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Standard statistical analyses of randomized clinical trials fail to provide a direct
assessment of which treatment is superior or the probability of a clinically
meaningful difference. A Bayesian analysis permits the calculation of the prob-
ability that a treatment is superior based on the observed data and prior beliefs.
The subjectivity of prior beliefs in the Bayesian approach is not a liability, but
rather explicitly allows different opinions to be formally expressed and evalu-
ated. The usefulness of this approach is demonstrated using the results of the
recent GUSTO study of various thrombolytic strategies in acute myocardial in-
farction. This analysis suggests that the clinical superiority of tissue-type plas-
minogen activator over streptokinase remains uncertain.

(JAMA. 1995;273:871-875)

BEFORE any clinical trial results are

available, different clinicians will have
different opinions regarding the rela¬
tive benefits of the therapies under
study. These opinions will usually range
from skepticism to enthusiasm for a new

therapy compared with a standard
therapy. Regardless of how well it is
conducted, no single clinical trial can

provide absolutely definitive conclusions.
Thus, even after trial results are re¬

ported, it is reasonable to expect that a

diversity of opinions will persist, al¬
though perhaps with some convergence
toward the observed trial results. The
degree of convergence will depend on
the strength of the trial in terms of
sample size and scientific rigor in its
execution. Therefore, in any medical ex¬

periment, clinical researchers must give
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careful consideration to issues of both
design and analysis. Randomized clini¬
cal trials are almost universally accepted
as the gold standard design for com¬

parative clinical research, since bias and
confounding are minimized. Much atten¬
tion has been directed to the scientific
reasoning behind statistical analysis in
the medical and statistical literature.1"3
However, while most clinicians are
aware of the importance ofgood experi¬
mental designs, few are aware of the full
array of statistical methods available.
Some of these methods allow for the
reporting of a range of conclusions cor¬

responding to the diversity ofprior opin¬
ions. They can also answer directly ques¬
tions of interest to clinicians.

Classical (frequentisi) analysis is the
most prevalent statistical method used,
leading to the ubiquitous  values and
confidence intervals.  values from re¬
search trials may be viewed as analogs of
false-positive (1-specificity) diagnostic
tests. Ifneither the disease nor the treat¬
ment is malignant, we may well accept
test specificity of 95% (P=.05). However,
before accepting a limb amputation for
osteosarcoma, we would rightly demand
a false-positive value much less than .05.

Generally, we are more interested in
knowing what is the probability of dis¬
ease given the test result (analogous to
predictive value), and this cannot be sup¬
plied from classical statistical consider¬
ations alone. Clinicians routinely inter¬
pret diagnostic test results in the "clini¬
cal context," that is, by considering the
background rate of the disease in a given
population. In a similar manner, the in¬
terpretation of clinical trials should be
considered in the light of preexisting
knowledge.1 (The analogy between hy¬
pothesis testing and diagnostic testing is
completedby noting that statistical power
corresponds to the sensitivity of a diag¬
nostic test.)

In the classical approach, model pa¬
rameters such as population means are
fixed (nonrandom) quantities and prob¬
ability distributions are considered only
for test statistics (such as the t statistic
in a t test). The randomness of test sta¬
tistics arises because frequentists must
consider not only the observed data in a

given experiment, but also other data
that might have occurred had the ex¬

periment been repeated. Each of these
hypothetical repetitions leads to a dif¬
ferent value of the test statistic, and the
collection of these form a distribution. It
is this distribution that is used to calcu¬
late  values and confidence intervals.

Rather than directly addressing de¬
sired clinical questions, such as "Which
treatment is superior?" or "What is the
probability of a clinically meaningful
treatment difference?," classical analy¬
sis usually examines the null hypothesis
of no difference between the competing
strategies.  values denote the prob¬
ability that a statistic as extreme as or
more extreme than the observed test
statistic would occur on hypothetical re-
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Table 1.—Data From GUSTO, GISSI-2, and ISIS-3*

No. of No. (%) of No. (%) of Combined
Trial Agent Patients Deaths Nonfatal Strokes Deaths or Strokes

GUSTOt SK 20173 1473(7.3) 101(0.5) 1574(7.8)
_t-PA 10 343 652(6.3) 62(0.6) 714(6.9)
GISSI-2 SK 10 396 929(8.9) 56(0.5) 985(9.5)
_t-PA_10372_993 (9.6)_74 (0.7)_1067(10.3)
ISIS-3 SK 13780 1455(10.6) 75(0.5) 1596(11.6)

t-PA 13746 1418(10.3) 95(0.7) 1513(11.0)

*SK indicates streptokinase; and t-PA, tissue-type plasminogen activator.
tThe 10 374 patients who received both SK and t-PA are not included here.

peated trials if the null hypothesis is
exactly true. This raises two problems.
First, it seems counterintuitive to base
statistical inferences on events more ex¬

treme than those observed, since these
events did not actually occur.3 Second,
one almost never believes that the null
hypothesis of exact equivalence is true,
and it is consequently usually more rel¬
evant to test for a range of equivalence.
Such a test is very rarely carried out in
practice.  values do not measure the
true quantity of interest, namely, the
probability that the null or alternative
hypothesis is true. This contributes to
the confusion between the information
 values provide and the information
that is more naturally desired. There¬
fore, it is not surprising that  values
are often misinterpreted as the prob¬
ability that the null hypothesis is true or
that 1

-

 represents the probability that
the alternative hypothesis is true. Clas¬
sical statistical analysis does not directly
or indirectly provide these probabilities.

Another inherent limitation of  val¬
ues derives from their dependence on

sample size. Basically, any difference,
no matter how small, can reach statis¬
tical significance if the sample size is
large enough. For example, an observed
difference of only one tenth of a stan¬
dard deviation will become statistically
significant at the .05 level if each group
in the trial includes at least 768 subjects
and will be nonsignificant otherwise. On
the other hand, it is well known that the
low power accompanying small trials
may lead to  values greater than .05
even when clinically meaningful effects
are observed in the trial.4

All of these limitations of  values
have prompted an increased use of con¬
fidence intervals. Many clinicians do not
appreciate that a 95% confidence inter¬
val only means that with unlimited re¬

peated experiments, 95% of all the con¬
fidence interval limits derived using simi¬
lar procedures in different studies would
contain the true parameter. While this
may provide some comfort in the long
run, little can be said about the likeli¬
hood that, for example, a given treat¬
ment is superior or that the true value

of the parameter under current study
lies in any particular interval.

The shortcomings of classical statis¬
tics may obscure the interpretation of
even a well-designed and well-executed
trial. For example, the recent GUSTO
trial (Global Utilization of Streptokinase
and Tissue Plasminogen Activator in Oc¬
cluded Arteries) was a multicenter, ran¬
domized study comparing different
thrombolytic regimens for the treatment
ofacute myocardial infarction.5 This trial
is of particular interest since there con¬
tinues to be controversy over the clini¬
cal importance of any treatment differ¬
ences. In addition, there have been other
randomized trials involving large num¬
bers of patients that examine the same

question, namely, is tissue-type plas¬
minogen activator (t-PA) superior to
streptokinase (SK) in the treatment of
acute myocardial infarction.6·7 The ques¬
tion of therapeutic superiority is of con¬
siderable public health importance, since
myocardial infarction is a frequent oc¬
currence and t-PA is approximately 10
times more expensive than SK. While
many critiques of the GUSTO trial have
been published,841 these have mostly cen¬
tered on design issues and the interpre¬
tation of the clinical relevance of the
observed mortality differences. This ar¬
ticle raises further questions while high¬
lighting some advantages of an alterna¬
tive (Bayesian) statistical approach.
Bayesian analysis has often been dis¬
missed due to its "subjectivity" and be¬
cause ofcomputational difficulties. While
Bayesian analysis can be computation¬
ally complex, computer algorithms now
exist that make this hurdle more his¬
torical than contemporary. As will be
seen, Bayesian subjectivity is an asset
that can provide an ideal forum for de¬
bate, since prior beliefs, including clini¬
cal experience, must be formally speci¬
fied, and one can directly observe how
the beliefs are updated in the light of
new data. This procedure permits the
appreciation of the logic for various a

posteriori opinions, which should tend
to converge as data accumulate. This
process is different from classical meta-
analysis, which suffers from all the prob-

lems associated with  values and con¬
fidence intervals mentioned above and
furthermore does not permit the incor¬
poration of prior beliefs.12

METHODS
Model parameters such as the success

rate of a given medical treatment are

generally unknown, and therefore ex¬

periments are designed to provide in¬
formation about their values. In virtu¬
ally any well-designed experiment, more
is known about these values after the
experiment than before, although at least
some information usually exists preex-
perimentally. A Bayesian statistical
analysis is designed to represent this
learning process.

The first step in any Bayesian analysis
is to obtain a prior distribution over all
model parameters. The prior distribu¬
tion summarizes the preexperimental be¬
liefs about the parameter values. This
can be accomplished by using past data,
ifavailable, by drawing on expert knowl¬
edge, or by a combination of both. This
step is nontrivial and can take consider¬
able time and effort. Furthermore, many
prior distributions are not unique; clini¬
cians are free to summarize their beliefs
into their own prior distribution. Because
Bayesian methods can incorporate clini¬
cal opinion, they are often labeled "sub¬
jective." The experimental data are then
used to update the prior distribution to
a posterior distribution using Bayes' theo¬
rem. This is done through the likelihood
function, which provides the probability
of obtaining the observed data as a func¬
tion of the unknown model parameter.
This is analogous to using a likelihood
ratio (sensitivity/[l-specificity]) to up¬
date background probabilities after ob¬
serving results from a diagnostic test.
The posterior distribution represents the
postexperimental beliefs about the pa¬
rameter values, given the new data and
the previously stated prior distribution.
The two main quantities of interest,
namely, the probability that a given treat¬
ment is superior and the probability of a

clinically meaningful effect, are both di¬
rectly available from the posterior dis¬
tribution. Unlike the standard approach,
no references to data sets other than those
observed are required, since all of the
information contained in the data is sum¬
marized by the likelihood function.

No one prior distribution is likely to
be sufficient to represent the diversity
of clinical opinions that exists before a
trial is carried out. Indeed, this diver¬
sity is usually a prerequisite for ethical
randomization. Therefore, trial results
should usually be reported starting from
a range of prior distributions.13 The cor¬

responding set ofposterior distributions
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Figure 1.—Plot of the prior distributions for the difference in mortality rates be¬
tween tissue-type plasminogen activator (t-PA) and streptokinase (SK) using
weights of 100%, 50%, and 10% of the GISSI-2 and ISIS-3 data, representing
a range in prior beliefs in the relevance of these trials to the GUSTO trial. The
area under the curve between any two points on the x-axis is the posterior
probability that the difference in mortality rates lies between those limits. Num¬
bers to the right of zero indicate the superiority of SK, while those to the left of
zero indicate the superiority of t-PA.
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Figure 3.—Plot of the posterior distribution for the difference in mortality, non-
fatal stroke, and combined stroke and mortality rates between tissue-type plas¬
minogen activator (t-PA) and streptokinase (SK), using data from the GUSTO
trial, with 50% prior use of data from the GISSI-2 and ISIS-3 trials. The area
under the curve between any two points on the x-axis is the posterior probabil¬
ity that the difference in rates lies between those limits. Numbers to the right of
zero indicate the superiority of SK, while those to the left of zero indicate the
superiority of t-PA.
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Figure 2.—Plot of the posterior distribution for the difference in mortality, nonfatal
stroke, and combined stroke and mortality rates between tissue-type plasmino-
gen activator (t-PA) and streptokinase (SK), using data from the GUSTO trial, with
full prior use of data from the GISSI-2 and ISIS-3 trials. The area under the curve
between any two points on the x-axis is the posterior probability that the differ¬
ence in rates lies between those limits. Numbers to the right of zero indicate the
superiority of SK, while those to the left of zero indicate the superiority of t-PA.
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Figure 4.—Plot of the posterior distribution for the difference in mortality, non-
fatal stroke, and combined stroke and mortality rates between tissue-type plas-
minogen activator (t-PA) and streptokinase (SK), using data from the GUSTO
trial only. The area under the curve between any two points on the x-axis is the
posterior probability that the difference in rates lies between those limits. Num¬
bers to the right of zero indicate the superiority of SK, while those to the left of
zero indicate the superiority of t-PA.

then summarizes the range of posttrial
beliefs. If this latter set of distributions
includes only a sufficiently narrow range
of possible effects, conclusions could be

drawn with which most clinicians should
agree regardless of their initial opin¬
ions. Otherwise, the debate continues
and further research is indicated.

These methods and their interpreta¬
tion are illustrated below. Other stud-
¡egi,3,i3,i4 provide funer descriptions of
the use of Bayesian analysis in the con-
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Table 2.—Probability of t-PA Superiority as a Function of Prior Belief in GISSI-2 and ISIS-3 Data After
Consideration of the GUSTO Data*

Prior Belief in
GISSI-2 and ISIS-3, %

Probability of
t-PA Mortality
Higher Than
SK Mortality

Probability of
t-PA Net Clinical
Benefit Greater

Than SK Benefit

Probability of t-PA Net
Clinical Benefit Greater

Than SK Benefit
by at Least 1%

.17 .05 <.001
50 .44 .24 <.001

.98 .94

.999 .998 .36

*See footnote to Table 1 for expansions of abbreviations. Net clinical benefit Is the combined death and stroke

text of clinical trials. In this study, pos¬
terior distributions for the difference in
survival rates between groups of pa¬
tients receiving two different thrombo-
lytic regimens following acute myocar-
dial infarction are derived and graphi¬
cally displayed. (Mathematical equations
used to derive the Figures are available
from the authors on request.)

The GUSTO trial randomized 41021
patients to four different thrombolytic
strategies involving SK, t-PA, or a com¬
bination of the two for the treatment of
acute myocardial infarction. Compared
with SK, the strategy of "front-loaded"
or "accelerated" t-PA showed a statis¬
tically significant lowered mortality
(6.3% vs 7.3%, respectively; P=.001) and
combined end point of 30-day mortality
or disabling stroke (6.9% vs 7.8%, re¬

spectively; P<.006) (Table 1). The in¬
terpretation of a  value of .001 is that
if the two agents had exactly equivalent
mortality rates, then data as extreme as
or more extreme than the observed mor¬

tality rates would occur once in every
1000 hypothetical repeated trials.

This well-executed clinical trial pos¬
sesses many of the desirable attributes
of a well-done study. The sample size
was very large and was designed to have
at least 80% power to detect a 15% re¬
duction in mortality or an absolute de¬
crease of 1% between experimental
groups. This value has been (somewhat
arbitrarily) defined by the GUSTO in¬
vestigators as the clinically important
difference between the two agents. Eco¬
nomic analyses that incorporate patient
utilities and health care expenditures
may be required to further investigate
what difference is clinically meaningful.
In this article, we will accept a 1% de¬
crease as the clinically meaningful dif¬
ference. Potential confounding and bias
were minimized by the randomization
process. Most clinicians would accept
the frequentist analysis of this study as

being conclusive (or almost conclusive)
proof of the superiority of t-PA, that is,
the mortality rate for t-PA was less than
that for SK. But is this an adequate
summary of the available evidence?

Two previous randomized clinical tri¬
als have directly compared SK with t-PA

in 48000 patients. The GISSI-26 trial
(Gruppo Italiano per lo Studio della
Streptochinasi nell'Infarto Miocardico)
compared t-PA (alteplase) and SK both
with and without subcutaneous heparin
beginning 12 hours after the start of
therapy. The 35-day total mortality and
nonfatal stroke data are summarized in
Table 1. The ISIS-37 trial (Third Inter¬
national Study of Infarct Survival) com¬

pared t-PA (duteplase) and SK both with
and without subcutaneous heparin in a
similar factorial design but began hep¬
arin 4 hours after the start of therapy.
The 35-day mortality and morbidity data
are also shown in Table 1.

Although all the trials were random¬
ized with uniform entry criteria and drug
dosages, reservations have been ex¬

pressed about the relevance of any com¬

parisons between these studies. The ma¬

jor sources of controversy are as follows:
• The t-PA used in ISIS-3 was of a

slightly different form (although the
clinical difference is not believed to be
significant).

• Adjunctive therapy accompanying
t-PA in GUSTO included more aggres¬
sive use of intravenous heparin.

• In GUSTO t-PA was administered
in an accelerated fashion.

While there is an abundance of prior
information comparing these two agents,
there is little consensus as to which agent
is superior. Clinicians may vary in their
weighting of the importance of the simi¬
larities and differences between the tri¬
als. This only enhances the utility of a

Bayesian analysis, because their uncer¬

tainty can be explicitly considered by
employing a range of prior beliefs.13·14

Figure 1 shows the probability den¬
sity for the difference in mortality be¬
tween t-PA and SK as determined from
the data of GISSI-2 and ISIS-3. (The
area under the probability density curve
between two given points on the x-axis
represents the probability that a value
will fall between the two points.) The
difference in mortality rates between
t-PA and SK appears along the x-axis
(0.01=1% and so forth), and the height of
the probability density for this differ¬
ence is given by the y-axis. The mean of
these curves is close to zero (0.0013),

suggesting no difference between the
two agents. Fully accepting the results
of these two trials would suggest almost
no possibility of t-PA's being clinically
superior to SK (a decrease in the mor¬

tality rate with t-PA > 1% is represented
by the area to the left of -0.01, and this
area is essentially zero in the case using
100% of the prior data). This leads to a

very skeptical prior distribution as to
the superiority of t-PA. On the other
hand, a clinician who believes that the
difference in trial protocols cannot be
ignored might elect to only partially con¬
sider the earlier results. For example,
one could arbitrarily treat the value of
each observation in the previous trials
as worth only 50% or even 10% of each
observation in the GUSTO data. Prior
distributions based on these weights also
appear in Figure 1. A more extreme
position would be that the trials are too
dissimilar to be combined and that con¬

sequently all previous research should
be ignored, thereby assuming that noth¬
ing is known about the potential differ¬
ence in mortality between the two agents
(in statistical parlance, this implies a
noninformative or uniform prior distri¬
bution). Other prior distributions are
also possible and are not necessarily de¬
rived by a weighting of previous data.
Most of these would fall in between the
above-mentioned extremes. As the be¬
lief in the utility of the prior studies
decreases, so increases the possibility
that t-PA is a clinically superior agent
(widening of the curves and increasing
area to the left of -0.01).

RESULTS
The data from Table 1 may be used to

derive posterior distributions for stroke,
death, and net clinical benefit (death and
nonfatal stroke) using Bayes' theorem
(the solved equation is available from
the authors on request). Figure 2 con¬
siders the skeptical prior belief that as¬

signs equal weight to each observation
from GISSI-2, ISIS-3, and GUSTO and
shows that the mean difference in mor¬

tality between t-PA and SK is 0.20%
(0.002 in favor of SK), and the final (pos¬
terior) probability of t-PA's being su¬

perior to SK is only about 17% (area
under the curve to the left of 0). Figure
2 also demonstrates that there are 0.15%
more nonfatal strokes with t-PA and
that the probability that the rate ofnon-
fatal stroke is greater with t-PA ex¬
ceeds 99.5% (the area to the left of the
curve <.005). A similar interpretation
of the combined curve suggests that the
probability that t-PA is superior to SK
is 5.1% with an almost zero probability
ofexceeding the clinically signficant dif¬
ference of 1% (area to the left, on the
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combined curve of 0 and -0.01, respec¬
tively).

Figure 3, which considers observa¬
tions from the previous randomized clini¬
cal trials to have 50% the value of each
observation in GUSTO (a more inter¬
mediate prior belief), shows that the
probability that t-PA is superior to SK
for mortality alone is about 44% (again
refer to the area to the left of 0 for the
appropriate curve). Further, accepting
that a difference of 1% mortality is the
minimum clinically significant value, the
probability that t-PA is clinically supe¬
rior remains negligible. The probability
of increased stroke with t-PA remains
high at almost 98%.

Finally, Figure 4 shows the scenario
where all prior data from GISSI-2 and
ISIS-3 are considered irrelevant and are

ignored. In this case, t-PA is virtually
certain to have a lower death rate than
SK (99.95%),butthe probability thatt-PA
exceeds the defined clinical superiority is
only 48%. The probability of a net clinical
benefit exceeding 1% is only 36%, and the
probability of increased stroke with t-PA
is 86%. The salient elements of Figures 2
through 4 are displayed in Table 2.

COMMENT
The current study demonstrates sev¬

eral advantages of a Bayesian analysis.
The most apparent is that the analysis
permits the direct answer as to the prob¬
ability that t-PA is superior to SK. It also

permits the calculation of the probability
ofclinical superiority. The answers, how¬
ever, can vary since readers must each
draw their own conclusions by selecting
the posterior distribution that belongs to
the prior distribution most closely
matching their own initial personal be¬
liefs. The GUSTO investigators sug¬
gested a minimum clinical superiority
based on economic factors of one life
saved per 100 patients treated, but Table
2 could be expanded to include any per¬
sonalized prior distribution and clinical
superiority cut point.

The Bayesian analysis presented
herein suggests that restraint in accept¬
ing t-PA into routine clinical practice
would be appropriate. The same con¬
clusion was reached by Dr Diamond and
colleagues,15 who used a Bayesian point
null hypothesis test. When one accepts
only partial recognition (50%) of previ¬
ous randomized clinical trials, the prob¬
ability that t-PA is superior to SK for
mortality or net clinical benefit is only
44% and 24%, respectively. The prob¬
ability that either mortality or net clini¬
cal benefit would exceed clinical impor¬
tance with the 50% assumption is much
less than 1%. Even if one totally ignores
all prior studies, the chance that t-PA
would exceed the clinical superiority cut
point for mortality and net clinical ben¬
efit is only 48% and 36%, respectively.

Neither  values nor the Bayesian
analysis presented herein measures po-

tential bias or confounding. The GUSTO
trial was unblinded, which may lead to
some degree of confounding. For ex¬

ample, while not reported in the original
article, it appears that 9.5% of the t-PA
group underwent coronary artery by¬
pass surgery compared with 8.5% in the
SK group. This difference may have con¬
tributed to the observed mortality dif¬
ferences. A Bayesian approach to ad¬
justments for a wide variety of biases is
described by Eddy et al.12

In assessing the public health impact
of choosing a thrombolytic agent, the fol¬
lowing seems clear.  values or confi¬
dence intervals from conventional statis¬
tical analysis are poor tools for formulat¬
ing public health policy, even when there
is a considerable amount ofdata from the
best-designed randomized clinical trials.
This is due to the shortcomings of stan¬
dard significance tests in addressing clini¬
cally relevant questions and to the prob¬
lems in their interpretation, especially
across different sample sizes. Further¬
more, classical analysis of clinical trials
does not easily permit the synthesis of
trial results with the range of clinicians'
prior beliefs. This makes it difficult to
evaluate the coherency of the conclusions
and what clinical impact the conclusions
should have. Bayesian analyses along the
lines presented herein may help to over¬
come these problems, thereby raising the
level of debate following publication of a
clinical trial.
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