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SUMMARY

Several different criteria for Bayesian sample size determination have recently been propased. Bayesian approaches are
natural, since at the planning stage of an experiment one 1s forced to consider prior notions about unknown parameter
values that may affect the choice of a final sample size. For this, all the methods consider a priar distribution aver the
unknawn parameters. Differences between the methods have been driven by the type of inferences that will be made,
e.g. hypothesis testing or interval estimation, the latter based on posterior means and variances or highest posterior
density regions. A more fundamental question, however, is whether ta introduce formally a lass ar wility functian to
aid in choasing the sample size. In this paper, we discuss the advantages and disadvantages of taking a fully decision
thearetic approach versus one of the simpler approaches, which only implicitly consider utilities in balancing increased
precision against the increased costs assoclated with larger sample sizes. Throughout, we emphasize the practical
aspects of sample size estimation, raising issues that would face the consumer of statistics in selecting a sample size in
a given experiment.
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I. Introduction

The issue of sample size selection for a given experiment is frequently encountered by applied
statisticians. The general problem is to select a sample size to draw inferences about or to make
a decision regarding an unknown parameter §. Standard (non-Bayesian) solutions to this
problem, many of which are summarized in Desu and Raghavarao (1990), are deficient in that
the resulting sample size formula will typically require a point estimate 8 of the unknown 6.
This is problematic, since # will not usually be known with high precision at the planning stage
of the experiment, and the sample size formula can be very sensitive to the choice of 4.
Bayesian approaches replace the need to specify a point estimate by using a prior distribution
over the range of values for 8, allowing for a more satisfactory utilization of the available
information. The prior distribution leads to a predictive {marginal) distribution for the future
data x that incorporates the uncertainty of both the unknown 6 and the sampling variation of x
averaged over €. Sample size criteria can then be defined by taking expectations of various
quantities over this predictive distribution.

This Bayesian approach has been employed by Spiegelhalter and Freedman {1986) and
Spiegelhalter ef al (1994) in deriving the predictive power of a hypothesis test, and by Adeock
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(1987, 1988, 1992, 1995} and Pham-Gia and Turkkan (1992) in the context of interval
estimation based on normal approximations to the exact posterior densities or intervals based
on posterior means and variances. Joseph ez al. (1995a) proposed exact sample sizes leading to
highest posterior density (HPD) regions, whereas Joseph ef gl (1995h) summarized the differ-
ences between the interval-based approaches. In particular, for a given @, an average coverage
criterion {ACC) can be defined that ensures that the mean coverage of posterior credible
(ntervals of length /, weighted by the predictive distribution, is at least 1 — a. Analogously,
by considering fixed coverages, an average length criterion (ALC) can be defined. A conser-
vative criterion, labelled the worst outcome criterion (WOC), is defined by considering the
set 57 that consists of, for example, 80%, 95% or even 100% of the most likely data values
according to the predictive distribution, and simultaneously ensuring a sufficiently small / and
«a for all data vectors in & A 100% WOC is analogous to the choice of p = 0.5 in a binomial
frequentist sample size calculation. '

Such interval-based approaches are simple to apply, since all that need to be specified are [
and «, and of course the prior information. As recommended by Joseph ef al (1995a), the
sample sizes corresponding to the ACC, ALC and WOC can then be computed, with a final
choice based on the information that the calculations provide, while also balancing increasing
‘costs’ against increased precision of the estimates as the sample size increases. These costs
would not form part of the statistical caleulation.

Although much thought may go into the final choice, the decision would typically be made
only informally, which makes it possible (or even likely) that a different sample size would
have been ‘optimal’ if a formal utility function had been introduced. Lindley {1997) sum-
marizes a decision theoretic approach to sample size determination, recommending selection
of the sample size that maximizes a utility function that depends not only on the random
quantities & and x but also on the decision. As in Lindley {1997), we shall term this method
‘maximization of expected utility’ (MEU).

Theoretically, it is very difficult to argue against the incorporation of a utility into any
decision problem; coherent decisions can only be guaranteed by introducing utilities. For a
good discussion of such issues see Lindley (1985). However, the difficulty in specifying,
communicating and understanding utilities in practice means that simpler criteria may often be
preferred. Trade-offs between what may be axiomatically ‘correct’ and what is practical are
often required. A judgment must be made about whether a compromise solution is ‘real world’
optimal, or whether we can afford the luxury {in terms of the time, costs and other resources
that would be spent to make the decision) of a utility-based solution. We shall argue that,
largely owing to the nature of many sample size problems in practice, the former is often the
preferred aption.

2. Comparison of interval-based and decision theoretic Bayesian approaches

We now compare the above two approaches to sample size determination by listing their
main contrasts, and we discuss the implications of each.

2.1, Maximization of expected utility formally incorporates a wtility function, whereas
interval-based methods do not

We agree with Lindley (1997) that the incorporation of a utility function is a strong point in
favour of MEU aver any other method that is not based on utilities. However, we must be able
to propose a useful and meaningful utility function to operationalize the MEU criterion. It is
this step that may cause several problems in practice.

(a) In many cases, reasonable candidates for utility functions may not be apparent. Most
experiments involve much more than simply accepting or rejecting a batch of items and
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the relatively simple costs associated with such actions; the true situation can be very
complex indeed. For example, we may wish to minumnize harm to prospective participants
in setting up a clinical trial to evaluate a new drug. How many subjects should we choase
to balance the risks to each individual participant, while still ensuring that the experiment
has a good chance of providing sufficient information to aid in the treatment of future
patients? Further compounding the issue is that there may be multiple risks and benefies
of the drug, some of which may be unforeseen. How would we choose a ‘cost’ in such a
setting? More generally, how do we place a cost on the effects of a drug on a life even if
we know what the effects are? Although Lindley and Singpurwalla (1991) have explicitly
addressed decision theoretic sample sizes for such situations, the suggested forms of the
utilities do not generally approach the complexities of the true situation. Thus, it is
reasonable to wonder whether we are further ahead maximizing a utility that may fail to
capture important aspects of the problem adequately. Interval-based methods side-step
rather than address this problem, of course, but they do allow a sample size to be
selected with all considerations in mind, without the perhaps hopeless task of choosing a
particular utility to be maximized.

(b) A related point is that, even if reasonable utility functions are available, there is no
guarantee that everyone will agree on which should be used. This can be very important,
since often many interested parties may be involved in any given experiment, all of
whom will have many different uses for the experimental results, and who may be
bearing different parts of the costs (both monetary and otherwise). For example, a
pharmaceutical company may be interested in evaluating a new drug. From a corporate
point of view, they may wish to maxumize profits, ie. they wish to carry out an
experiment at minimum cost that will help them to decide how to market the drug (even
this is a gross aversimplification). Participants, future users and government regulatory
agencies will surely have different priarities, and coming to a consensus on maximizing a
particular utility would be very difficult. It may be much easier to agree on the degree of
accuracy required for the experiment to pravide useful information to all involved.

(c) In addition, utilities usually must reduce several different aspects to a single unitless
dimension, whose meaning may be difficult to interpret. For example, aithough much
effort has recently gone into utilities of various health states, the issue is very far from
settled. If we are not satisfied that we have a good utility measure, how confident should
we be in using them to plan studies?

2.2, Maximization of expected utility can be used for planning both inferential and operational
experiments, wheveas interval-based methods directly apply only to inferential sample size
ealculations

The dual planning generality is clearly an advantage of MEU, provided that the problem
lends itself to a clear utility function. In practice, this may be difficult to specify, since, as
Lindley (1997) notes, it may ‘depend on the practicalities of the situation’, and these may be
complicated, as in the examples above. However, if knowing 6 to a specified degree of
accuracy ensures that a good decision will probably be made, then the potentially difficult step
of specifying the utility can be avoided. Although there is potential for loss of optimality in
any given experiment, there are great gains in ease of implementation for standard situations.
For example, solutions have been derived and easy-to-use software has been made available for
the ACC, ALC and WOC for single binomial (Joseph et al, 1995a), difference between two
binomial (Joseph et «4f., 1997) and normal and difference between two normal (Joseph and
Bélisle, 1997) sampling situations. To obtain copies of this software, send the electronic mail
messages ‘send bhpd]l from general’, ‘send samplesize-prop from S’ and ‘send samplesize-
mean from §' to statlib@lib.stat.cmu.edu, for single binomial, two binomial and
normal sampling respectively.
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2.3. Average coverage criterion, average length criterion and maximization of expected wtility
are Bayesian in that they average over random quantities of interest, whereas worst outcome
criferion does not have this property

Although Lindley {1997) uses the Bayesian argument as a reason for dismissing the WOC,
others have found it very useful in practice (DasGupta, 1995). Along with the ACC or ALC,
the 100% WOC may be useful in setting an upper bound for the sample size. Other precentage
WOC sizes can aid in clearly exposing the trade-offs between the accuracy of the inferences
and the sample size. Remember that a sample size from the ACC or ALC that is selected for a
given [ and a will attain or exceed these limits only approximately 50% of the time, so that
one may wish to attain the target values more often than “on average’.

24 Adverage coverage criferion, average length criterion and waorst outcome criterion pre-
scribe the decision to be taken for each possible x in advance, since they will all report a
highest posterior density region with | and/or a fixed in advance as the final inferential decision:
maximization of expected utility, in contrast, maximizes over the decision as well for example,
allowing an optimal balance between coverage and length to be part of the sample size
decision, thus, choosing the ‘best estimator’ is an unnecessary question

This is an illustration of the additional flexibility of allowing the decision d to depend on
the data, rather than specifyving the decision in advance. However, in practice, it is difficult to
think of a case where this would be a serious concern, for several reasons. If the posterior
distributions are reasonably smooth, there will not normally be large reductions in lengths of
intervals for small changes in coverage. Any such relationships may be found by calculating
sizes from interval-based methods for a range of e~ and Il-values. Similarly, ¢ and ! may be
adjusted depending on the prior information about 8; for example, we may wish to decrease !
for 8 near 0 or 1. It is also difficult to think of situations where reporting non-HPD regions
waould be preferred to HPD regions, although if this were the case the interval-based criteria
could also be adjusted accordingly.

2.5. Maximization of expected utility is necessarily constructed fo be coherent in the sense of
Savage (1934), whereas average coverage criterion, average length criterion and worst outcome
criterion may possibly be incoherent in this sense

As Lindley (1997) admits, at the moment coherence remains only an intriguing possibility,
and it is not clear whether it would have any practical importance in most situations.

2.6, Maximization of expected utifity intvoduces a specific cost of sampling, whereas other
approaches do not

Again, although a specific cost of sampling is desirable in theory, difficulties in specifying
costs may often make it less so, especially since costs must be represented on the same scale
as the utility measure. Neither of the two specific examples of such costs provided by Lindley
seem to be very persuasive. In one instance, a cost of ¢ = 0.00021] is deduced while com-
paring the ALC with MEU for binomial sampling, meaning, for example, that one is willing to
invest in 47 obseevations to reduce the length of the HPD interval by 1%. Although this may
be a useful point to consider, since the value of ¢ changes with [, it is not obvious how it
could have been deduced as the value of ¢ on which to have calculated an MEU sample size
in the first place. A utility based on Shannon information is used to deduce that # = ¢/2 in
the case of normal sampling. Thus, if we are willing to pay £40 for a unit increase in
information where each individual costs £1, then we should take 20 observations. However,
this appears to assume that the utility of an increase in information is constant, regardless of
the information already gathered, which surely is not carrect in miost situations, so that again
the choice of ¢ is not apparent.
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3. Concluding remarks

There is no doubt that we should make coherent decisions whenever possible. Realistic
utilities may often be difficult to specify for many practical courses of action. Therefore,
inferential formulations will often be used to make sample size decisions. We can either
attempt to form a reasonable inferential utility function to maximize, or more informally
consider the information provided by the various interval-based criteria together with all other
relevant information at hand. As Lindley (1997) points out, decision theoretic criteria were first
proposed more than 35 years ago (Raiffa and Schlaifer, 1961). That virtuaHy all sample size
calculations performed today are not based on these criteria is potent evidence that there 18
strong resistance to applying them in practice, which we suggest is largely due to the problems
in deriving utility functions and specifying their parameters in particular applications.

Of course, we are in full agreement with much of what Lindley (1997) suggests. Although
we have focused on the possible practical problems that may arise in implementing decision
theoretic sample size criteria, the utility functions contained in Lindley {1997) may be
petfectly adequate for some situations. It is also possible that further research into the idea of
utility would make 1its consideration seem as natural to applied researchers as criteria based on
interval lengths and posterior probability coverages, which one can argue are ‘natural’ only
because they are familiar. Lindley (1997) has pointed out that the ACC, ALC and WOC do
not represent the final word in sample size computation. There is no doubt that further work
on the implementation of coherent utility-based methods needs to be done.
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