The Statistician (1997}
46, No. 2, pp. 209-228

Bayesian sample size determination for normal means and
differences between normal means

By LAWRENCE JOSEPH{?
Montreal General Hospital and MeGitl University, Montreal, Canada

and PATRICK BELISLE

Montreal General Hospital, Canada
[Received June 1995, Revised October 1996]

SUMMARY

Several criteria for Bayesian sample size determination based on lengths and caverages of posterior credible intervals
have recently appeared in the literature. Some but not all of these have been applied ta estimating sample sizes for
nomal distributions. [n this paper, these criteria are applied to find sample sizes for single normal means and
differences between two normal means, both when the variances are known and when they are unknown. Fully
Bayesian approaches as well as mixed Bayesian-likelihood approaches are cansidered. In the case of the difference
between two normal means, situations with equal and unequal variances of the two distributions are considered. In
addition to the rule that assumes equally sized groups, optimal solutions are determined which allow the sizes drawn
from the two populations te differ while minimizing their sum. Exact closed form solutions are available for many of
the situations, whereas numerical algorithms are described for others.

Keywords: Bayesian approach; Credible interval; Normal distribution; Optimal design; Predictive distribution; Sample
size

1. Iatroduction

Sample size determination is an important component of the planning of studies in many fields.
In accord with its stature in statistics, the normal distribution plays a central role in estimating
sample size requirements (Desu and Raghavarao, 1990; Lipsey, 1990; Lemeshow ez af., 1990).
Standard frequentist sample size formulae for the normal distribution such as

4g27*
= —-—F‘“"” (1)

guarantee that a 100(1 — o)% confidence interval will be of total length /, provided that the
variance is a priori known to be exactly equal to 02, where Z,_,, is the (1 — a/2)-percentile of
the standard normal distribution. There are three serious limitations to this formula. The first is
that before the experiment is carried out o will almost never be known with very high precision,
but the sample size suggested by inequality (1} is directly proportional to the square of o. The
second is that, regardless of the value of o used in inequality (1), final inferences are calculated
an the basis of the observed data, which are of course not known at the planning stage. The
third is that prior information may be available about the mean, and neglecting this can lead to a
larger sample size than is necessary.

In this paper, Bayesian approaches to sample size determination are discussed which
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address all three of these problems. Rather than a single value, a prior distcibution s assigned
to o which reflects the pre-experimental uncertainty about its value. This prior distribution is
then used to create a predictive distribution for the data, which places a weight an each data
set that may occur. The prior information about ¢ is updated with the information in the data
to form posterior inferences through Bayes theorem, often leading to sample sizes that are
different from these which would occur under non-Bayesian formulations.

Each potential data vector of length » leads to a different interval length for fixed coverage,
or conversely to a different coverage for a fixed interval length. Averaging these lengths or
coverages over the predictive distribution for the data leads to two different criteria for
Bayesian sample size determination. A third conservative criterion is obtained by considering
the set # that consists of, for example, 95% or 99% of the most likely data values according
to the predictive distribution, and simultaneously ensuring a sufficiently small interval length
and sufficiently large coverage for all data vectors in % The above three general criteria, first
compared 1n the context of binomial sampling in Joseph er af (1995a), are reviewed in Sec-
tion 2.

Many researchers have previously considered Bayesian approaches to sample size determin-
ation. For a single normal mean, Adcock (1988) developed closed form formulae for the cases
with known and unknown variance by averaging the coverage of fixed length posterior credible
sets over the predictive distribution of the data. We review Adcoack’s formulae in Section 3
below, and we use similar techniques to derive closed form formulae for the case of average
lengths of fixed coverage posterior credible sets, as well as ‘worst case’ criteria. For a com-
panison of two or more normal means, DasGupta and Vidakovic (1997} have investigated a
Bayesian approach to sample size estimation in analysis of variance,

Bayesian sample size estimation for a single binomial parameter has received considerable
attention: Adcack (1987, 1992, 1995), Pham-Gia and Turkkan (1992), Pham-Gia (1995) and
Joseph er al. (1995a,b). The case of a difference between two binomial parameters has been
considered by Joseph et al (1996).

Other work related to Bayesian sample size determination includes Adcock (1993), Berger
(1985), Goldstein (1981), Gould (1993), Hutton and Owens (1993} and Spiegelhalter and
Freedman (1986).

Sections 3, 4 and 5 apply the three criteria defined in Section 2 to the cases with a single
normal mean (for variance known and unknown), the difference between two normal means
with equal variances and the difference between two normal means with unequal variances
respectively. In all cases, the fully Bayesian approach and a mixed Bayesian-likelihood
approach are considered. The former utilizes the prior information for both the construction of
the predictive distribution of the data and for posterior inferences, whereas the latter substitutes
a normalized likelihood for posterior inferences while retaining the prior informatian for
deriving the predictive distribution of the data. The mixed Bayesian—likelihood approach is
intended for investigators who will use non-informative prior distributions or non-Bayesian
techniques when reporting final inferences, but who recognize the utility of prior information
for planning. In Sections 4 and 5, equal-sized groups as well as optimal allocation of the total
sample size are considered. Section & contains several examples, while a summary discussion
is found in Section 7. A computer program in the S-PLUS language that calculates sample
sizes for all sitwations discussed in this paper is available by sending the electronic mail
message ‘send samplesize-mean from 8’ to statlib@lib.stat.cmu.edu.

2. Criteria for Bayesian sample size determination

Let 8 € © be the parameter of interest, 7(8) the prior distribution, x = (x,, ..., x,) the data
of sample size n, & the data space, f(x) the predictive marginal distribution of the data and
f(8]x) the posterior distribution for & given data x. Then
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f®=memﬂmw @
5]
and

F(Olx) = f(x|8) f(B)/ f (x).

When using inequality (1), it suffices to specify !, « and a value for . In a Bayesian
approach, however, specifying /, @ and a prior distribution for 8 is insufficient, since a
decision is required regarding the data, which are of course unknown at the planning stage.
Consideration of the predictive distribution of the data given by expression (2) leads to the
following three criteria.

2.1. Average coverage criterion
For a fixed posterior interval length /, we can determine the sample size by finding the
smallest n such that the equation

a+
J {J J(@x, n)d&}f(x)dx =1—-q« 3
Fa a

is satisfied. This average coverage criterion (ACC) ensures that the mean coverage of posterior
credible intervals of length /, weighted by f(x), is at least 1 — a.

Adcack (1988) first proposed the use of an ACC in the context of estimating normal means,
where the interval (@, a + [) was chosen to be a symmetric tolerance region around the mean.
Joseph et al. (1995a) proposed that the interval (a, a + /} be chosen to be a highest posterior
density interval for asymmetric posterior distributions. Although in general these can lead to
different sample sizes, for normal posterior densities they are equivalent, since highest
pasterior density regions are simply symmetric intervals around the mean.

2.2, Average length criterion
For a fixed posterior credible interval coverage of | — @, we can also determine the sample
size by finding the smallest » such that

| twmrmac<s )

where ['(x, #) is the length of the 100(1 — «)% posterior credible interval for data x, determined
by salving

a+1" e, )
fBx,n}d=1-a

F.]

for I'(x, n) for each value of x € " As befare, a can be chosen to give highest posterior
density intervals or symmetric intervals, which coincide for symmetric unimodal densities.

This average length criterion (ALC) ensures that the mean length of 100(1 — a)% posterior
credible intervals weighted by f(x) is at most [ It does not appear to have been previously
applied to the normal distribution. Since most researchers will report intervals of fixed
coverage (usually 95%) regardless of their length, it can be argued that the ALC is more
conventional than the ACC.
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2.3. Worst outcome criterion

Cautious investigators may not be satisfied with the ‘average’ assurances provided by the
ACC and the ALC criteria. Therefore, a conservative sample size can also be determined by
the smallest # satisfying the equation

a+Kx n)

inf I fBlx,m}db p = 1—a, .

a

where % is a suitably chosen subset of the data space #". For example, this worst autcome
criterion (WOC) ensures that, if % consists of the most likely 95% of the possible x € &7, then
there is 95% assurance that the length of the 100(1 — @)% posterior credible interval will be at
most L :

3. Sample sizes for single normal mean

Throughout this section we assume that the data vector X = (X, X3, ..., X,) consists of
exchangeable components from a normal distribution where # is the unknown normal mean
and A is the precision of the data, defined as 2 = 1/¢?, where g is the variance. We also
assume a normal—gamma conjugate prior distribution for {4, 1), so that a priori

4 ~ gamma(v, £},
H|A ~ N(uq, nod).

Sections 3.1 and 3.2 treat the cases of known and unknown precision from a fully Bayesian
perspective respectively, whereas Section 3.3 considers mixed Bayesian—likelihood approaches.
The standard Bayesian distributional results used in this paper can be found in Appendix A of
Bernardo and Smith (1994).

31, Sample sizes for single normal mean with known precision
If the precision is known a priori to be equal to A, then it can be easily shown that a
posteriori

aix ~ N, A,),
where
Ay = (4 ng)d,
Aol + HX
T e +n
. I
x =— X
H

i=l
-

Since the posterior precision. depends only on n and does not vary with the particular observed
data vector x, all three criteria (ACC, ALC and WOC) lead to the same solution, which is also
equivalent to that given by Adecock (1988}

2
. 4Zl—ct,|’2

Al

If a non-informative prior is used such that #, = 0, then inequality (6) reduces to the classical
formulation (1).

- 7. (6)
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3.2, Sample sizes for single normal mean with unknown precision
If the precision is unknown, then the marginal posterior distribution of g is given by

B
.|u|x ~ \/{(fi £ no)(v—l— ”/2)}32v+n +F“tm

where
_flgﬂo‘f‘ﬂf
fln = n+ #
B | T 1 5
ﬁﬂ_ﬁ—‘rzm +2ﬂ,+no(x }u'ﬂ)a

nst = i(x, — Xy

and f.,, represents a s-distribution with 2v + » degrees of freedom. Since the posterior pre-
cision varies with the data x, different criteria will lead to different sample sizes.

3.2.1. Average coverage criferion. Adcack (1988) has shown that the ACC sample size is
given by
48
n=oy !iv;l—aﬁ — Hg. (7
Since v/f is the prior mean for precision 4, the ACC sample size for unknown precision is
similar to that for known precision, in that we only need to substitute the prior mean precision
for 4 in inequality {6) and exchange the normal quantile Z with a quantile from a #,-
distribution. Since the degrees of freedom of the #distribution do not increase with the sample
size, equation (7) can lead to sample sizes that are substantially different from those from
inequalities (1) and (6) even when # is large. See Section 6 for examples of this.

3.2.2.  Average length criterion. When estimating a single normal mean with unknown pre-
cision A with a gamma(v, ) prior distribution on 4, the ALC (4) is satisfied (see Appendix A)
when # is sufficiently large that

+2v v—-1
w ) ()
2£n+2v‘L—aﬁ\/ = [ (8)
(n+ 2v}n + ng) nt v~ 1
r——\— )
Although it does not appear feasible to solve inequality (8} explicitly for n, the left-hand side is

straightforward te calculate given », 8, ng, @ and n. Therefore, the exact minimum » satisfying
inequality (%) can be found by a bisectional search algorithm.

3.2.3. Worst outcome criterion. Let %7 be the subset of & such that
J Sxydx=1-—w,
v

where f(x) is given by expression (2} and f(x) = f(y) forall x € ¥" and p ¢ " Thus ¥ is a
highest posterior density region according to the predictive distribution (2). Then it can be
shown (see Appendix B) that, when estimating a single normal mean with unknown precision A
with a gamma(y, 3) prior distribution on 4, the WOC (5) is satisfied when » is sufficiently large
that

Pn+ 2v) (2 + ny) S P
88{1 + (H/2V)F, ) P

)
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where £,;,_. denotes the 100(1 — w)-percentile of an F-distribution with # and 2v degrees of
freedom. As in the previous section, the smallest » satisfying inequality (9) can be found by a
bisectional search. If %% = &, then the sample size is not defined, since F,i,1-, — 00 as
w — 0, so that inequality (9) cannot be satisfied for any ».

3.3, Mixed Bayesian—likelihood approaches for a single normal mean

Mixed Bayesian-likelihood approaches (Joseph ef al, 1996} use the prior distribution to
derive the predictive distribution of the data but assume that one will use only the likelihood
function for final inferences. These are intended to satisfy investigators who recognize that
prior information (s important for planning but prefer to base final inferences only on. the data.
For example, they can be used by investigators who plan to report 95% confidence inter-
vals. The fully Bayesian closed form formulae (7)—(9) do not apply to the mixed Bayesian—
likelthood approach (see Appendix C). However, a simulation algorithm can be devised to
approximate the required sample size. For the ACC, for example, we seeck the minimum »
such that

j{J fCu|x,n)chu}f(x)dx2 l-a (10)

holds, where f(x} is the predictive distribution of the data x given a gamma(y, 3) prior
distribution on A, f(u|x, n} is the posterior distribution derived from the non-informative prior
distribution f(u, 1) oc 7' and (g, a + /) forms a symmetric or, equivalently, highest density
posterior credible interval for g Therefore,

(aa+ h=F-1/2, %5+ 1/2),

‘LL|X ~ X+ \/{L} Lits
n(r—1})
w2 _ [ {{nin- 1)}_
L_m Sulx)dp = 213:(5\/{7 in— 1),

where p,(c; d} is the area between 0 and ¢ under a ¢-density with ¢ degrees of freedom. Since
the area depends on the data only through »s®, the following algorithm finds the approximate
sample size.

(a) Select an initial estimate of the sample size n.
(b) Generate m values of the random variable #s*. Since

ns? ~ anrm:la(ﬁ_1 é)
g 2 7 2 1

and A ~ gamma(y, ),

-

-1
nst ~ gamma — gamma (v, 28, HT),

i.e. ns? follows a gamma—gamma distribution. A random variable x follows a gamma—
gamma distribution if

T+ n)p x?
Feb8m) =R Ty @y

for x>0, v>>0, 3>>0 and n>>0. See Bernardo and Smith (1994), p. 430,




SAMPLE SIZE DETERMINATION 215

(c) For each of the m values of ns?, i = 1, 2, ..., m, in step (b}, calculate

coverage(ns’) = 2p, (Ez \/{L:U}, n— 1).
ns?

I "
— Z coverage(ns’)
m =1

{d} Then

approximates the average coverage that forms the left-hand side of inequality (10).

Repeating steps (b}—(d) for values of n selected by a bisectional search procedure will lead to an
approximately correct sample size. The accuracy of this estimate increases with increasing m.
Similarly, the WOC sample size can be approximated by ensuring that

2p,(§z\/{%};ﬂ—l) =z1l—-a

for 95% or 99% (say) of the us} values for a given value of n.

For the ALC, further simplifications (see Appendix C) obviate the need to simulate data.
This is because it can be shown that the average length of the likelihood-based posterior
credible region for g of level 1 — ¢ is given by

E{‘\/(nsz)}’rn—l;l—a{!:

F(i) rw -}

E{\/(ns")} = /(28)
n—1% (v
F(T)

2
V{n(n— 1)}

and that

Therefore, the average length given a gamma(v, ) prior distribution on the precision 4 for
a sample size »r is given by

"3)
213 2 F(”_i
2;5,,_[;[_0”'1\/{”(”_ 1)} F(n_ 1) F(v) : (11)

2

Finding the minimum » such that expression {11} is less than the desired length ! provides the
exact ALC sample size under a mixed Bayesian—likelihood approach.

4, Sampie sizes for difference between two normal means—common precision

In this section we consider independent random vectors X, = (X, Xz, ..., X,1) and
Xy =(X1py Xm, oo, Xap) such that Xy~ N, A), i=1,2, .., n, j=1, 2. We again
assume normal—gamma prior canjugate prior densities, so that

A ~ gamma(y, )
and
il ~ N, no,A), F=1L2
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We seek the sample sizes #; and n, required to estimate 6 = u, — y, under the ACC, ALC
and WQC criteria. Taking a fully Bayesian approach, Sections 4.1 and 4.2 consider the cases
aof known and unknown precision respectively, whereas Section 4.3 discusses the mixed Bayes-
ian—likelihaod approach. Throughout, we consider both equal sample sizes, when #, = #,, as
well as optimal allocation, where the sum #, + n, is minimized allowing n, # n,. 1deally, for
aptimal allocation, the minimum value of », + #, should be selected that fulfils the relevant
criterion. This can be difficult, however, because of the large number of possible combinations
of »; and n,. Therefore, we have chasen to find the combination of #; and #, that minimizes
the pasterior variance. For practical purposes, there will be little if any difference between
these two strategies.

4.1. Known common precision

[f the common precision 4 is exactly known, then after abserving data vectors x; and x,, of
sizes n and n, respectively, the posterior distribution of 8 is
Alng + n g + ’12)}

A+ Ryt Ky + My

G|X|,x1 o~ N{#ng? — Hals

where

Moy
’ o+ #;

As was the case in Section 3.1, the posterior variance depends on the data only through the
sample sizes #, and n,, so that the ACC, ALC and WOC sample sizes coincide. For n, = n,,
as shown in Appendix D, the sample size is given by

_ 2
n =y > BEVB 44O
24

(12}

where 4 = A2,
B= A.:(ﬂm + n(}g) - 8&22 /‘!2

L~ f2
and

4(no + ﬂoz)j-zfra,rz
B '
If B* —44C =< 0, then the prior information is sufficient, and no sampling is required.
Optimal allocation minimizes the posterior variance, which is minimized when #, + sy =
#y + Hgy. Therefore the minimum sample size for », satisfies

8
H = E‘Z?_a 7
from which n;, = #; + 1y — kg, can be calculated. If ny = ny,, then the sample size given by
inequality (12) reduces to that given by inequality (13).

C = ng ngd* —

= Ho|, (13)

4.2. Common but unknown precision
. In the case of common but unknown precision, if the prior information on the unknown
parameters u;, 4, and A is from the normal-gamma family as given above, then the posterior

density of 6 = u, — gy is
B
Blx, % ~ 4+ \/(ﬁ) tre,
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where
HiX; + B nx +
y =E(6|xl,x;): 2X2 0Me MY+ Hafa
My + Ry Ry 1 Ry
H Ry HaHoy 2
B=28+ns + ms: + % — oV + % - ,
B 1) 15, fil+ﬂm(l Hor) ffg'}‘ﬁqz(l Haa)
m o+
c:
2
and

(r + 1o J(no + g1}
ny 4 Hg 4 My He

The posterior variance depends on the particular data vectors x, and x,, so that different
criteria lead to different sample sizes,

D:

42.1. Average coverage criterion. As shown in Appendix E, the ACC is satisfied when

(Hl + nol}(”’l + HOI) = ﬂ £2 (14)
H + Hy + Hy + R ypp et

holds. This equation can be solved explicitly if # = x#; = n,, so that the sample size is given by
2 _
. —B+ V(B —440)

where

vl

A=—
4 H
e
B = T(”m + #ga) — 2ﬁriv\lma;’2
and
Ho AV 2
C= T4 Briap(tor + ep).

A reasonable criterion for optimal sample size selection for unequal #, and #, is to mini-
mize the expected posterior variance. Since

:fi ~ fu'ﬂi + \/{M}fﬁu,y = 13 21

VM My,
and
2 n-—1 .
n;s, ~ gamma — gammal v,, Zﬁ,,T , i=1,2,

it can be shown that the expected variance of @ given the data is given by

1 nl+n;+ﬂm+ngg{2ﬁ+(n1+n2—2)r(v—l) 2/3}
(m+ #od(ny + ngs) me+my+2v -2 I'(v) v—1f

This implies that the minimum varance for fixed n, + n. occurs when
1
(1 + ro W ns + 1)
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is minimized, i.e. when
n + g = B3+ Aga. (16)
Solving inequality (14) with this constraint provides the ACC optimal sample size.

4.2.2. Average length criterion. In Appendix F, it is shown that the ALC for the difference
between two normal means with unknown but equal precision is satisfied if

F(m + 1, +2v) F(Zv— 1)
28(n, + ng + 11 + B 2 ]
2fnl+n1+z»;l—a;z\/{ A(n 0l 1 01) } </

(n + 1y + 20 + no )y + ) l—.(”L +hn +2v — 1) F(Q_‘l’) h
' 2 2

(17)
The sample size can then be found for either equal or unequal », and #. by a bisectional search.
Far n, # n,, constraint {16} applies.

4.213. Worst outcome criterion. The WOC sample sizes #, and n, for the difference be-
tween two normal means with equal but unknown precision are such that
1_2(”1 + np (1 + B} no+ o+ 2v > p
88 1+ no + ma+ ng L+ {(re + m)/20} Fouy vt - rtnERl e/

Again, a bisectional search can be used to find the sample sizes required for cases with equal
and unequal sizes in each group.

4.3. Mixed Ravesian—Iikelihood approach

As in Section 3.3, the exact results of Sections 4.2.1-4.2.3 do not apply to the mixed
Bayesian—likelihood approach, and therefore an approximate sample size can be found via
simulations from the preposterior density of the data. Thus samples from the sufficient statistic
(%1, T, n8°, mysy) are required. Although samples can he straightforwardly generated by first
drawing samples from the prior distribution of (i, i, A} and then from (X, %, #.s, n;si)
given (#,, iy, ), it is more efficient in terms of computing time to generate (X;, %, 1,5;, 1,5;)
directly. Given a random sample of (%, %, s}, ms;) vectors, the ACC, ALC and WOC
sample sizes can be approximated by a bisectional search. The integrals on the left-hand sides
of equations (3) and (4) are replaced by average values over the simulated data vectors, and we
replace the exact infimum in inequality (5) by ensuring that the appropriate proportion of data
points in the simulation satisfies the criterion. Appendix G provides an efficient method to sim-
ulate the required random samples. Unlike the fully Bayesian approach, optimal solutions are not
of interest here, since, if prior information is not utilized in the calculations of posterior
variances, then the optimal solution has #, = a,.

5. Sample sizes. for difference between two normal means—unequal precisions

In this section we consider independent randem vectors X, = (X, Xa, ..., X,,} and
X, =X, Xn, ...y X} such that X, ~ N(g;, 1), i = 1,2, ..., n, j = 1, 2. Once again we
assume normal-gamma prior conjugate prior densities, so that

A; ~ gamma(y;, 5}, i=1,2,
and
r'u_.f|"?' ~ N(ﬂo;’: n(}j)"): j = 11 2.
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5.1. Known precisions
If the precisions 4, and A, are exactly known, then after abserving data vectors x and x,, of
sizes n, and n, respectively, the posterior distribution of @ is

A 1A
GIIL,II ~ N(Ju‘ﬂ'22 - #ml!ﬁ)a
ml Hyd

where 4,, = A,(n;, + »,) and

— ‘ll(n{)uu‘ﬂa + ”'efr) — n{)e#ﬂ: + nefr
" "ln,r Ry, + #, ‘

A calculation analogous to that in Appendix D shows that, if #, = #,, then the sample size
which simultaneously satisfies the ACC, ALC and WOC is given by
2
. —B+ VB —440)

"= 24 ! (%)

where 4 = A, 4,4,
1

Z -4
o Gt o),

4
B = Ainphy + bang i —
4211'—0,!2
C = ny dyngdy - 7 (o + rpds).
For n, # n,, the optimal sample size is obtained when

no+ oy = iZ%_ 5 ¥+L
PR k) A

A
Ry + gy = \/(i—;)(”; + mg().

and

5.2. Unknown precisions
The analytical results of Section 4 no longer apply when A, # A,. For large n, and n,, the
posterior distribution of & = y; — 4, can be approximated by

6|x ] N(au‘nl - .unlaﬂ-*)s
where

Y TR

= 1,2,
ﬂj-f—ﬂg) /

A

r { 281 N 28, }
(4 1 )@Qvi+ 1 —2) (4 np)(2v, + 1y —2))

For smaller values of n, and n,, a simulation similar to that of Section 4.3 is suggested.
This case is simpler than the case of common precision, since (%, n.s7) is independent of
(X, m,53). However, since the exact posterior distribution of 8 =y, — u, does not have a
standard form, the required interval lengths and coverages must be obtained numerically. In
most applications, the normal approximation should provide adequate sample sizes. For the
mixed Bayesian—likelihood approach, the above methoads can be used, setting ny, = 5, = 0 and
v= -4 j=1, 2
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- B+ )
X, ~ fo; + \/ PRA T R0l s,
ViR Ry,

— 1
njsi ~ gamma — gamma (vj, 28,, ”’T), i=12,

Since
and

the expected posterior variance can be shown to be

E{V(6|XL,X2)} = Z ﬁj

: (nj + ”ﬂj}(l"j - 1)1

which is minimized if and only if

v, =
’12+"{:2:‘/(ﬁ—v
1V —

Thus optimal sample sizes that minimize the posterior variance can be caleulated as abave, but
subject to constraint {19).

:)(nl—f—nm). (19}

6. Examples

In practice, the prior information will be different in every problem, so it is impossible to
provide exhaustive tables. Therefore, Table 1 presents a variety of examples that illustrate the
relationships between the various criteria discussed for the case of estimating sample size
requirements for a single normal mean.

Examples 1-3 of Table 1 show that the Bayesian approach can provide larger sample sizes
than the frequentist approach, even though prior information is incorporated in the final
inferences. The same examples also illustrate that the sample size provided by the ALC tends
to be smaller than that of the ACC when 1 — « is near 1 and ! is not near 0. This is because

TABLE |
Sample sizes far estimating a single normal meant

FExample v B Ho ! [ —a Freg ACC ALC WOC (95%)
1 2 2 10 0.5 0.99 107 330 160 589
MBL — 345 171 604
2 2 2 10 0.2 0.95 385 - 761 595 2152
MBL — 771 606 2174
3 2 2 10 0.2 0.80 165 226 248 Sl4
MBL — 237 259 L6
4 2 2 10 0.2 0.30 46 45 61 245
MBL — 55 72 252
5 100 e 100 0.2 095 385 289 288 344
: MBL — 392 - 389 473
¢ 100 100 1 0.2 495 385 379 378 436
MBL — 393 389 473

fFreq is the sample size computed using inequality (1}, and the ACC, ALC and WOC sample sizes are calculated
using expressions (7}, (8) and (9) respectively. The mixed Bayesian—likelihood (MBL) sample sizes are calculated from
the tesults of Section 4.3. When exact formulac were nat available, sufficient samples were simulated to reduce the
Monte Carlo error to less than 1% of the total sample size.
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coverage probabilities are bounded above by 1, so that maintaining the required average
coverage becomes more difficult as 1 — a becomes larger. Similarly, since / is bounded below
by 0, maintaining an average length of [ becomes more difficult as [ approaches 0, leading to
the larger sizes for the ALC compared with the ACC in example 4.

Example 5 shows that, with a large amount of prior information on both 4 and g, the
Bayesian approach leads to smaller sample sizes than the frequentist approach, but, as expec-
ted, the mixed Bayesian likelihood approach provides similar sample sizes to the frequentist
approach. With large amounts of prior information on 4 but not on x, similar sample sizes are
provided by all criteria, as suggested by example 6, with the WOC criteria somewhat higher
than the rest.

Similar situations can be constructed for the difference between two normal means. As just
one example, let v, =1, = 8, = B2 =10, #y, = 15, =20, I =02 and 1 — a = 0.95. Then the
standard frequentist formula given by
40} +0DZ1 —af?

EZ

suggests 769 as a sample size, whereas the ACC, ALC and WOC (95%) sample sizes are given
by 844, 823 and 1222 respectively. The mixed Bayesian—likelihood sample sizes are 864, 842
and 1249, for the ACC, ALC and WOC (95%) respectively. Since the prior parameters are
identical for the two means, the aptimal solution is identical with that for equal sizes. However,
lf the prior parameters are changed such that more is known a priori about g than i, with

=8, =18, v, =0,=2, ng =18, 1y =2, { =02 and 1 — @ =0.95, then the ACC, ALC
and WOC (95%) sample sizes are given by n, = n, = 1149, 1044 and 2554 respectively,
whereas the optlmal sizes {n;, ny) are {937, 1311), (864, 1210) and (1954, 2708) respectively,
leading to ecanomies. of approximately 2%, 1% and 9% respectively. Larger economies will be
realized when the amount of prior information is more unbalanced between the two populations.
The standard frequentist solution remains at #, = &, = 769, which may be inadequate in this
case.

=R =

7. Discussion

In this paper we have developed criteria for Bayesian sample size determination that address
the limitations of frequentist calculations. However, the solutions are non-unique, not only
because the choice of prior parameters may not be obvious, but also because the different
criteria can lead to substantially different sample sizes. The choice between a criterion that
takes an average aver the predictive distribution of the unknown data and a worst case
criterion would seem to depend on the degree of risk that we are willing to take in any given
experiment. The choice hetween the ACC and the ALC appears somewhat arbitrary, although
the convention to report 95% intervals regardless of the data would seem to favour the ALC.
The consideration of all criteria should lead to a more informed chaice.

In all cases, computations can be straightforwardly and quickly performed either exactly or
via simulations. When necessary, excellent starting values for the bisectional search can be
found by using approximations to the exact formulae and Stirling’s approximation to the
gamma function. The techniques in this paper can be extended to non-conjugate prior
distributions by appropriate simulation algorithms. Recent progress in Bayesian computing
algorithms may be helpful in this regard.
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Appendix A: derivation of average length for single normal mean

Following a procedure similar to that in Adcock (1988), and under the conditions of Section 3, the
length /(x) of the highest posterior density interval of probability coverage 1 — o is such that

fo}:l_a

X
- = 7
P{I# b 7

where
_ Hoply 4 HX
" ng+n
Let
Ul = (n+ no(p — p,),
Uy = ns?
and

Then, conditional on ¢?,
U, 1 ,
~ =0y, i=1,2,3,

V=25~ 28

where vy = v, = |, v, = n— 1 and U, U, and U, are independent. The length I(x) is such that

2
p{”m- }4ﬂ_)}

28 28 4

Since the length /(x) is a function only of the statistic U, + {fy,

n A+ ng (U, Us)
oo S . L. L =1 _
P{ U=~ 23\ U =t —a
U, 1 n+ny P(U, Uy)
= LU, y=1-
{1+U2+U3 1+ U+ U, 28 4 S “

2
@P{Fl.wzvﬁ a4 2y n—i—ngl(Ug—FUg)}:l_a’

t+h+U, 28 4
since, conditional on U/, and [F;,

U 1
L+ U, + Uy n+2v

Then
n+2v n4n AU+ U
1+ U, + U, 28 4
and the average length of the highest posterior density region of probability coverage 1 — @ is

_ 28
E{{U,+ W)} = 2tn+:v.x-a;z\/{mm}5{\/(l + U, + U3}

. — pd
- Fl,n-l»zv;l-—a - t»+?.v;l—a..f2”
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SEYNY S }(Hh)f(%:f)

(14 2031 + ny) (n+2v - 1) r(z_v)
2

from which inequality (8) follows. Note that, if a random variable (n/m)Z ~ F, ,, then
F(m ;L H) F(n ; l)
E{V/(0+ 2)} = :

0

Appendix B: derivation of worst outcome criterion sample size for single normal mean

As above, the probability coverage of the hiphest posterior density region of length { centred at
the posterior mean u, can be given as
U, + U;)

i n+2y n4n
P(|Ju'_.u-n| Eix) P(Flrm—zu“““ !

1+ U, + U 253 4
which is a decreasing function of U, + Uy. Since U, + U, is marginally distributed as (n/2v)F, ,,, the
probability coverage is greater than 1 — ¢ with probability 1 — w if the sample size » is such that
n+2v nt g r
_ =1_a,
14+ (/20 F 5012 28 4

P(Fl‘rr+2v =

which directly leads to inequality (9).

Appendix C: derivation of average length for mixed Bayesian-likelihood appreoach

In the mixed Bayesian—likelihood approach, the prior information about ¢ is not used for
inference ({/|) but is used for the preposterior distribution of the data (U, and U,), invalidating the
exact results of Appendixes A and B. Therefore, approximate sample sizes are derived via simulation
of the posterior densities.

Since X and ns? are independent given w and A, their joint preposterior distribution is

G, ns?) = Jf(z, 1|1, 3) £, ) dpe

- rJf(EI#, 3) £ns% 4,2 F(I) £3) d i

o [ 27 exp (g — 71202 e (— : nsz)lm
X exp { —trol(p — o) 1A~ exp (—fBR) dp di.
Therefore,
f(ns’|3) o (ME)("_”’QJJ Ao exp {_ % {n(p —3)" + nolpt — o) + 15” + 2:3}] dpdi,

which after some straightforward algebraic manipulations can be shown to be

2v+1’ﬂnq(i—p0)l+2ﬁ1n—l}.
2 n+ oy

ns*{% ~ gamma — gamma{
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The average length of the highest posterior density interval of coverage | — o is

2
J{n(n }E{\/(’m )}tn Ll—efd-
For further calculations, it is necessary to note that if ¥ ~ gamma{a, b) then
n Tle+ )
¥ = Tia)y

Thus

E{/(ns’)} = E[E{/(ns")|A}]

G
)

1)
(2) F(v -4 ,
™

V2
Vi

= /(26

sa that the ALC is satisfied if

28 <
2fn—l;l—a,a'2\/{ﬂ(n _ 1)} F(n — l) F(v] = [,

as stated in expression (11).

Appendix D: derivation of Bayesian sample size for difference between two normal means
when variances are known

The posterior distribution of 8 = p; — g, is

’lﬂ ’lﬂ
9|xl,x2 ~ N(Junﬂ - #mlaﬁ)s
LT ny

where A,; = A(ny + 1) and g, = (Ropte; + BE)/(Boe + 1), for i =1,2. The posterior variance
depends only on # and is not a function of the data (x,, x;). Therefore, to find the ACC, ALC or WOC

sample sizes, the equation
’ln] l‘lm? 1
] L LI =7,
\/(’lm[ + lnzl) et

must be satisfied. Straightforward algebra leads to the condition

2

47 470
Adant + {111»‘1023-2 + damgdy — ;1 L (ko + iz)}” + #g ki ready — %(-’lmh + #gady) = 0

from which inequalities (12) and (18) follow.
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Appendix E: derivation of exact average coverage criterion solution for difference hetween
two normal means with equal but unknown precision

In this appendix the results of Adcock (1988) are extended to the case of a difference between -
two normal means. Let

B+ Mg )M + R
U :( | o )(Ha 02){6— E(6|x)}1,
Hy + Hgy + B3 + Mo
Ui = nys,
U = mys;,
/ Hilg 2
Uy =—2 (3 —
4 ril-i-fim( L~ Hay)
and
; HiRqg P
U, = X — .
s n;—i—no;( 2 — Haz)
Then, conditional on ¢?, Uj~a’y, i = 1, ..., 5, where ¥, =v,=v, =1, v, =n,— | and
vy = sy — 1. Next, define U, = U}/Qﬁ, i =1, ..., 5 Then, conditional en a2, U, ..., U, are
independently distributed with
0.2
Ui'N_z) .:I'S“‘!S!
2’8211'; !

where the v; are as given above.
The ACC will be satished if

2
¥ ¥ - —
X%, 5, sl]) =1-a,

f
AT
%, T, S, si]) =]l-a

=1—-a,

ie.

(ry + g )y + 1) 2 Einy + ny Xy + #g)
ElP — Ef|x,x =
( [2ﬁ(ﬂ| + # + By + "{u){ e, 1)} 88(n + ny + ny + Hgz)

s0 that

E

= U;U3U=U
8B(n, + ny + ng + 1) SR 5}

P{ U = P(n 4 ne))(m + #e1)
i

which leads to inequality (14).

Appendix F: derivation of exact average length criterion solution for difference hetween
two normal means with equal but unknown precision

Pasterior te sampling, the length [(x,, x;) of the highest posterior density region around the pos-
terior mean of 6 = u, — g, of probability coverage | — « is such that

!
G, 0) xl,xi} =1 -a.

2
Using arguments and notation similar to those in Appendix E, ! = I(x|, x,) is such that

P{|6 — E(f|x,n) =

P(ny + ng)m + no)
e — E6 e
){ O, ) BB(n + 1y + ny + ny)

(1 + Hy Yy + #p)
: 218(”1 + Hy + By + Ry

xl,xz] =1l—-a
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Ply = (r+ o) + ng)  P(UL, Uy, UL L)
l 28(n +ny + g + M) 4

U, u,, U, Us} =1-a,
which leads to inequality (17).

Appendix G: preposterior distributions of (X, X;, #,57, #,52)

To draw a random sample from the vector (X, %, m.s%, mysh), the following results can be used:

X~ pg + \/{(—__n] + nm)ﬂ}&u,

" R

'32 + 1
2 ﬁ M+ Ry 2

xnlx, me ~ Hg + \/{”'"“‘(31 - Iuﬂl]z/(ﬂl + o) HIS% + zﬁ}fawm
(2v + m)mbg /(1 + ny)

v+ X —pgf n—1
nsiE mgamma—gamma{ hs M~ o) },

and

g (B — pg P n 1y gy (g — i)
H| + Ay, My + Hya 2

YT 1 41 3
#283|%,, %, 0 57 ~ gamma — gamma +v,m8) +
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