differences in outcome. Only through such
studies will clinicians further the treatment of
systemic lupus erythematosus and improve the lives
of patients with this disease.
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