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Hierarchical Models in Linear and Logistic Regression

Basic Ideas

The literature on random effects models (term generally used by frequentists) or
hierarchical models (term generally used by Bayesians) is huge, deserving of an entire
course (or two) by itself. We will focus on getting the basic idea, and some simple
examples.

What do we mean by a hierarchical or random effects model?

These sorts of models refer to when the parameters of models themselves have dis-
tributions (hence there is a hierarchy of parameters), or the parameters come from
random distributions (hence the term random effects).

For example, consider the basic simple linear regression model:

Y = α + βX

This model assumes that for each individual contributing data, the effects (both
intercept and effect of X as given by β) are identical. In other words, all subjects are
subject to the identical intercept and slope.

It is easy to imagine that this is often not the case. Consider, for example, giving
an individual a drug to increase their bone mineral density (BMD). Now, in a simple
model we might assume that β is constant across individuals, but, more realistically,
one might consider β as a mean or average effect, and the effects for each individual
(owing to body chemistry, other medications they may be taking, etc.) may be
different.

Now, if we knew all of these effects, we may begin creating interaction models, which
would allow the slope (effect of the drug on BMD) to depend on other characteristics.
But if there are one or more unknown effects, we can create a hierarchical or random
effects model as follows:

Y = α + βfixedX + βrandomX

βrandom ∼ N(0, σ2)
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or equivalently

Y = α + βX

β ∼ N(µβ, σ
2)

Even simpler, we can have random effects / hierarchical models on the parameters of
a normal distribution. Consider the following example:

Suppose that mean diastolic blood pressure varies randomly in a population with
a mean of 70 mmHg, and standard deviation 10 mmHg. Suppose that in addition,
however, each individuals blood pressure also varies throughout the day about their
own individual means, with a standard deviation of 5 mmHg.

How could we model this situation?

Suppose we have m measures on each of n subjects. The following model seems to
mirror the two sources of variability:

xij ∼ N(µi, σ
2
w), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

µi ∼ N(µ, σ2
b ), i = 1, 2, . . . , n

Given some data and the above model, we could estimate the parameters from either
a frequentist or Bayesian perspective. We will simulate some blood pressure data,
and then show how estimation is done in WinBUGS.

# Simulate data for each individual in two stages:

# First stage: Randomly select means for each of 100 subjects:

> bp.means <- rnorm(100, mean=70,sd=10)

> bp.means

[1] 76.27620 73.28998 81.77357 71.82937 65.39472 ... etc ....

# Second stage, generate 10 individual data points

# for each of 100 subjects, one subject per row of the data set
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# Create an empty vector to store individual data

> bp.data <- rep(NA, 1000)

# Fill in vector with individual values of correct means

> for(i in 1:100) {

for(j in 1:10) {

bp.data[10*(i-1) + j] <- rnorm(1, mean=bp.means[i], sd=5)

}

}

# Note how bp.means match each row

> bp.data

[1] 78.491 81.989 77.345 78.327 75.952 86.086 81.257 75.299 69.783 71.300

[11] 72.918 70.602 65.253 70.061 75.387 69.744 68.688 68.035 67.458 82.689

[21] 82.443 78.124 71.675 77.090 90.796 86.059 81.560 83.870 82.229 76.975

[31] 70.801 79.688 81.731 77.678 73.670 69.109 75.066 68.126 80.726 68.882

[41] 66.379 60.884 69.669 69.959 59.245 61.227 71.388 76.070 64.878 66.273

[51] 63.037 58.527 59.353 54.285 59.518 61.577 55.452 65.067 62.005 65.482

................ etc ..........................

We will now create a program to analyze these data in WinBUGS:

# First convert data set from R for use in WinBUGS

> dput(bp.grouped$bp, file="g:\\bp.txt")

# We will cut and paste this file into a WinBUGS analysis window.

Write the program for WinBUGS:
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model {

for( i in 1:100) # Loop over 100 subjects {

for (j in 1:10) # Loop over 10 data points per subjet

{ # Note [j,i] not [i,j]

bp[j,i] ~ dnorm(mu[i] , tau.w) # Data are normally distributed

} # about individual mean mu[i]

mu[i] ~ dnorm(mean.bp, tau.b) # Means are normally distributed

} # with overall mean mean.bp

mean.bp ~ dnorm(70, .001) # Prior for mean BP, var = 1/0.001 = 1000

tau.w <- 1/(sigma.w*sigma.w) # Prior for within SD (precision)

sigma.w ~ dunif(0,100)

tau.b <- 1/(sigma.b*sigma.b) # Prior for between SD (precision)

sigma.b ~ dunif(0,100)

}

# Initial Values

list(sigma.w = 7, sigma.b = 12, mean.bp = 70)

# Data

# Note some changes needed from simple dput file:

# Add .Data word, reverse .Dim

list(bp=structure(.Data=c(78.491534163798, 72.9179967852737,

82.4433694101257, 70.8014851147823, 66.3791467338957,

63.0373238043374, 67.4878552683662, 85.0656743211218,

79.0398796878923, 78.5438769720441, 78.7772194526441,

71.9931192939269, 53.0873697753945, 59.7622998188586,

.................... etc ...........................

77.5633200078565, 58.1785984593208, 67.7575083592776,

78.578700312957, 60.9872446515102), .Dim = c(10, 100)))

# Results

node mean sd MC error 2.5% median 97.5% start sample

mean.bp 70.59 0.9571 0.009583 68.73 70.58 72.47 1001 10000

mu[1] 77.39 1.616 0.0165 74.22 77.4 80.57 1001 10000
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mu[2] 71.07 1.615 0.01547 67.95 71.07 74.2 1001 10000

mu[3] 80.74 1.632 0.01429 77.55 80.73 83.95 1001 10000

mu[4] 74.44 1.614 0.01631 71.28 74.42 77.55 1001 10000

mu[5] 66.7 1.644 0.0169 63.49 66.73 69.89 1001 10000

............................. etc ................................

mu[99] 72.54 1.614 0.01439 69.4 72.53 75.73 1001 10000

mu[100] 61.82 1.606 0.01577 58.68 61.81 64.94 1001 10000

sigma.b 9.592 0.7088 0.007846 8.305 9.553 11.1 1001 10000

sigma.w 5.204 0.1227 0.001459 4.968 5.203 5.453 1001 10000

tau.b 0.01104 0.001616 1.768E-5 0.008123 0.01096 0.0145 1001 10000

tau.w 0.03698 0.001744 2.065E-5 0.03363 0.03693 0.04052 1001 10000

Note the overall excellent results across all parameters.

Advantage of hierarchical models

Consider the BP example again. At one extreme, we could consider that each person
has their own mean, and estimate the means 10 data points at a time. In other words,
no pooling of data.

Advantage: Unbiased individual estimates. Disadvantage: Low accuracy

At the other extreme, we can consider all subjects similar enough, and just estimate
a single pooled estimate.

Advantage: High accuracy. Disadvantage: No individual estimates.

Hierarchical estimates are a compromise between these two extremes. One lets the
data decide on the degree of pooling. The more similar the mean estimates are, the
smaller σb will be, and the more pooling takes place. The more different the individual
means are, the larger σb will be, and less pooling takes place.

Advantages: High accuracy while retaining individual estimates.

Disadvantage: Some slight bias may be introduced to individual estimates, although
overall Mean Square Error is optimized.

Example of “bias” in BP example:

Compare mean estimates from “straight average of 10 individual values” to means
estimated by hierarchical (random effects) model:
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Subject Mean Ind. Mean Hier Model
1 77.58343 77.39
2 71.08405 71.07
3 81.0827 80.74
4 74.548 74.44
5 66.59765 66.70

Recall that the overall mean was 70.59, and note that all estimates from the hierar-
chical model are slightly moved towards that value. This is the slight effect of pooling
here, only slight because σb was rather large. If we repeat the exercise with a smaller
values for σb, this “borrowing of strength” or “movement towards the middle would
be larger.

The effect will also tend to be larger when there is a smaller number of observations
per subject.

Hierarchical Models in Logistic Regression

Motivation by Example

Suppose that we have a data set where nine different MD’s made decisions on 133
patients in total. On average, about 15 patients per MD, although the data were
not evenly distributed across MDs. The decisions involved whether to give a patient
thrombolysis or not in the emergency room.

There are Canadian guidelines as to whether to thrombolyse such patients or not,
so each physician was evaluated as to whether they followed the guidelines for each
subject they treated or not. For example, the first physician followed the guidelines
in 19 out of 20 patients she/he treated. While each physician has their own rate of
“success” (following the guidelines), it may be that overall, these rates may themselves
follow a pattern, i.e., have a statistical distribution.

The question is:

How can we best estimate each physician’s rate of correct decision making?

If we use each physician’s rate separately, then the sample sizes will be too small.

For example, the largest number of patients contributed by any MD was 24, and so
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we would expect a very wide interval estimate from even the best case scenario.

On the other hand, it is probably quite unreasonable to assume that the true rate of
correct decision making is constant across physicians, as each has their own training,
background, and so on. Thus, we expect rates to different across physicians.

So, pooling of all data would provide an accurate estimate, but ignores individual
variability. Individual estimates take each MD’s ability into account, but will lead to
very poor accuracy owing to small sample sizes.

Is there a way to address this problem?

One answer is to use a hierarchical/random effects model, which allows us to reason-
ably accurately estimate both individual and overall rates of guideline adherence, in
exchange for an assumption: That the nine MDs are like a sample from a group of
MDs that collectively have rates that follow a statistical distribution. This “higher
level” distribution is why these models are called “hierarchical models”.

The data are from the MSc thesis of Dr. Michael Schull.

Model We will now program this problem using a hierarchical model in WinBUGS.

model # Usual model statement in WinBUGS

{

for (i in 1:nmd) { # Loop over number of MDs = 9

x[i] ~ dbin(p[i],n[i]) # For each MD, number of

# successes is binomial

# with size = n[i], rate = p[i]

logit(p[i]) <- z[i] # Create a hierarchical

z[i] ~ dnorm(mu,tau) # distribution, by letting

} # logit of rates be normally

# distributed

# z is a "transformed" variable

# representing the rates p[i]

# on the logit scale

mu ~ dnorm(0,0.001) # Prior distribution for mu

tau ~ gamma(0.001, 0.001) # Prior distribution for tau

y ~ dnorm(mu, tau) # Predictive distribution for rate on logit scale

sigma <- 1/sqrt(tau) # Prior SD on the logit scale, FROM TAU

w <- exp(y)/(1+exp(y)) # Predictive dist transformed back to prob scale

}
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Data

list(n=c( 20, 6, 24, 13, 12, 4, 24, 12, 18),
x=c( 19, 5, 22, 12, 11, 4, 23, 12, 16),
nmd=9)

Initial Values

list(mu=0, sigma=1)

Results

node mean sd MC error 2.5% median 97.5% start sample
mu 2.642 0.3716 0.0294 1.973 2.63 3.357 1001 5000
tau 215.9 403.8 21.61 1.189 51.67 1447.0 1001 5000

sigma 0.2245 0.2467 0.01485 0.02631 0.1393 0.9187 1001 5000
p[1] 0.9301 0.02673 0.0018 0.8693 0.9332 0.9718 1001 5000
p[2] 0.9242 0.03447 0.002022 0.8463 0.9294 0.9689 1001 5000
p[3] 0.9277 0.0266 0.001763 0.8665 0.9316 0.9684 1001 5000
p[4] 0.9281 0.02856 0.001852 0.8598 0.9321 0.9712 1001 5000
p[5] 0.9279 0.0286 0.001851 0.8635 0.9319 0.9721 1001 5000
p[6] 0.9293 0.02987 0.001896 0.8636 0.9333 0.9758 1001 5000
p[7] 0.9313 0.02574 0.001803 0.8745 0.9343 0.9739 1001 5000
p[8] 0.932 0.02688 0.001838 0.8748 0.9347 0.9779 1001 5000
p[9] 0.9257 0.0288 0.001872 0.8595 0.93 0.9677 1001 5000

w 0.927 0.03535 0.001954 0.8524 0.9324 0.9725 1001 5000
y 2.638 0.4917 0.02993 1.753 2.624 3.565 1001 5000

Rerunning above, but with data changed so that first row is 10/20. Note how this
“outlier” is not pulled back as strongly towards the overall mean.
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node mean sd MC error 2.5% median 97.5% start sample
mu 2.347 0.6308 0.02193 1.315 2.286 3.806 1001 4000
p[1] 0.5969 0.1161 0.003224 0.366 0.6 0.8094 1001 4000
p[2] 0.8614 0.0981 0.001751 0.6063 0.8834 0.9825 1001 4000
p[3] 0.9076 0.05137 0.001297 0.7848 0.9152 0.9808 1001 4000
p[4] 0.9075 0.06156 0.001603 0.7596 0.9193 0.9889 1001 4000
p[5] 0.9027 0.06282 0.001518 0.7504 0.9153 0.9875 1001 4000
p[6] 0.9104 0.07954 0.001975 0.6975 0.9322 0.9972 1001 4000
p[7] 0.933 0.04373 0.001305 0.8296 0.9413 0.9918 1001 4000
p[8] 0.9404 0.05143 0.001714 0.8086 0.9537 0.9982 1001 4000
p[9] 0.8888 0.06163 0.001315 0.7372 0.8989 0.9775 1001 4000

sigma 1.205 0.5925 0.02313 0.366 1.106 2.64 1001 4000
tau 1.525 2.806 0.1283 0.1441 0.8176 7.476 1001 4000

w 0.8579 0.1527 0.002682 0.385 0.9027 0.9957 1001 4000
y 2.339 1.452 0.03215 -0.4683 2.228 5.446 1001 4000

Rerunning above, but with data changed so that first row is 100/200. Now very
strong outlier, results stays near 50% observed rate.

node mean sd MC error 2.5% median 97.5% start sample
mu 2.399 0.6767 0.01764 1.236 2.345 3.935 1001 4000
p[1] 0.5088 0.03571 5.547E-4 0.4406 0.5092 0.5817 1001 4000
p[2] 0.8565 0.1035 0.002056 0.5942 0.8801 0.9838 1001 4000
p[3] 0.9104 0.05155 9.935E-4 0.7889 0.9198 0.9822 1001 4000
p[4] 0.91 0.06435 0.00122 0.746 0.9248 0.99 1001 4000
p[5] 0.9066 0.06611 0.001272 0.7396 0.9202 0.9895 1001 4000
p[6] 0.9191 0.08212 0.002 0.6984 0.9439 0.9985 1001 4000
p[7] 0.9397 0.04166 8.286E-4 0.8367 0.9485 0.9934 1001 4000
p[8] 0.9499 0.04702 0.001143 0.8217 0.9635 0.9989 1001 4000
p[9] 0.8894 0.06441 0.001169 0.7325 0.902 0.9784 1001 4000

sigma 1.433 0.6118 0.01963 0.6696 1.311 3.024 1001 4000
tau 0.7414 0.5728 0.01634 0.1097 0.5827 2.242 1001 4000

w 0.8457 0.1816 0.003351 0.2951 0.9117 0.9977 1001 4000
y 2.396 1.714 0.03377 -0.8707 2.335 6.091 1001 4000

So, to summarize:

The hierarchical model allowed one to estimate the rate of each physician reasonably
accurately, assuming the model is reasonable.

When all rates were similar, sigma is small, and rates are bunched together (a lot
of “borrowing of strength”). When one (or in general, any number) rate sticks out
from the rest, the degree of “pull” back towards the overall mean depends on how
strong the result is (which in turn, depends on how different it is, and on the sample
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sizes. Note that sigma grows in size as the individual rates are spread further apart,
meaning less “pull” back towards the overall mean.

Using this model, can also predict what the overall rate is, as well as the rate for the
“next similar physician”.

Example 2: Hierarchical Logistic Regression

The above example used a logit function, but there were no covariates. as we saw for
linear regression, on can also place hierarchical components on intercepts and beta
coefficients.

Consider the following example:

We would like to estimate the rates of osteoporosis in Canada, but believe that they
differ not only by age and sex (higher rates in older females compared to younger
males), but also by province.

We have a data set of 10,000 female subjects, 1000 from each province. For each
subject, we have their age, province, and whether they have been diagnosed with
osteoporosis.

The data are in a file called osteo.txt, and we will create a hierarchical model that
accounts for possible differences across provinces, and provides probabilities that one
province has a higher rate compared to any other province.

The data structure is as follows:

The first 1000 data points are from Newfoundland, the next 1000 from Nova Sco-
tia, the next 1000 from New Brunswick, and then PEI, Quebec, Ontario, Manitoba,
Saskatchewan, Alberta, and BC, in that order.



11

model # Usual model statement in WinBUGS

{

for (j in 1:10) # Loop over 10 provinces

{

# Common index trick

for (i in index[j]:index2[j]) # Index for jth province

{

logit(p[i]) <- alpha[j] + beta*age[i] # Logit for individual probability

osteo[i] ~ dbern(p[i]) # Likelihood function for ith individual

} #

alpha[j] ~ dnorm(mu, tau) # Hierarchical component: provincial rates

} # "tied together" through normal distribution

mu ~ dnorm(0,0.001) # Prior on hierarchical mean

tau <- 1/(sigma*sigma) # Needed for WinBUGS

sigma ~ dunif(0,20) # Prior for hierarchical Sd

beta ~ dnorm(0, 0.001) # Prior for beta

pred.NFLD.50 <- exp(alpha[1] + beta*50)/(1+exp(alpha[1] + beta*50))

pred.QUEBEC.50 <- exp(alpha[5] + beta*50)/(1+exp(alpha[1] + beta*50))

pred.BC.50 <- exp(alpha[10] + beta*50)/(1+exp(alpha[10] + beta*50))

diff.quebec.bc <- pred.QUEBEC.50 - pred.BC.50 # Quebec - BC diff

p.quebec.bc <- step(pred.QUEBEC.50 - pred.BC.50) # p(Quebec > BC)

}

# Inits

list(alpha=c(0,0,0,0,0,0,0,0,0,0), beta=0.5, mu=0, sigma = 1)

# Data

list(index = c(1, 1001, 2001, 3001, 4001, 5001, 6001, 7001,

8001, 9001),

index2 =c(1000, 2000, 3000, 4000, 5000, 6000, 7000,

8000, 9000, 10000),

age=c(39, 25, 36, 68, 67, 50, 39, 68, 31, 30, 54, 30, 30,

71, 30, 28, 49, 54, 29, 61, 35, 52, 29, 74, 70, 50, 41, 74, 74,

38, 29, 41, 27, 28, 57, 32, 32, 64, 45, 60, 56, 66, 65, 40, 64,

58, 51, 30, 48, 63, 50, 52, 67, 47, 44, 37, 41, 32, 35, 27, 58,

......................etc.................

55, 40, 27, 33, 37, 39, 28, 75, 37, 52, 57, 67, 25, 33, 34, 55,

39, 46, 28), osteo=c(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,
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......................etc.................

0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0,

1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,

0, 0, 1, 1, 1, 1, 1, 1))

The results are as follows:

node mean sd MC error 2.5% median 97.5% start sample

alpha[1] -0.6307 0.09387 0.003661 -0.8123 -0.6306 -0.4466 1001 10000

alpha[2] -0.5916 0.09053 0.00362 -0.7634 -0.5923 -0.414 1001 10000

alpha[3] -0.437 0.08762 0.003624 -0.6053 -0.4376 -0.2607 1001 10000

alpha[4] -0.4934 0.08708 0.003542 -0.6622 -0.4931 -0.3201 1001 10000

alpha[5] -0.4047 0.0882 0.003568 -0.5745 -0.4054 -0.2329 1001 10000

alpha[6] -0.3533 0.09058 0.003677 -0.5269 -0.3532 -0.1722 1001 10000

alpha[7] -0.3739 0.09001 0.003639 -0.5478 -0.3743 -0.1951 1001 10000

alpha[8] -0.4318 0.08846 0.003605 -0.6019 -0.433 -0.2543 1001 10000

alpha[9] -0.4584 0.0879 0.003628 -0.627 -0.4588 -0.2862 1001 10000

alpha[10] -0.5 0.087912 0.003544 -0.6734 -0.5013 -0.3295 1001 10000

beta 0.002226 0.001352 6.719E-5 -4.721E-4 0.002239 0.004797 1001 10000

diff.quebec.bc 0.06421 0.03328 4.504E-4 0.003522 0.06245 0.1322 1001 10000

mu -0.4677 0.08147 0.003604 -0.6229 -0.4686 -0.3052 1001 10000

p[1] 0.3674 0.01559 3.223E-4 0.3369 0.3675 0.3984 1001 10000

p[2] 0.3602 0.01694 4.869E-4 0.3275 0.3602 0.394 1001 10000

p[3] 0.3659 0.01579 3.533E-4 0.3348 0.3659 0.3973 1001 10000

p[4] 0.3825 0.01654 3.561E-4 0.3499 0.3826 0.415 1001 10000

p[9998] 0.3982 0.014 2.502E-4 0.3705 0.3983 0.4261 1001 10000

p[9999] 0.4019 0.01366 1.677E-4 0.3749 0.402 0.4289 1001 10000

p[10000] 0.3924 0.0152 4.08E-4 0.3623 0.3923 0.4223 1001 10000

p.quebec.bc 0.9823 0.1319 0.001347 1.0 1.0 1.0 1001 10000

pred.BC.50 0.4041 0.01363 1.404E-4 0.377 0.4041 0.4311 1001 10000

pred.NFLD.50 0.3731 0.01532 2.523E-4 0.3428 0.3731 0.4033 1001 10000

pred.QUEBEC.50 0.4683 0.03007 3.949E-4 0.4144 0.4666 0.5307 1001 10000

sigma 0.1212 0.04609 8.6E-4 0.05246 0.114 0.2299 1001 10000

tau 172.6 1786.0 69.06 18.95 76.94 364.7 1001 10000

One could have predicted rate for next person from each province of a given age, and
so on. Note that sigma was relatively large (on the logit scale) indicating substantial
differences in rates between provinces. Note that Quebec is highly likely to have a
larger rate than BC, with probability = 0.98. Also, note the very direct statement
arising from this variable, in comparison with p-values.
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Situations where random effects or hierarchical mod-

els can be used

• Repeated measures models: Random effects/hierarchical models are especially
useful when subjects are followed over time, where each subject will contribute
their own regression over time, so each subject will have their own individual
intercept and slope. Putting a hierarchical model on the intercepts and/or slopes
will improve individual estimates (again, at the expense of a small amount of
individual bias, and decreased overall mean square error).

• Nested data collection: Suppose patients are nested within doctors treating
them, the doctors are nested within hospitals where they work, hospitals are
nested within health regions, which are nested within cities, which are nested
within provinces, which are nested within the same country. A multiple layers
hierarchical model can then be used to take into account the complex data
structure.

• Unknown interactions: A medication, for example, may act differently on each
and every subject (indeed, this is almost always the case, although individual
variation may be large or small). If factors which may effect how the drug works
for a given individual are unknown or unrecorded, then a hierarchical model can
be used (as in our introductory example).

• One can have multiple level hierarchical models, accounting for hierarchical data
structure. For a detailed example see the paper:

Brophy J, Joseph L, Theroux P, on behalf of the Quebec Acute Coronary Care
Working Group. Medical decision making about the choice of thrombolytic
agent for Acute Myocardial Infarction. Medical Decision Making 1999;19(4):411-
418.

This paper used a four level model. It was programmed in WinBUGS, and
formed part of the PhD thesis of Dr. James Brophy.

• As discussed for linear regression models, one can almost always argue for a
hierarchial component to any regression model in epidemiology: Subjects are
treated by different physicians, in different hospitals, at different times, in dif-
ferent provinces, and so on.

Overall, hierarchical modelling is a very important topic, we have just scratched
the surface here, but be on the lookout for opportunities to better your models
through addition of hierarchical levels.

In short, in epidemiology, one can argue that just about every model should include a
hierarchical component, and, indeed, these models are becoming extremely popular.


