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sues Air: Berkson measurement error

Whittemore and Keller (1988) use an approximate maximum likelihood approach to analyse the
data shown below on reported respiratory illness versus exposure to nitrogen dioxide (NOy) in 103

children. Stephens and Dellaportas (1992) later use Bayesian methods to analyse the same data.

Bedroom NO, level in ppb (z)
Respiratory iliness (y) | <20 20--40 40+ Total

Yes 21 20 15 56
No 27 14 6 47
Total - 48 34 21 103

A discrete covariate zj (j = 1,2,3) representing NO; concentration in the child's bedroom classified

into 3 categories is used as a surrogate for true exposure. The nature of the measurement error
relationship associated with this covariate is known precisely via a calibration study, and is
given by

Xjp=atfzi+yg

where o = 4.48, 8 = 0.76 and g is a random element having normal distribution with zero mean

and variance o2 (= 1/7) = 81.14. Note that this is a Berkson (1950) model of measurement error,
in which the true values of the covariate are expressed as a function of the observed values.
Hence the measurement error is independent of the latter, but is correlated with the true
underlying covariate values. In the present example, the observed covariate z; takes values

10, 30 or 50 for j = 1, 2, or 3 respectively (i.e. the mid-point of each category), whilst x; is
interpreted as the "true average value" of NO, in group j. The response variable is binary,

reflecting presence/absence of respiratory iliness, and a logistic regression model is assumed.
That is

yj ~ Binomial(p;, n)
Iogit(pj) = 01+ 02X

where p; is the probability of respiratory illness for children in the jth exposure group.
The regression coefficients 61 and 6, are given vague independent normal priors.
The graphical model is shown below:
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model

{
for(iin1:J){

ylil ~ dbin(pfi], n(il)

logit(p[j]) <-theta[1] + theta[2] * X]]]
X[j] ~ dnorm(mu(j], tau)

mu[j] <- alpha + beta * Z]j]

}
theta[1] ~ dnorm(0.0, 0.001)

theta[2] ~ dnorm(0.0, 0.001)
}

Data

list(J = 3, y = ¢(21, 20, 15), n = (48, 34, 21), Z = ¢(10, 30, 50), tau = 0.01234, alpha = 4.48, beta = 0.76)
Inits
list(theta = ¢(0.0, 0.0), X= ¢(0.0, 0.0, 0.0))

Results
A 1000 update bumn in followed by a further 10000 updates gave the parameter estimates

a) Without over-relaxation.



node i mean sd MC errort2.5% median 97.5%

X[1] 12.57 7.979 0.204 -4.034 12.83 2717
X[2] 27.17 7.494 0.1085 12.66 27.08 422
X[3] 41.33 8.4 0.1784 2543 41.28 57.97
theta[1] -0.8276 0.7515 0.03839 -2.812 -0.6843 0.2217
thetal2] 0.04355 0.02906 0.001501 | 0.003022 | 0.03805 0.1201
b) With over-relaxation.

| node mean ‘ sd | MC error | 2.5% median | 97.5%

| X[1] 12.87 | 8.185 0.1593 -3.643 13.08 27.74
X[2] 27.42 | 7.432 0.05592 12.81 27.44 42.42
X[3] 1 41.43 8.472 0.1318 25,31 41.26 58.49
theta[1] | 0,893 0.898 0.03741 -3.445 -0.6819 0.2371
thetal2] ‘ 0.04524 0.03292 | 0.001379 | 0.00294 0.03772 0.1404

Re-parameterised model with centred covariates:

model
{

for(jin1:J){
yli] ~ dbin(p[j],nfi])
logit(p[j]) <- thetaO+ theta[2] * (X[j] - mean(mu(]))
X[j] ~ dnorm(mulj],tau)
mu[j] <- alpha + beta * Z[j]

}

thetaO ~ dnorm(0.0,0.001)

theta[2] ~ dnorm(0.0,0.001)

theta[1] <- thetaO - theta[2] * mean(mul[])

}
Data
list(J = 3, y = c(21, 20, 15), n = c(48, 34, 21), Z= ¢(10, 30, 50), tau = 0.01234,
alpha = 4.48, beta = 0.76)
Inits
list(theta = c(NA, 0.0), theta0 = 0.0, X = ¢(0.0, 0.0, 0.0))
Results

A 1000 update bum in followed by a further 10000 updates gave the parameter estimates, with over-relaxation.



node 1 mean | sd MC errorlZ.S% median 97.5%

X[1] | 13.49 8.595 0.144 £ -3.65 13.65 29.75

X[2] | 27.37 7.4 0.06966 13.04 27.31 | 4218

X[3] 40.8 8.612 | 0.1284 24.35 40.69 | 57.81
. theta[1] -1.027 1.842 [ 0.06678 -5.001 | -0.7077 0.3557
| theta[2] 0.05012 0.0671 0.002496 | -0.003214 | 0.03884 0.1966




