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ABSTRACT

This article considers the rise of the randomized clinical trial during the twentieth
century. Before such development could begin, probability and statistics needed
to merge. Sir RA Fisher introduced randomization in the 1920s and, begin-
ning in the 1930s and 1940s, randomized clinical trials in humans were being
performed by using the statistical-hypothesis-testing paradigm. Randomization
gave unbiased comparisons and a way to perform hypothesis testing without
model assumptions. To preserve the benefits of randomization, a type of analysis
called intent-to-treat analysis is appropriate. Needed development has occurred
and is occurring in refining ethical standards, monitoring trials of serious irre-
versible endpoints while preserving type-I error, and instituting independent data-
and safety-monitoring boards. Recent methodology has also been concerned with
the appropriateness of using surrogate endpoints. A current area of debate is the
appropriateness of using Bayesian statistical methods in this context.

INTRODUCTION

The end of a century and millennium might not be the best time to review
and reflect on a specific field of human endeavor, but the symbolism provides
additional incentive for us to try. If Pope was correct that “The proper study
of mankind is man,” then the fields of public health in general and biostatistics
in particular are proper endeavors. In this article one of the most outstanding
and “proper” contributions of biostatistics to the public health is discussed.
That contribution, the randomized clinical trial (RCT), is now a deeply em-
bedded and accepted technique in the evaluation of new therapies, community
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interventions, diagnostic techniques, and other areas. This article discusses the
RCT in medicine. Biostatistics is of value because of its contribution to other
fields; biostatistics is a collaborative, symbiotic field. For that reason any dis-
cussion of advances in biostatistics usually and appropriately brings in subject
matter concerns, which will also be done in this article. Because clinical trials
involve experimentation on humans, the ethical concerns are of primary impor-
tance and are addressed below. Of course the emphasis is on the statistical and
biostatistical methodology associated with the development of modern RCTs.
In addition, areas of current development and debate are presented.

Medical Progress
The consistent progress in medicine over the last 50–55 years gives a mis-
leading impression of the overall history of medicine. The earliest recorded
medicine was associated with magic and religion (2, 32). Although there was
considerable progress before the twentieth century, the history of medicine also
included long periods of adherence to authority, little or no progress, and most
importantly, very harmful treatments. Ackerknecht (1) reviews the history of
therapeutics, noting that it has been called a “history of errors.” Further, “...the
history of therapeutics is embarrassing on account of the extraordinary lack of
logic, rationality, and openness to experience that is manifest in its history.” He
attributes the “many reports of success contained in the history of therapeutics
where quite obviously the therapeutics could not have produced this success” to
four main reasons: (a) wrong diagnosis, (b) spontaneous recovery, (c) the cu-
rative effect of suggestion, and (d ) the forgetting or reinterpretation of failures.
Another major reason must be the variability in outcome in most medical situa-
tions. Inappropriate behavior is hardest to extinguish when it receives periodic
random reinforcement. Such is clearly the case in many medical settings.

STATISTICS AND BIOSTATISTICS

Statistical theory developed from separate paths in probability theory and sta-
tistical theory. Only later was it understood that probability theory was the
appropriate mathematical foundation of statistical theory.

Probability theory was initially developed to understand gambling. The fa-
mous correspondence between Fermat and Pascal in the 1650s (47) is often
considered the beginning of probability theory. Cardano (1501–1576) (36) also
was instrumental in the early development of probability theory. The history of
probability theory is given elsewhere (see 12, 25, 37, 47).

The early field of statistics dealt with methods of estimation (46). The his-
tory of statistics (as distinguished from probability theory) up to the twentieth
century is given by Stigler (46), with an emphasis on application to the social
sciences.
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Bayes’ Theorem and Inverse Probability
All of those teaching elementary statistics know that, after instruction in sta-
tistical inference, students commonly want to interpret the findings as giving
probabilities of events. For example, 95% confidence intervals are commonly
misinterpreted as indicating a 95% probability that the true value lies within
the interval. This problem of inverse probabilities has a long, distinguished
history. The first to treat the problem (although not with the generality asso-
ciated with his name) was the Reverend Thomas Bayes, with the publication
of a posthumous memoir in 1764 (5). Pierre Simon Laplace (1749–1827) sub-
sequently published Bayes’ Theorem for the special case of prior events with
equal probabilities. Bayes’ Theorem starts with prior probabilities of events,
obtains new data or information related to the events, and then shows how to
compute the new posterior probabilities of the events. The longstanding debates
about Bayes’ Theorem revolve around the necessity to have a prior distribution,
that is, prior probabilities for each event. These prior probabilities have been
argued to be subjective or personal probabilities (which interact with external
probabilities through Bayes’ Theorem to give subjective or personal posterior
probabilities). The subjectivity of the prior probabilities has been the crux of
the debate about the use of Bayes’ Theorem in science. It has been persua-
sively argued that anyone who would bet in a coherent fashion (if forced to bet)
would in fact follow Bayes’ Theorem with some prior probabilities, regardless
of whether this was a conscious act (44).

Another approach to producing posterior probabilities was given by Sir
Ronald Alymer Fisher with his introduction of fiducial probability (20, 21).
Fiducial probability was generalized mathematically by Fraser (23). This prob-
ability avoided the arbitrariness of the selection of a prior probability at the
expense of requiring a mathematical formulation that could reasonably be done
in a number of ways for the same data, thus leading to different answers. For
this reason structural probability has not generally been used and is not even
taught in most statistics programs (except sometimes as of historical interest).

Frequentist Probabilities
The debate about inverse probability brings to the fore the philosophic debate
about the meaning of probability. The most prevalent view about probabili-
ties is that in many settings probabilities are an external property of the world.
For example, quantum mechanics naturally leads to probability models for the
decay of atoms and numerous other physical events. This is an example of
the frequency interpretation of probability. A probability is defined as the pro-
portion of the time that an event would occur if exactly the same situation
were performed (without any interference between different trials of the situa-
tion) approaching an infinite number of times. Thus the probability of a cure
for a disease would be the proportion of times a cure was obtained among an
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infinite number of such patients (i.e. patients with the same disease and the same
risk factors as the patient under consideration). Clearly with gambling as the
motivation for probability this definition made sense; conceptually one could
independently shuffle and deal cards approaching an infinite number of times.
For situations that occur only once (e.g. a sporting event or the performance
of the stock market over the next six months), the interpretation can lead to
conceptual difficulties.

Hypothesis Testing
During the 1920s–1930s, Neyman & Pearson (34) developed an approach to sta-
tistical inference that does not require the production of a posterior distribution
from a prior distribution. Rather they examined the operating characteristics
of procedures when one is forced to make decisions. Some philosophers of
science note that truth is never definitively established. A current theory that
adequately explains experimental data may subsequently be rejected if the the-
ory does not explain the data from a new data set. Neyman & Pearson developed
the testing of “null” hypotheses. This resulted in the now familiar paradigm of
null hypothesis, alternative hypothesis, rejection regions, and p-values. The
emphasis is on the operating characteristics of tests in which the frequentist
probabilities are an inherent property of the external world. The method does
not produce posterior probabilities after data are obtained; the p-value instead
is the probability, before the experiment is performed and assuming the null
hypothesis is true, that a result will be the same as or more extreme against
the null hypothesis than that given by the actual data. A key concept is the
type-I error—the probability under the null hypothesis that the null hypothesis
will be rejected. This probability is called the size of the experiment or the
statistical significance level of the experiment. The alternative probability, the
type-II error, of rejecting the alternative when it holds, leads to the statistical
power of an experiment or observation. Power is the probability of rejecting
the null hypothesis when the alternative is true. The p-value is used as a rough
measure of the strength of evidence for rejecting the null hypothesis. This is
only one possible such measure, and disagreement exists about the appropriate
way to summarize the evidence (43). Hypothesis testing is far and away the
most widely accepted paradigm for statistical inference within the scientific
literature.

RANDOMIZATION

One of the great intellectual advances of the twentieth century was brought about
by the English statistician and geneticist Sir Ronald Alymer Fisher (8). He was
involved in the analysis of agricultural data sets. The analysis was problematic
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because of difficulties inherent in the science of agriculture. For example, the
obvious way to compare the yield of different strains of a plant is to plant these
strains in adjacent plots and to measure the yield. The problem is that gradients
in water drainage, soil, sunlight, wind, and the like can cause major differences
in yield. For example, this author observed separate juniper shrubs that were
planted along an 80-foot length to establish a hedge. These plants, at least to
the uninitiated, appear to have grown under similar conditions, but they now
vary in height (in a systematic tall-to-short manner) by a factor of over two. RA
Fisher was faced with similar difficulties: Differences in yield could be caused
by the strain of plant or might plausibly be caused by environmental differences.
His solution seems absurd at first sight. The plot of ground for a comparative
experiment was divided into sections. Then the assignment of strain to plot was
done at random! That is, the probability of every possible arrangement was
the same. This technique deliberately introduced noise into the experiment.
However, on average over all the randomized experiments that could have
occurred, each strain had an equal chance to get a good or bad plot assignment.
Thus the data that actually were observed could be compared with all the
possible arrangements to see whether the magnitude of observed differences
could have occurred by chance. Adding the “noise” of randomization to the
experiment allowed a fair comparison to be made between the strains.

In comparative medical trials of two therapies (including the possibility of a
placebo arm in many trials), randomization assigns the two therapies to exper-
imental groups by the flip of coin (as it were). This will be discussed below.

Benefits
There are a number of benefits of the randomized study, and the primary benefits
are enumerated below.

BIAS Observational comparison of possibilities is fraught with potential for
arriving at a wrong conclusion, not because of a lack of statistical evidence but
because one might be comparing relative “apples and oranges.” If a comparison
has an expected estimated value that is not the value desired, the difference is
called bias. Consider a comparison that involves a drug to reduce mortality.
Suppose that those who take the drug≥80% of the time have approximately
half the mortality of those who do not comply with this medication frequency.
Further investigation of∼40 commonly used prognostic variables reveals no
difference between the two groups. Finally the observed mortality difference
is statistically significant. Most would consider the case proved; the therapy
prolongs life. Such a situation actually occurred in the Coronary Drug Project
(10), but the drug shown to be efficacious was the placebo! It turned out
that the active arm also had the same relationship to drug compliance and
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mortality. The biases that can result from observational data analyses can be
quite large.

There is ample evidence that humans cannot behave in a fair (that is, statis-
tically unbiased) manner in most situations (28). Simply asking physicians to
divide patients into two fair or equal groups for a clinical trial would not usually
give an unbiased, or fair, comparison in general. And even if the division were
fair, many would not believe in the results.

The process of randomization not only involves a fair process and assures
randomly assigned groups are equal (on the average or based on the rules of
probability), but there is probabilistic balance even on unknown or unrecorded
characteristics of experimental assignments. No unconscious human bias can
enter into treatment assignment if the assigned treatment is the result of a
randomized assignment.

MODEL ASSUMPTIONS AND THE RANDOMIZATION DISTRIBUTION One of the
important methods used in statistics is to model data based on some fixed model
and then, typically, an explicit or implicit error term. Important examples of
such models are multivariate linear regression models, logistic regression mod-
els for binary outcome data, and Cox proportional hazard models for censored
time-to-event data. For the analyses to be valid, the data need to conform (at
least approximately) to the given model. Although the models can be validated
against the data to some extent, there is always limited power for verifying the
model assumptions. Consider the source of the variability. This is inherent in
the model. For example, in logistic regression the outcome is binary (one of
two outcomes), depending only on the variables in the model and in the chosen
form. The outcome takes each value with a fixed probability. The variability
resides in the external world and needs to follow the assumed form.

For a randomized trial there are two places that random variability can enter
into the outcome. As just discussed there is the usual variability associated
with a model for the outcome. However, with a randomized experiment there
is another source of random variability, for example the randomization process
that assigns plant strains to plots or the randomized assignment of a drug or
placebo to a patient.

Now consider a different point of view: Suppose that we have a randomized
assignment and that the null hypothesis holds. The null hypothesis is that the
randomized assignment has no effect on the outcomes of interest. If this is
true we may consider that the outcomes observed would have occurred under
any treatment assignment. Therefore think of the outcomes of the individual
experimental units as fixed. Under the null hypothesis, no matter what the
assignment of the randomized process, we would have seen the same results. If
there is a statistic to test the null hypothesis that reasonably measures a treatment
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effect, it may be used without assumption as follows. Thinking of the patient
outcomes as fixed values, the distribution of the test statistic comes from the
randomized assignments. For each different possible randomized assignment,
the value of the test statistic that would have resulted may be computed; from this
probability of each randomized assignment, the distribution of the test statistic
may be computed. This distribution is called the randomization distribution.
Its validity does not depend on the appropriateness of a statistical model; the
test statistic may involve a model with covariate values for adjustment or with
complexity in any other manner. In any event the distribution of the test statistic
depends only on the randomization process for its validity.

Having noted this valuable property of randomized experiments, one would
expect randomization distributions to be the standard method of analysis for
randomized studies. Such is not the case. There appear to be two reasons
why the usual models are used: (a) The computation of the randomization
distribution is prohibitive in many situations. If 100 subjects were allocated at
random into two groups with 50 in each group, there are over 1029 possibilities.
This is too many to enumerate the possibilities and compute the randomization
distribution. Only with the recent advances in computing power is the approx-
imate answer available. The randomization distribution may be estimated by
simulating multiple random samples from the randomization process. Such
simulation, or Monte Carlo simulation, may be used to give a p-value without
assumptions (7, 14). (b) The historical use of the usual tests (which usually are
valid) has not led to a perceived need for the randomization distribution.

RANDOMIZED CLINICAL TRIALS

With this background we now turn to the primary subject of this paper, develop-
ment of the RCT in the twentieth century. This development has primarily taken
place since World War II. The ethical issues inherent in human experimentation
were at the forefront after the Nazi “medical” war crimes (31). Ethical issues
are discussed below; there has been continual development in this area.

Initial Trials
Among the earliest randomized trials was one by Amberson (3) in 1931 (cited
in 33; see 33 for a short history of early clinical trials and references). An influ-
ential figure in the development of early clinical trials was Austin Bradford Hill,
who published a text on clinical trials and entered into the ethical justification
for clinical trials (26, 27). The appropriate benefits of randomization (lack of
bias or creation of comparable groups on the average and ability to compute
p-values without model assumptions) are immediately applicable to human ex-
perimentation in medicine. The ethical concerns and the need for physicians
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to both discuss their ignorance and allow another to decide on the (random)
treatment must have made the early implementation of RCTs a delicate polit-
ical undertaking. The rapid acceptance of RCTs and the continual growth in
their use attest to the scientific cogency and value of the resulting knowledge.

Ethical Issues
Most individuals feel some distaste and concern when they first hear about the
concept of human experimentation. The more historical system of the physi-
cian bravely (few discussions cite the bravery of the patient) and boldly trying
a new therapy seems more appealing and dramatic. Yet without controlled ex-
perimentation, much less knowledge is obtained, and ethical concerns may not
be appropriately addressed.

BACKGROUND Some argue that an appropriate ethical stance can be derived
from appealing to a priori, or at least fixed, principles (6). The Nuremberg war
crime trials involved consideration of physicians involved in unethical medical
experimentation. This resulted in the Nuremberg Code (42). Subsequently the
international physician community addressed medical experimentation in the
Declaration of Helsinki and its periodic revisions (49). Among the generally
agreed upon principles are the right of patients to informed consent [with some
possible exceptions in trials in which informed consent is impossible to obtain
(e.g. resuscitation for cardiac arrest)] and the necessity of review by an inde-
pendent body without the potential for profiting from the particular RCT. In
most countries these issues not only are required by law but often have very
detailed federal regulations about their implementation (15).

THERAPEUTIC IMPERATIVE Among the many ethical issues of RCTs, the most
widely debated is the conflict between (a) the implicit contract between the
physician and patient that the physician will deliver the best care available in
her/his opinion and (b) the need for a random assignment to provide scientific
knowledge (17). This implicit contract has been called the therapeutic impera-
tive. Some feel that the inherent conflict between the physician as a physician
and the physician as a scientist has so much contradiction that randomized tri-
als are unethical de facto. A majority of the medical community feel that such
trials are ethical if run according to certain principles that assure appropriate
consideration and protection of patient rights.

EQUIPOISE Because of the physician’s implicit contractual obligation to de-
liver to the patient the best possible medical care (at least for serious endpoints),
the concept of equipoise has been developed. Equipoise means that there are
equal chances of any of the treatment arms of a trial being the most effica-
cious. Some risk may be allowed for minimal-risk protocols, but for serious
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irreversible endpoints equipoise should be in place to make a trial ethical. The
patient risk compared to study benefit is important in considering whether a
trial is ethical.

SOCIETAL TRADEOFFS Some would argue that, in a world with limited re-
sources, the benefit of a therapy must also be related to the resources consumed
[e.g. is it good medicine to spend $500,000 per patient for an average gain in
life of 3 weeks? Or should society let such issues become prominent (including
which trials should be conducted and whether cost/resource use should also be
a part of such trials)]. This author would argue that many more trials would
actually both (a) help limit the costs of medical care and (b) give more reliable
information for the public debate and implementation of the health care system.
This would lead into a debate far beyond the scope of this paper.

Minimal Level of Proof
Because of the uncertainty associated with small numbers of observations,
some level of proof is needed before accepting data as evidence of some fact.
Traditionally for scientific publication, a p-value of≤0.05 is satisfactory. Such
results are called statistically significant (and may or may not be clinically
significant if true). In any setting the level of proof needed is arbitrary, but
clearly the concept of a minimal level of proof is desirable.

REGULATORY CONCERNS AND THE TYPE-I ERROR RATE The control of the
type-I error is taken particularly seriously in a regulatory setting. A commercial
concern with tens or even hundreds of millions of dollars invested has great
incentive to get the new drug, biologic, or device approved. (A biologic is a
drug made of a compound that naturally occurs in the human body.) It is to
be expected that a commercial sponsor will put the best possible light on their
data and apply the most favorable possible method of data analysis. For this
reason society has decided (through their elected representatives) that the level
of proof must meet a very high standard. We discuss this approval process as
regulated in the United States by the Food and Drug Administration (FDA).
There are a number of reasons for tight control and emphasis on the type-I
error rate. First, once regulatory approval is granted it is difficult to withdraw
approval unless a sponsor agrees. If a sponsor disagrees, then the issue goes
to court, with the US Food and Drug Administration needing to show a lack of
efficacy or safety—the shoe is on the other foot. In the United States, with the
possible exception of trials with serious irreversible endpoints as the outcome
measure, two statistically significant trials have been required for approval.
For one large trial this would correspond to a maximum p-value of 0.00125.
Currently there is discussion about whether such a level should be required for
serious irreversible endpoints such as death.
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Because human life and well being are at stake, it is often considered un-
ethical to replicate a placebo-controlled RCT that established the efficacy of
a treatment. One basic principle of science is the replicability of results. In
medicine this principle does not hold for ethical reasons. Therefore “mistakes”
can have very serious and far-reaching consequences. This argues for a strong
level of proof before the medical community accepts a therapy as proven.

CONSISTENCY AND MEASURES OF THE LEVEL OF PROOFThe level of proof as
measured by the p-value has weaknesses. Recently, Bayesian approaches to
determining the appropriate level of proof have been advocated (45). If true
personal prior beliefs are advocated, then one has the large and controversial task
of deciding whose prior belief to use. Use of multiple fixed prior distributions,
including various pessimistic prior distributions, has been advocated (45). If
these prior distributions do not reflect beliefs of at least a community, then
the benefit of Bayesian statistics as bringing past knowledge (belief?) to bear
is lost, and the endeavor is essentially frequentist in nature. Reasons for the
inappropriateness of true Bayesian statistical methods in the RCT setting have
been advanced (16).

One concern that receives relatively little consideration is the implicit conflict
between studies being run while in equipoise and the accumulation of proof to
some minimal or acceptable level. As soon as information begins to accumu-
late, equipoise is lost, however slightly. Further, if trials need to accumulate a
minimal level of proof, there is assumed to be little or no proof even when a
small increment of data will push the level of proof over the line of acceptability.
Implicitly it is considered appropriate to place participants at some possible risk
before the acceptable level of proof is reached. By requiring proof in federal
law and regulation, the United States has decided that the risks associated with
drug, biologic, and device approval without adequate levels of proof justify
some conflict with the therapeutic imperative, to establish new therapies and
their usage before approving the therapies for general use.

Blinding or Masking
Another aspect of RCTs that attempts to minimize bias in therapeutic compar-
isons is the blinding or masking of therapies. In a single-blind or single-masked
trial, the subject or patient does not know what treatment she or he is receiving.
In a double-blind or double-masked trial, neither the person delivering nor the
one receiving the therapy knows which treatment has been assigned. Placebo
treatments are often developed to aid in blinding. The placebo has the broadest
indication in medicine; it is effective to a greater or lesser extent in almost all
medical settings. If those evaluating the success of treatment arms are blinded
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to treatment, then their conscious or unconscious biases cannot enter into the
evaluations (when the blinding is perfect).

BIOSTATISTICAL RCT METHODOLOGY

Control of Type-I Error and the Possibility of Early
Stopping: Sequential Monitoring of RCTs
When a trial with a serious irreversible endpoint is conducted in humans, it is
necessary to monitor the data as it accumulates. If a given arm of a trial can
be shown to be superior, then such a trial will be stopped. However if multi-
ple examinations of accumulating trial data are made, then one cannot stop a
trial whenever the current value of a fixed sample size p-value reaches the re-
quired level of statistical significance for the whole trial. Clearly, with multiple
looks, stopping a trial when a required p-value is reached would elevate the
probability of accepting a chance finding when in fact the null hypothesis was
true (4). For this reason biostatisticians have developed methods of allowing
examination of the accumulating data of a clinical trial with the potential of
early stopping, while also maintaining the overall type-I error rate for the trial
(18, 30, 35, 40, 48). Although formal Bayesian methods have rarely been used
in this context, they hold the potential for such use if judged appropriate (45).
The use of sequential strategies or monitoring boundaries has been developed
largely for specific use in RCTs.

DATA AND SAFETY MONITORING BOARDS The formal, mechanistic monitoring
of RCTs for safety and efficacy with serious irreversible endpoints could algo-
rithmically rely upon a sequential monitoring plan. However, all commentators
have agreed that the formal stopping rules are only guidelines, which must be
used in the total context of the trial. For example, there might be chance baseline
imbalances between treatment groups that lower the evidentiary value of a dif-
ference that otherwise would terminate a trial. The imbalance may suggest the
need for further data collection. Other trials with drugs that have a similar mech-
anism of action might strengthen or weaken the findings. Because sponsors have
a vested interest that might unconsciously influence their decisions, data and
safety monitoring boards have been established (13). Such boards are com-
posed of individuals who will not potentially gain or lose from the results of the
trial. They thus can make a decision without the potential commercial con-
flict of sponsor employees. Such boards typically have members who are
physicians with appropriate specialties, biostatisticians, and possibly ethicists
or lay members. In considering termination of a trial for undue risk or for
efficacy, the risk/benefit ratio is appropriately taken into account. Another
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function such boards often serve is to monitor for futility, that is, situations
in which the trial has little chance of a positive outcome, and stop such trials
early to conserve resources.

Intention-to-Treat Analysis
The benefits of randomization were described above. The most important bene-
fit is to construct fair or unbiased treatment groups for comparison. The groups
are balanced in a statistical sense, even against unknown or unrecorded covari-
ates. To preserve the benefits of the randomization process, individuals are to
be maintained and analyzed in their assigned groups (19, 39). In the (never
observed) perfect medical experiment, everyone agrees that the intent-to-treat
(ITT) analysis is appropriate. However, if a number of subjects never receive
a treatment, does it make sense to include their results in the treatment group?
This tension between the biostatistical/scientific need for an unbiased compar-
ison (the ITT analysis) and the biologic/scientific analysis that considers only
treated or compliant patients can usually, but by no means always, be avoided
by an appropriate experimental design. In most regulatory settings, the ITT
analysis is the first analysis expected. Rarely does the ITT analysis miss prov-
ing the efficacy of a new treatment and the RCT result in regulatory approval
from some other analysis.

Surrogate Endpoints
It would seem obvious that the purpose of giving a therapy is to benefit the
patient. To develop beneficial therapies an understanding of the biology, even
to the molecular level, is often used. If the understanding were sufficient, in-
cluding knowledge of potential adverse effects of therapy, it would be enough
to show that the drug affected some intermediate associated factor. For ex-
ample, early trials with placebo controls showed that antihypertensive therapy
prevented cardiovascular endpoints. It is currently accepted that lowering blood
pressure benefits patients. Current approval of antihypertensive drugs depends
on placebo-controlled trials with a duration of 12–16 weeks in moderately
hypertensive patients. This is supplemented by longer-term uncontrolled expo-
sure of a year or more. The benefit is inferred from the surrogate endpoint of
lowered blood pressure (rightly or wrongly). On the other hand many cancer
therapies that shrink tumors (that is, that have been shown to be biologically
active) apparently do not benefit patients.

The most famous recent experience with surrogate endpoints was the Car-
diac Arrhythmia Suppression Trial (9). Irregular heartbeats (cardiac arrhythmia)
have been studied with ambulatory electrocardiograms that monitor cardiac
rhythm over≥24 hours. Unfortunately, some individuals being monitored have
died by a sudden cardiac death. There were typical findings on the ambulatory
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electrocardiogram. Runs of rapid, ventricular, premature beats (ventricular
tachycardia) lead to a fluttering irregular motion of the heart (ventricular fib-
rillation), which leads to sudden unconsciousness and rapid death. Graboys
et al (24) showed that individuals with high-risk arrhythmia had a much better
survival if their arrhythmia could successfully be treated with an antiarrythmic
drug, compared with patients in whom no such drug could be found. On this
basis, suppression of arrhythmia on ambulatory electrocardiographic monitor-
ing was considered an adequate surrogate for drug approval as an antiarrhyth-
mic drug. The Cardiac Arrhythmia Suppression Trial studied, in a placebo-
controlled fashion, individuals with arrhythmia after a heart attack (myocardial
infarction). The investigators were so sure that, if not beneficial, the therapy at
least was not harmful, that the study was designed with a one-sided hypothesis
test at the 0.025 significance level. The trial was stopped for excess mortality.
Three antiarrhythmic drugs were studied; all three proved to be harmful! Thus
surrogate endpoints must be carefully chosen.

Prentice gives conditions that would allow appropriate use of a surrogate
endpoint (41). Others have studied the use, within a trial, of changes in a
potential surrogate in conjunction with the primary endpoint to increase the
statistical power (38). With pressure to shorten the period for drug approval,
the use of surrogate endpoints is very tempting. History has shown that such
reliance must be used judiciously in limited contexts (22).

Time-to-Event Analysis
One of the substantial advances in biostatistics has been the ability to handle
data for time to events with different lengths of observations for different sub-
jects. In particular, many subjects have not experienced the endpoint(s) when
the period of observation ends. Such censored data were first studied by actu-
aries constructing life tables-of-survival data. Efficient use of such information
was then studied by Kaplan & Meier (29). Later the effect of covariates was
introduced into parametric models and also into the Cox proportional hazards
regression model (11). These time-to-event models are used in many RCTs,
as well as for observational data analysis of biomedical data. Advances in this
methodology continue with research to allow multiple events, multiple types
of endpoints, etc.

COMMENTARY

The randomized clinical trial is a development of the twentieth century. It builds
on a number of historical developments. Among these are the development and
then merging of probability theory and statistics. The appreciation of the scien-
tific method became apparent in the “hard” sciences initially but moved over to
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the social and biologic sciences. Sir RA Fisher’s introduction of the randomized
experiment in agriculture and biology was then adapted to medical experimen-
tation in humans shortly after the Second World War. Full application of the
method needed development in a number of areas. (a) The ethics of human ex-
perimentation needed development (especially in light of the Nazi experiments
in World War II). Among the accepted principles were the right to informed
consent and independent review of experimental protocols for human experi-
mentation. (b) For serious irreversible endpoints, there is an ethical mandate
for monitoring the results during the trial. This must be done in a manner that
preserves the type-I error of the hypothesis-testing paradigm. Multiple such
methods have been developed. (c) To perform such monitoring, independent
data- and safety-monitoring boards are often used. The boards use statistics as
guidelines for early stopping but must also consider other relevant factors.

The use of RCTs has led to theoretical consideration and development in
multiple areas, including the use of surrogate endpoints, time-to-endpoint anal-
ysis, combinations of multiple endpoint measures, and other areas. Further, the
considerable governmental and commercial activity in the area of clinical trials
has helped to integrate biostatistical methods into the medical research com-
munity. As an offshoot of this activity, one would conjecture that observational
analyses have been advanced in methodology as well as made more sensitive
to the limitations of observational data analysis.

Biostatistics as a field has developed only in the twentieth century. One of the
great successes of biostatistics, as a collaborative part of the medical research
community, has been the continuing development and implementation of the
RCT.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org
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