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for the observed x. Note that the likelihood ratios for the two experiments
are also the same when 2 is observed, and also when 3 is observed. Hence,
no matter which experiment is performed, the same conclusion about 6
should be reached for the given observation.

This example clearly indicates the startling nature of the Likelihood
Principle. Experiments E, and E, are very different from a frequentist
perspective. For instance, the test which accepts # = 0 when the observation
is 1 and decides 6 =1 otherwise is a most powerful test with error prob-
abilities (of Type I and Type II, respectively) 0.10 and 0.09 for E,, and
0.74 and 0.026 for E,. Thus the classical frequentist would report drastically
different information from the two experiments.

The above example emphasizes the important distinction between initial
precision and final precision. Experiment E, is much more likely to provide
useful information about 6, as evidenced by the overall better error prob-
abilities (which are measures of initial precision). Once x is at hand,
however, this initial precision is no longer relevant, and the Likelihood
Principle states that whether x came from E, or E, is irrelevant. This example
also provides a good testing ground for the various conditional
methodologies that were mentioned in Subsection 1.6.3. For instance, either
of the conditional frequentist approaches has a very hard time in dealing
with the example.

So far we have not given any reasons why one should believe in the
Likelihood Principle. Examples 15 and 16 are suggestive, but could perhaps
be viewed as refutations of the Likelihood Principle by die-hard classicists.
Before giving the axiomatic justification that exists for the Likelihood
Principle, we indulge in one more example in which it would be very hard
to argue against the Likelihood Principle.

ExAMPLE 17 (Pratt (1962)). “An engineer draws a random sample of electron
tubes and measures the plate voltages under certain conditions with a very
accurate voltmeter, accurate enough so that measurement error is negligible
compared with the variability of the tubes. A statistician examines the
measurements, which look normally distributed and vary from 75 to 99
volts with a mean of 87 and a standard deviation of 4. He makes the ordinary
normal analysis, giving a confidence interval for the true mean. Later he
visits the engineer’s laboratory, and notices that the voltmeter used reads
only as far as 100, so the population appears to be ‘censored’. This necessi-
tates a new analysis, if the statistician is orthodox. However, the engineer
says he has another meter, equally accurate and reading to 1000 volts, which
he would have used if any voltage had been over 100. This is a relief to the
orthodox statistician, because it means the population was effectively
uncensored after all. But the next day the engineer telephones and says, ‘T
Just discovered my high-range voltmeter was not working the day I did the
experiment you analyzed for me.” The statistician ascertains that the engineer
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would not have held up the experiment until the met.er was fixed, and
informs him that a new analysis will be required. The engineer is as:tounded.
He says, ‘But the experiment turned out just th'e same as if the high-range
meter had been working. 1 obtained the precise Voltage's of my sample
anyway, so 1 learned exactly what I would hgve learned if the' h1gh-ran,g’e:
meter had been available. Next you’ll be asking abou‘F my pscﬂloscope.

In this example, two different sample spaces are being discussed. If the
high-range voltmeter had been working,‘ th'e sa}mple.space wquld have
effectively been that of a usual normal distribution. Since the high-range
voltmeter was broken, however, the sample space was truncated z}t 100, and
the probability distribution of the observations would have' a point mass at
100. Classical analyses (such as the obtaining of COl’lf:ldeI‘lCC 1nterv.als‘) would
be considerably affected by this difference. The Likelihood Principle, on
the other hand, states that this difference should have no effect on the
analysis, since values of x whichdid not oceur (here x=100) have nc;
bearing on inferences or decisions concerning the .true mean. (A forma
verification is left for the exercises.)

Rationales for at least some forms of the Likelihood Pripciple exist in
early works of R. A. Fisher (cf. Fisher (1959)) and.espemally of G. A.
Barnard (cf. Barnard (1949)). By far the most persuasive argument for the
Likelihood Principle, however, was given in Birnbaum (.1962). (Tt should
be mentioned that none of these three pioneers were unequivocal supporters
of the Likelihood Principle. See Basu (1975) and Berger. and Wolpert (1984)
for reasons, and also a more extensive historical dlscuss1F>n ar_ld oth.er
references. Also, the history of the concept of “likelihood™ is reviewed in
Edwards (1974).) o o Cop

The argument of Birnbaum for the Likelihood Principle was a proof o
its equivalence with two other almost universally acceptegi ne'ltural prmmp%es.
The first of these natural principles is the sufficiency principle (see Section
1.7) which, for one reason or another, almost everyone accest. T.he secqnd
natural principle is the (weak) conditionality principle, Whlch is nothing
but a formalization of Example 14. (Basu (1975) explicitly named the
“weak” version.)

The Weak Conditionality Principle. Suppose one can perform either of two
experiments E, or E,, both pertaining to 6, and that the actule exper1m~e.nt
conducted is the mixed experiment of first choosing J =1 or 2 with probability
L each (independent of 6), and then performing experimemt E,. Then the actua‘;
information about 6 obtained from the overall mixed experiment should depen
only on the experiment E; that is actually performed.

For a proof that sufficiency together with weak condi'tionality imply the
Likelihood Principle in the case of discrete Z, see B.lrn.baum (1962) or
Berger and Wolpert (1984); the latter work also gives a similar development



