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SUMMARY. Many analyses of results from multiple diagnostic tests assume the tests are statistically inde- 
pendent conditional on the true disease status of the subject. This assumption may be violated in practice, 
especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference 
for models accounting for the conditional dependence between tests requires that results from at least four 
different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results 
from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test 
properties while adjusting for the possibility of conditional dependence between tests, particularly when we 
have only two tests. We propose both fixed and random effects models. Since with fewer than four tests 
the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information 
about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation 
between the tests is known a priori  with high precision, then our methods adjust for the dependence be- 
tween the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty 
inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using 
data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada. 
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1. Introduction 
Disease diagnosis is often based on information obtained from 
multiple diagnostic tests, none of which is a gold standard 
providing perfect sensitivity and specificity. In such a situa- 
tion, two or more of the diagnostic tests may be conditionally 
dependent due to a factor other than the disease status, aris- 
ing, e.g., from a common biological phenomenon on which two 
tests are based. Though it is generally assumed that the accu- 
racy of a test remains constant across all subjects to whom it 
is applied, this may not be the case in practice. For example, 
in a stool examination for a parasitic disease, a positive test 
means that the parasite of interest was directly observed un- 
der a microscope. In a severely diseased case, there is a larger 
concentration of parasites, making it easier to detect and re- 
sulting in a more sensitive test. If the stool examination is 
used in combination with another test whose performance is 
affected by the severity of disease, then a dependence would be 
induced between the two tests. In order to simplify the mod- 
eling and statistical analysis of such data, it is often assumed 
that the results from different tests are independent of each 
other conditional on the true disease status. However, several 
authors have demonstrated that it is important to account for 
this dependence while analyzing the results from diagnostic 
tests in order to obtain unbiased estimates of the prevalence 
of disease and accuracy of the tests (Fryback, 1978; Vacek, 
1985; Brenner, 1996; Torrance-Rynard and Walter, 1997). 

Frequentist approaches that address this problem require 
results from at least four different tests in order to have suf- 
ficient degrees of freedom to estimate each of the parameters 
of interest uniquely (Walter and Irwig, 1988; Espeland and 
Handelman, 1989; Qu, Tan, and Kutner, 1996). In practice, 
it is not always possible to have results from four different 
tests, particularly when tests are expensive, time consuming, 
or invasive. For example, in a study conducted to estimate the 
prevalence of Strongyloides infection among a group of Cam- 
bodian refugees to Canada (Joseph, Gyorkos, and Coupal, 
1995), only two non-gold-standard tests-a serology test and 
a stool examination-were available (Table 1). The results 
from the stool examination suggest that the prevalence is 
40/162 ( M  25%), but the serology test suggests a prevalence 
of 125/162 ( M  77%). Clearly, in order to draw any inferences 
about the prevalence, the sensitivities and specificities of the 
two tests have to be estimated. Since we have only 3 d.f. 
but at least five parameters to estimate (the sensitivity and 
specificity of each test and the prevalence of Strongyloides), 
this problem is nonidentifiable. Therefore, the results in Table 
1 could arise from an infinite number of possible situations, 
such as (1) prevalence = 40/162, sensitivity (stool) = speci- 
ficity (stool) = loo%, sensitivity (serology) = 38/40, speci- 
ficity (serology) = 35/122; ( 2 )  prevalence = 125/162, sensi- 
tivity (stool) = 38/125, specificity (stool) = 35/37, sensitivity 
(serology) = specificity (serology) = 100%; or (3) prevalence 

158 



Bayesian Approaches to Modeling Conditional Dependence 159 

Table 1 
Results of the serology test and stool examination 

Stool examination (TI) 

+ - Total 

Serology + 38 87 125 

Total 40 122 162 
test (T2) - 2 35 37 

= loo%, sensitivity (stool) = 40/162, sensitivity (serology) 
= 1251162, and so on. Note that, under conditional indepen- 
dence, as soon as any two of the five parameters are consid- 
ered exactly known, unbiased estimates of the other three are 
immediately available. While the above three scenarios are 
all equally consistent with the data, they are not all equally 
plausible given the prior information available about the test 
properties. In this article, we will make use of this distinction 
in order to derive final estimates of all parameters that are 
consistent with both the data and the prior information. 

Equal-tailed 95% prior probability intervals for the sensi- 
tivities and specificities of the two tests were determined in 
consultation with faculty from the McGill Centre for Tropical 
Disease. These values, which were determined from informa- 
tion documented in previous studies and clinical opinion, are 
presented in Table 2 (see Joseph et al., 1995, and references 
therein). From the 95% prior probability intervals in Table 2, 
we can see that there is great uncertainty about the perfor- 
mance parameters of the tests. Using a frequentist approach 
that assumes conditional independence, two of the five un- 
known parameters must be assumed known in order to es- 
timate the other three (Walter and Irwig, 1988), as in the 
hypothetical solutions described above. Constraining any of 
the parameters at a fixed value gives us a solution for a sim- 
pler, identifiable problem but not the one with which we are 
presented. Moreover, it is not obvious which of these param- 
eters should be held constant or to what values they should 
be restricted. Furthermore, these methods lead to confidence 
intervals that are too narrow since the uncertainty in the con- 
strained parameters is ignored. 

Ignoring the possible dependence between test results, 
Joseph et al. (1995) showed that a Bayesian approach can be 
used to obtain interpretable posterior distributions for each 
of the unknown parameters relative to a given prior distri- 

bution. In summarizing the available information about e x h  
parameter in the form of a prior distribution and updating 
by Bayes theorem, no constrained parameters are required 
and therefore the uncertainty about each parameter value is 
fully accounted for. The prior information is used to distin- 
guish between the numerous possible solutions for the non- 
identifiable problem. This approach is approximately numer- 
ically equivalent to the frequentist approach when a degener- 
ate (point mass) distribution is used that matches the con- 
strained parameter values and diffuse prior distributions are 
used for the nonconstrained parameters. The Bayesian a,p- 
proach is not limited to this unnatural choice of prior distri- 
butions, so it can be viewed as a useful generalization of the 
standard frequentist approach. The problem of formulating a 
suitable prior distribution or deriving the posterior density are 
not worsened by virtue of the nonidentifiability of this diag- 
nostic testing problem since the parameters involved have an 
easily understood interpretation. Roughly speaking, in order 
to obtain a useful solution using this approach, informative 
priors would be needed on at least as many parameters as 
would be constrained when using the frequentist approach. 
This is a reasonable requirement in practice since there will 
usually be considerable experience with at least one of the 
tests, although the sensitivity and specificity will usually not 
be known exactly. The posterior inference for a nonidentifL- 
able problem can be greatly affected by altering our choice of 
prior distributions, as will be illustrated in Section 4. This is 
true even with an infinite sample size. Therefore, the prior dis- 
tributions must be elicited with care. Neath and Sarnaniego 
(1997) demonstrate that, when using a Bayesian approach 
to estimate parameters involved in the nonidentifiable prob- 
lem that arises when results from only one diagnostic test 
are available, a large subset of the prior parameter space re- 
sults in posterior mean estimates that are closer to the true 
values than the prior mean estimates. However, they caution 
that some priors will result in worse estimates even when the 
sample size increases without bound. 

While Joseph et al. (1995) did not discuss correlations be- 
tween test results, several models have been proposed that ad- 
just for the conditional dependence between diagnostic 
tests. Approaches have included latent class modeling (Es- 
peland and Handelman, 1989; Yang and Becker, 199'7) and 
random effects models (Qu et al., 1996; Hadgu and Qu, 1998; 
Qu and Hadgu, 1998). All of the above methods use a frequen- 

Table 2 
Elicited 95% prior probability intervals for  the sensitivity and specificity of the stool examination and the 

serology test, along with corresponding prior distribution parameters for  the fixed and random effects models 

Elicited 95% Prior parameters for 
prior PI" fixed effects modelb Prior parameters for random effects modelb 

Stool Sensitivity 0.07-0.47 as, 4.44 /3sl 13.31 A l l  -0.811 gall  0.380 B1 0.668 g b l  0.5 
examination Specificity 0.89-0.99 acl 71.25 /3cl 3.75 A10 2.171 gal" 0.261 Bo 0.861 Ob,, 0.5 

Sensitivity 0.63-0.92 asz 21.96 ,Bsz 5.49 A21 1.012 uazl 0.268 B1 0.668 Ubl 0.5 
test (T2) Specificity 0.31-0.96 acz 4.1 pc2 1.76 A20 0.692 oazo 0.560 Bo 0.861 Obo 0.5 

" PI refers to probability interval. 

(TI) 
Serology 

See Section 2 for interpretation of parameters from the fixed effects model and Section 3 for interpretation of parameters from the 
random effects model. 
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tist approach to estimate the parameters involved. Despite 
the fact that they propose different approaches to model de- 
pendence, they all require a minimum of four or more tests in 
order to estimate all parameters of interest uniquely. 

In this article, we present two models, which we will call 
the fixed effects model and the random effects model, to draw 
simultaneous inferences about the prevalence of disease and 
all test parameters in the situation where multiple diagnostic 
tests are used, while adjusting for the conditional dependence 
between them. In particular, we consider the nonidentifiable 
situation of less than four tests and propose a Bayesian ap- 
proach for its solution, thus extending the work of Joseph et 
al. (1995) to the case of conditionally dependent tests. The 
fixed effects model is described in Section 2, where we directly 
model the correlation between the tests. Our random effects 
model, which indirectly models the correlations between the 
tests via subjects' specific intensities, is described in Section 
3. The main distinction between these models is whether the 
test properties remain constant (fixed effects) from subject to 
subject or not (random effects). In Section 4, we analyze the 
Strongyloides data using both of our methods. We close with 
a discussion in Section 5. 

2. Fixed Effects Model 
In this section, we model the conditional dependence between 
tests using the covariance between tests within the diseased 
and nondiseased populations. Assume that we have results 
from two different dichotomous tests Tj, j = 1,2, from a sam- 
ple of N subjects such that a positive result on the j t h  test 
is denoted by Tj = 1 and a negative result by Tj = 0. Let 
Ntltz denote the number of subjects who fall into the cross- 
classification Ti = t i ,  T2 = t2, t i ,  t2 = 0 , l .  The parameters of 
primary interest in the diagnostic testing setup are the prevai 
lence of the disease in the population, which we denote by IT, 

and the sensitivity and specificity of the different tests, which 
we denote by Sj and Cj, j = 1,2, respectively. Let D de- 
note the (latent) true disease status such that D = 1 among 
diseased subjects and D = 0 among nondiseased subjects. 
The prevalence is defined as the probability of being truly 
diseased in the population under study, i.e., x = P ( D  = 1). 
It follows that the probability of being nondiseased is given 
by P ( D  = 0) = 1 - P ( D  = 1) = 1 - IT. The sensitivity 
of the j t h  test is the conditional probability that a subject 
who is truly diseased will be correctly diagnosed by the test 
as being positive, i.e., Sj = P(Tj = 1 I D = l), j = 1,2. 
The specificity of the j t h  test is the conditional probability 
that the test is negative for a truly nondiseased subject, i.e., 
Cj = P(Tj = 0 1 D = 0),  j = 1,2.  The conditional depen- 
dence between tests may be estimated using a measure such as 
the covariance between tests within each disease class. We de- 
note the covariance between the two tests among the diseased 
and nondiseased subjects as coos12 and coucl2, respectively. 
It can be shown (Vacek, 1985) that 

P(T1 = 1,Tz = 1 I D = 1) = SlS2 + covs12, and 

P(TI = 1, T2 = 0 1 D = 1) = Sl(1 - 5 2 )  - ~ 0 7 1 ~ 1 2 .  (1) 

Therefore, P(T1 = l ,F2 = 1) is increased by an amount 
covsl2 when two tests are correlated compared with the con- 
ditionally independent case. The probabilities of observing the 

remaining combinations of test results are 

P(T1 = O,T2 = 1 1 D = 1) = (1 - S1)S2 - ~ 0 ~ ~ 1 2 ,  

P(T1 = 0,Tl = 0 1 D = 1) = 1 - S l ) ( l  - 5 2 )  + ~ 0 ~ ~ 1 2 ,  

P(T1 = 1,T2 = 1 I D = 0 )  = (1 - Cl)(l - C2) + ~ 0 ~ ~ 1 2 ,  

P(Tl = 1,Tz = 0 1 D = 0) = (1 - C1)C2 - C O U C I ~ ,  

P(T1 = 0, T2 = 1 I D = 0 )  = C1(1 - C2) - ~ 0 2 1 ~ 1 2 ,  

P(T1 = O,T2 = 0 I D = 0) = C1C2 + ~ 0 ~ ~ 1 2 .  (2) 

We take covsl2 and covc12 to be positive since this is the 
case that arises most frequently in practice. Analogous results 
to those presented here can be derived for negative correla- 
t ions. 

Let the true (latent) number of diseased subjects for each 
combination of test results, (TI = tl , Tz = t2), be denoted by 
Ytltz, t l ,  t2 = 0 , l .  Using equations (1) and (2), we can write 
the likelihood function of the observed data given the latent 
data as 

L = P(N11, NlO, NOl, No0 I 
r, s1, S21 c1, c2, covs12, co7Jc12 1 y11, Yl 0, yo1 , yo01 

K (IT(SlS2 + c0vs12))y"(7r(Sl(1 - S2) - c0vs12))y'o 

x (IT((1 - Sl)S2 - c0vs12))yo' 

x (x((1 - Sl)(l - S2) + c0vs12))yo~ 

x ((1 - ff)((l - Cl)(l - C2) + C0vC12))Nll-y~1 

x ((1 - IT)((l - CdC2 - covc12)) 
x ((1 - IT)(Cl(l - C2) - c0vc12))No1-yo1 

x ((1 - "J(ClC2 + Covc12))Noo-yoo, 

Nio-Yio 

(3) 

which is essentially a multinomial likelihood function. We 
used standard distributional families to represent our prior in- 
formation. The choice of distributions discussed below is not 
unique and they may be replaced by other suitable densities, 
as needed. 

(1) The prevalence is assumed to follow a beta prior distri- 
bution with parameters arr and PT, x N beta(ax,Px).  

(2) The sensitivities and specificities are also assumed to 
have beta prior densities such that Sj N beta(as,, 

(3) The feasible range of the covariance is determined by 
the sensitivities among the diseased subjects and the 
specificities among the nondiseased subjects. Clearly, 

(Cl--l)(l-C2) I cowc12 i min(C1,C2)-C1C2, (4) 

where rnin(a,b) is the minimum of a and b. Since we 
are only interested in the situation when the two tests 
are positively correlated and the expression for the 
lowerbound in equation (4) is always negative, the low- 
er bound of couc12 was fixed at zero. Therefore, the up- 
per and lower bounds for covcl2 are given by 

Ps, 1, j = 17 2 and c, beta(ac3 , P q  ) 1 j = 192. 

0 I covc12 5 min(C1, C2) - CiC2, 

O 5 coos12 I min(&,S2) - S1S2. 

and analogously, 

( 5 )  
The covariance parameters are taken to have general- 
ized beta (genbeta) prior distributions, cow12 - 
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genbeta(cYC011S12,PCOZISlZ), 0 I covs12 F us, where 
us = min(Sl,S2)-SlSz and cove12 N genbeta(acovclz, 
P c O ~ C l z ) ,  0 5 covc12 5 uc, where uc = min(C1, C2) - 
CiC2. The generalized beta density is a standard beta 
density that has been stretched or shrunk to corre- 
spond to  a range other than the standard \O, 11. 

When the likelihood function in equation (3) is combined 
with the above prior distributions, we obtain the following ex- 
pression for the joint posterior distribution of the parameters: 

p ( n ,  s1, (21,692, c2, covs12, co’Uc12, Yl1, YlO, Yo1 1 Yo0 1 
N11, NlO 1 No1 1 No0 1 

K L x n-yl-  n)ox-ls;s+ 

x (1 - s1)osl-1s;s2-1(1 - S 2 ) P S 2 4  

x C;cI-l(l- c1)Pcl--1c;c2-1(1 - c2)Pc2-1 

c o z ) s ~ c ~ ~ %  12 -1 (us - covs12)Pc021312-~ 

c o v c ~ c o ~ c 1 2 - 1  12 (uc - covc12)~C~7JC12 -l. 

Given the complexity of this model, it is not possible to 
obtain the marginal distributions for the parameters analyti- 
cally. Therefore, we use a Gibbs sampler algorithm (Gelfand 
and Smith, 1990) to obtain samples from the marginal poste- 
rior distribution of each parameter. The full conditional dis- 
tributions for each parameter, required by the Gibbs sampler, 
are listed in the Appendix. 

3. Random Effects Model 
In this section, we present a Bayesian approach similar to the 
frequentist approach of Qu et al. (1996), which takes into ac- 
count the variation in test parameters over the population by 
modeling the conditional dependence between multiple tests 
using random effects. The sensitivities and specificities of the 
tests are modeled as functions of a latent, subject-specific ran- 
dom variable. Applying the same latent value within each pa- 
tient across all tests induces a dependence between the tests 
without explicit reference to a covariance parameter. 

This situation can be conceptualized as one where the per- 
formance of a test in a given subject is a function of a con- 
tinuous random variable, which we will term the intensity, 
I k .  This intensity can be considered, e.g., as a summary mea- 
sure of the severity of illness of the subject that affects the 
ease of detection of disease in the subject. The sensitivity and 
specificity of a test for each subject are functions of this un- 
derlying intensity, of the form f(Ik),  where f is a continuous, 
monotonically increasing function taking values between zero 
and one. Here I k  is taken to be a random variable following 
a normal(0,l) distribution. While we assume equal variances 
for diseased and nondiseased subjects in our application, more 
generally, different variances can be used. 

Retaining the notation used in the previous section, we 
introduce some parameters at the individual subject level. 
The test result for the kth (k = 1,. . . , N )  subject on the j t h  
( j  = 1,2) test is denoted by T j k  = 1 or 0 for a positive or 
a negative result, respectively. The true disease status of the 
kth subject is denoted by Dk = dk, dk = 0,1. The intensity 
of the kth subject is denoted by I k  = i k .  

The probability that the kth subject has a positive result 
on the j t h  test is given by p(Tjk = 1 I Dk = dk, I k  = ik) = 

@(a,dk + b,d,ik), dk = 0,1, I k  N N(0, I), where @ represents 
the cumulative distribution function of the normal(0,l) dis- 
tribution and (ajd, ,  byd,), j = 1,2 ,  dk = 0 , 1  are real, un- 
known parameters. The mean sensitivity of the j t h  test over 
all subjects is then given by integrating the expression for the 
sensitivity of the j t h  test for the kth subject over all possible 
values of I k ,  so that 

S, = P(T’ = 1 I D = 1) 
co 

- P(T,k = 1 I D k  = 1, I k  = ik)d@(ik) -s, 
where D is the true disease status and d@(.) denotes the prob- 
ability density of the standard normal distribution. Similarly, 
the specificity of the j t h  test is given by 

If bjd, = 0 , j  = 1,2,  dk = 0,1, the tests are conditionally 
independent 

The results of different tests are taken to be independent 
of each other conditional on the disease status D k  and the 
latent variable Ik. Therefore, the likelihood for this model 
can be written as 

N 

k=l  

\ dk  

where $ is the vector of parameters to be estimated, $ = 

The prior distributions we used are given below, but they 
may be replaced by other suitable densities, as indicated by 
the prior information. A beta prior distribution was used for 
the prevalence, K, such that R N beta(aa,Pa). A bivariate 
normal prior distribution, with mean (A,dk, B,dk) and a diag- 
onal variance-covariance matrix, was used over the parameter 
pairs (a,dk, b 3 d k ) *  The prior standard deviations for a3dk and 
bJdk were denoted by ua3dk and c r b 3 d k ,  respectively. As in the 
case of the fixed effects model, we use a Gibbs sampler to ob- 
tain samples from the marginal posterior distributions of the 
parameters in +. The required full conditional distributions 
are listed in the Appendix. 

In both the fixed and random effects models, lack of identi- 
fiability means that the posterior distribution does not neces- 
sarily concentrate on the true parameter values, even as  the 

(n, (ald,,bld,ra2dk,b2dk)dk = 0,1). 
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sample size tends to infinity. Rather, it concentrates on the set 
of parameter values consistent with the data, and the prior 
distributions are used to delineate which sets of parameter 
values are more plausible than others. Therefore, the influ- 
ence of the prior distributions does not dissipate even with an 
infinite sample size. 

4. Application to Estimating the Prevalence of 

We now return to the Strongyloides problem introduced in 
Section 1. We retain the prior distributions discussed by 
Joseph et al. (1995), which are listed in Table 2. In doing 
so, it is important to note that the median and 95% probabil- 
ity interval for the sensitivities and specificities given in Ta- 
ble 2 represent marginal prior information since the tests are 
correlated. In addition, for the random effects model, which 
allows for subject-to-subject variations in the test properties 
depending on the intensity, the values given in Table 2 repre- 
sent marginal prior information for the mean over all subjects 
in the population. Subject-specific sensitivities and specifici- 
ties vary about this mean, as discussed below. Since very little 
was known a priori about the prevalence of Strongyloides in- 
fection in a Cambodian population, a uniform (beta(aT = 1, 
PT = 1)) prior was used. 

Elicitation of prior distribution parameters for  the fixed ef- 
fects model. The parameters for the beta(a,/?) prior distri- 
butions over the sensitivities and specificities (Table 2) were 
determined by solving the two equations that set the center 
of the elicited 95% probability intervals to the mean of the 
corresponding distribution, a/ (a  + p) ,  and a quarter of the 
95% prior probability interval to its standard deviation, 

Strongyloides Infection 

/L-zzz 
In order to obtain a meaningful solution for a nonidentifi- 

able problem, we need to have informative prior distributions 
on at least as many parameters as would need to be con- 
strained in a frequentist approach. For the fixed effects model, 
this means we must have informative distributions on at least 
7 - (a2 - 1) = 4 parameters. In this particular example, we 
were able to determine informative prior distributions for the 
sensitivities and specificities. Since we did not have useful in- 
formation about the covariances between tests, we used uni- 
form (genbeta(1,l) over the feasible range) prior distributions 
over the two covariance parameters. 

Elicitation of prior distribution parameters for the random 
eflects model. For simplicity, we consider a specific case of the 
random effects model, where b j d k  = b d k ,  j = 1,2. This means 
that a change in the value of I ,  will cause the sensitivities and 
specificities of all tests for the kth subject to change by the 
same amount on the probit scale. As in the case of the fixed 
effects model, the prior mean values for the sensitivities and 
specificities were set equal to the center of their elicited 95% 
probability intervals in Table 2. Using the expression derived 
in equation (5) and the prior mean values of the sensitivities, 
we can estimate the range of values in which the mean co- 
variance among the diseased subjects lies as 0 5 cowslz 5 
min(S1,Sz) - S1S2 = min(0.25,0.8) - (0.25)(0.8) = 0.05. For 
purposes of estimating the prior densities of a1 1, a21, and b l ,  
we arbitrarily fixed covs12 = 0.025 since this value lies in the 

middle of the range in the above equation. We discuss later 
that this choice has little effect on the final prior parame- 
ter values. By relating the expressions for the mean values of 
the sensitivities and for the covariance to their elicited val- 
ues, we have three equations in three unknown parameters, 
(A11,A2i7B1), i.e., 

S1 = @ ( 
S2  = @ ( 

) = 0.25, 

) = 0.8, 

J i x q  

JiTq 
cx3 

@(All + B l i k )  @(A21 + B ~ i k ) d @ ( i k )  - (0.25)(0.8) 

= 0.025. 
L 

We used a bisectional search algorithm (Thisted, 1988, p. 170) 
to solve for (All,A21,B1). 

Similarly, the possible range of values for the mean co- 
variance among the nondiseased subjects, cowc12, was deter- 
mined using the two specificities such that 0 < cowc12 < 
min(C1, C2) - C1C2 = min(0.95,0.70) - (0.95)(0.70) = 0.035. 
Once again we arbitrarily set cowc12 = 0.0175, which is the 
midpoint of the range in the above equation. The following 
set of equations was used to estimate (Ale, A20, Bo): 

C1 = @ ( 
C2 = Q, ( 

) = 0.95, 

) = 0.70, 

J i T q  

JiGg 
00 

@(A10 + Boik )@(A20  + B o i k ) d @ ( i k )  - (0.95)(0.7) L 
= 0.0175. 

The values we have selected for the covariance parameters 
are by no means unique. In the absence of any information 
about the covariance between the tests, it seems sensible to 
use the midpoint of the range as the prior mean so that the 
prior distribution can easily cover the feasible range. Another 
approach may be to first run the fixed effects model and then 
use the mean values of the posterior distributions for the co- 
variance parameters obtained there. 

To determine the approximate prior standard deviations for 
a l l ,  a21, and 61, we used a contour plot of S1 on the ( a l l ,  bl j 
plane. From the contour plot in Figure 1, we determined that, 
as S1 ranges from 0.07 to 0.47 (its 95% prior probability inter- 
val), a l l  ranges approximately from -1.653 to -0.132. The 
standard deviation of all was taken to be a quarter of this 
range, namely, 

-0.132 - (-1.653) 
4 = 0.380. Oall  = 

The range of bl is less obvious since the same value of bl could 
correspond to the entire range of values of 5’1. We can deduce 
from this that the value of S1 is mainly determined by all 
while the value of bl has a greater bearing on the value of the 
covariance between the tests. 

Keeping in mind that we have ho prior information on 
covs12, we used a wide prior distribution for b l .  The stan- 
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1 I 

-1.5 -1 0 -0.5 0.0 

a1 1 

Figure 1. Contour plot of S1 on the ( a l l ,  b l )  plane. 

dard deviation for the remaining parameters was determined 
in a similar fashion (see Table 2). We validated our somewhat 
ad hoc method of prior elicitation by generating a random 
sample of 10,000 observations from the prior distributions of 
the (ajd,  , b d , )  pairs using the parameter values in Table 2 
and calculating the mean sensitivities and specificities. The 
means and 95% probability intervals of these samples were 
found to be very close to the desired values. 

In order to study the robustness of our assumptions about 
the covariance, we also ran both models with degenerate prior 
distributions over the median and two endpoints of the feasi- 
ble range for the two covariance parameters. This amounts to 
using a point mass prior distribution for bdk in the random 
effects model. 

Results. The results obtained by Joseph et al. (1995) when 
applying the conditional independence model are presented 
along with the results obtained from the fixed and random 
effects models in Table 3. The medians of the posterior dis- 
tribution for the prevalence ( T )  estimated by the fixed effects 
model (0.85) and the random effects model (0.82) were greater 

than that obtained when assuming conditional independence 
(0.76) between the two tests. The 95% posterior probabil- 
ity intervals for the prevalence obtained using the fixed and 
random effects models are also shifted to the right and are 
somewhat wider compared with the conditional independence 
model. Therefore, adjusting for conditional dependence here 
has led to increased prevalence estimates that are slightly less 
precise compared with the independence model. 

Considering degenerate priors over the two covariance pa- 
rameters at cows12 = 0 and C O Z I C ~ ~  = 0, we obtain results 
similar to those obtained by Joseph et al. (1995), as expected. 
For the prevalence, we obtain posterior medians of 0.77 and 
0.76, with 95% posterior probability intervals of 0.50-0.91 and 
0.48-0.90, for the fixed and the random effects models, respec- 
tively. When the two covariances are held fixed at their prior 
mean values, we obtain posterior medians virtually identical 
to those in Table 3 but with somewhat tighter probability in- 
tervals. Finally, when the two covariances are fixed at theii- 
maximum possible values, we find that the posterior median 
prevalence is considerably increased, to 0.91 and 0.95 for the 
fixed and random effects models, respectively. From these re- 
sults, we see that covariances whose values are known with 
greater precision lead to narrower widths of the 95%~ inter- 
vals and that higher covariances are associated with higher 
prevalences, at least in this example. 

Since the model is nonidentifiable, it is also important to 
reanalyze the data with different prior values on the test prop- 
erties. The most uncertain parameter a przort was the speci- 
ficity of serology. The wide prior interval, which ranged from 
0.31 to 0.96 (see Table 2), indicated that some researchers 
were more optimistic about the performance of serology in 
truly negative subjects than others. We therefore ran two ad- 
ditional analyses, where we assumed ranges of 0.35-0.70 and 
0.70-1, corresponding to the prior opinions held by pessimistic 
and optimistic experts, respectively. The 95% posterior prob- 
ability intervals for the prevalence obtained using the fixed 
effects model were (0.53, 0.99) and (0.76, 0.99) for the pes- 
simistic and optimistic priors, respectively. The corresponding 

Table 3 
Posterior medians and 95% probability intervals of the prevalence and test parameters obtained from three different models 

Conditional Fixed effects Random effects 
independence model model model 

Variable Median 95% PI Median 95% PI Median 95% PI 

0.52--0.98 
Stool Sensitivity 0.31 0.22444 0.27 0.19-0.39 0.27 0.07--0.61 

0.66--0.92 
0.18-~0.92 

T 0.76 0.52-0.91 0.85 0.54-0.99 0.82 

examinat ion Specificity 0.96 0.91-0.99 0.93 0.86-0.97 0.98 0.81--0.99 
Serology Sensitivity 0.89 0.80-0.95 0.83 0.734.92 0.80 

test Specificity 0.67 0.36-0.95 0.67 0.304.93 0.66 
- __ cous12 - - 0.03 0.01-0.05 

C W C 1 2  0.02 0.00-0.06 
a1 1 - - -0.84 -2.1341.46 

- - - - 1.38 0.84-2.09 a21 
- - - - 1.30 0.56-2.27 

a10 - 3.04 1.98-41.33 
a20 - - 0.26 - 1.05-2.17 

- - - - 0.95 -0.23-2.98 

- - - -- 
- - 

bi 

b0 

- - - 

- - 
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intervals from the random effects model were (0.50, 0.99) and 
(0.72, 0.99) for the pessimistic and optimistic priors, respec- 
tively. These posterior distributions were typically skewed to- 
ward one. Thus, if we were sure that the specificity of serology 
was at least 0.7, we could reasonably assert that the prevcG 
lence of Strongyloides is at least 0.72. In any case, we are quite 
certain that the prevalence is at least 50% and prevalences as 
high as 99% cannot be ruled out, a conclusion of substantive 
importance to public health officials. 

We ran a large number of iterations (20,000) in order to 
obtain accurate inferences from the Gibbs sampler. Standard 
diagnostic procedures (Gelman and Rubin, 1992; Raftery and 
Lewis, 1992) revealed no convergence problems. 

5.  Discussion 
Time, cost, and other constraints often create situations where 
results from less than four diagnostic tests are available. Faced 
with this nonidentifiable situation, the analyst is presented 
with a choice of methods. Attempting to estimate all unknown 
parameters using maximum likelihood methods will result in 
the infinite number of possible solutions discussed in the in- 
troduction, which is not useful in practice. More simply (but 
also unrealistically), one can select two of the five unknown 
parameters to be exactly known and, assuming conditional 
independence, solve as reviewed by Walter and Irwig (1988). 
This results in estimates of the other three parameters, but 
the 95% confidence intervals are artificially narrow since the 
uncertainty inherent in the constrained parameters is ignored. 
Furthermore, the estimates can be biased if conditional inde- 
pendence does not hold. The Bayesian approach of Joseph 
et al. (1995), while retaining the assumption of conditional 
independence, replaces the need for arbitrarily constrained 
parameters with more realistic prior distributions over all pa- 
rameters. While this means that the prior information about 
the tests needs to be quantified, the method results in 95% 
intervals that include the uncertainty inherent in all five pa- 
rameters. 

In this article, we have further extended these methods to 
account for conditional dependence. If the degree of correla- 
tion between the tests is known a priori with high precision, 
then our methods adjust for the dependence between the tests 
while estimating the prevalence and test parameters. If the 
degree of correlation is not known, then our methods provide 
adjusted, typically wider inferences that incorporate all of the 
uncertainty inherent in the problem. Our methods could also 
be extended to include more than two tests by the addition 
of more covariance terms in the fixed model or a larger num- 
ber of (a jd ,  , b j d k )  parameters in the random effects model, as 
in Qu et al. (1996). Note that, by appropriately selecting the 
prior distribution, the methods described in this article can be 
made to numerically correspond to the Bayesian conditionally 
independent model or to both the frequentist constrained and 
unconstrained models. If, however, the tests may be correlated 
and it is unreasonable to assume that two or more parameters 
are exactly known, the methods presented here allow one to 
more realistically model the situation by using more appro- 
priate prior distributions. For a different viewpoint, see the 
work by Gastwirth and colleagues (Gastwirth, 1987; Gast- 
wirth, Johnson, and Reneau, 1991; Johnson and Gastwirth, 
1991). 

Of course, given the nonidentifiability of the model, this ex- 
tra modeling flexibility comes at the price of having to spec- 
ify a prior distribution, which may not be straightforward and 
whose influence does not diminish with increasing sample size. 
Thus, in deciding which model to use, the analyst must trade 
off the possibility of bias and optimistically narrow confidence 
intervals versus the need to derive a realistic prior distribution 
over all parameters. 

Both the models discussed here assume the true disease 
status to be latent. When there is no gold standard, one can 
choose either to use an explicit, but imperfect, pseudogold 
standard and accept its imperfections or to allow for a model 
to implicitly define what disease-positive means through the 
use of statistical techniques. Alonzo and Pepe (1999) propose 
the use of a composite reference standard (CRS) that com- 
bines information from several imperfect references to for- 
mulate a pseudogold standard. This has several advantages 
in that the CRS is explicitly defined rather than latent, can 
handle dependencies between tests, and does not depend on 
any new tests that are under development. In the situation 
considered in this article, it can be very difficult to derive a 
reasonable CRS, especially since we have only two tests and 
the properties of both tests are relatively poor so that no com- 
bination of their results comes close to being a gold standard. 
Therefore, a model-based approach may be a reasonable way 
to proceed. 

The application of these methods to the problem of esti- 
mating the prevalence of Strongylozdes infection shows that 
adjusting for the possibility of conditional dependence be- 
tween diagnostic tests may have a substantial effect on the 
posterior estimates of the prevalence and test properties. Un- 
less something is known a priorz about the strength of the 
dependence, however, we also widen the posterior probability 
intervals. In the absence of any information about the possi- 
ble dependence between the tests, this method might serve as 
a sensitivity analysis. By varying the values of the covariance 
between the tests between plausible limits, we can estimate 
the extent of the possible bias in our conclusions due to as- 
suming conditional independence between the tests. This ex- 
ample illustrates that posterior inferences strongly depend on 
the available prior information and on how that information is 
quantified into prior distributions. Different investigators can 
reasonably come to different conclusions, depending on their 
prior views. Some statisticians have considered the ability of 
Bayesian analysis to mirror the diversity of clinical opinion 
following a study as an advantage (Spiegelhalter, Freedman, 
and Parmar, 1994). 

The methodology developed here may be viewed as a map- 
ping from a given set of prior distributions to the correspond- 
ing set of posterior distributions. Therefore, the posterior den- 
sity can always be interpreted as a coherent updating of the 
prior distribution upon seeing the data, but any extrapolation 
to the truth involves a leap of faith. Thus, the accurate elici- 
tation of prior distributions is very important. We note that 
this is not a limitation of our methodology per se but rather a 
limitation of the situation when results from only two tests are 
available. Though there is a growing literature on the general 
problem of elicitation, elicitation for diagnostic test properties 
remains to be addressed. Not all tests perform uniformly well 
across different populations, and this is difficult to quantify. 
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RBSUMB 
Beaucoup d’analyses de rksultats B partir de tests diagnos- 
tiques multiples supposent que les tests soient statistique- 
ment indkpendants conditionnellement au vrai &tat de mal- 
adie chez le sujet. Cette supposition peut Gtre violke en pra- 
tique, spkcialement dans les situations oh aucun des tests est 
un test de rkfkrence parfaitement exact. L’infkrence classique 
pour des modkles tenant compte de la dkpendance condition- 
nelle entre tests exige que les rksultats d’au moins quatre tests 
diffkrents soient utilisks afin d’obtenir une solution identifi- 
able, mais il n’est pas toujours faisable d’avoir des rksultats 
d’autant de tests. Nous utilisons une approche bayksienne 
pour infCrer sur la prkvalence de la maladie et les propriktks 
des tests en ajustant sur la possibilitk d’une dCpendance con- 
ditionnelle entre tests, particulikrement quant on n’a que deux 
tests. Nous proposons des modkles B effets fixes et des modkles 
a effets alkatoires. Dans la mesure oii avec moins de quatre 
tests le problhme n’est pas identifiable, les distributions a pos- 
teriori sont fortement dkpendantes de l’information a priori 
concernant les proprietks des tests et la prevalence de la mal- 
adie, meme dans le cas de gros kchantillons. Si le degrk de 
corrdation entre les tests est connu a priori avec une grande 
prkcision, alors nos mCthodes ajustent pour la dkpendance en- 
tre tests. Dans le cas contraire, nos mCthodes fournissent des 
infkrences ajustkes qui incorporent la totalitk de l’incertitude 
inhkrente au problkme, rksultant typiquement en des estima- 
tions d’intervalles klargis. Nous illustrons nos mkthodes en 
utilisant des donnkes d’une Qtude sur la prevalence d’infection 
a Strongyloi’des parmi des rkfugiks Cambodgiens au Canada. 
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APPENDIX 

The full conditional distributions for the fixed and random effects models are listed below. When a parameter had a full 
conditional distribution that was not of a known form, we used a sampling-importance resampling (SIR) algorithm (Rubin, 
1988) to sample its values at each iteration of the Gibbs sampler. 

Full Conditional Distributions of Parameters in the Fixed Effects Model 

In the fixed effects model, the full conditional distributions of the parameters are as follows: 

~ I ~ , Y ~ ~ , Y ~ ~ , Y ~ ~ , Y ~ ~ , Q ~ , P ~ - ~ ~ ~ ~ ( ~ ~ + Y ~ ~ + Y ~ O + Y O ~ + Y O O , P ~ + N - ( Y ~ ~ + Y ~ ~ + Y O I  +Yoo)), 

where 

" (5152  + covs12) 
Pll  = 

a(S1S2 + covs12) + (1 - T)((l  - C1)(1- C2) + covc12) ; 

where 
"(Sl(1 - S2)  - cows12) 

7r(S1(1- S2) - covs12) + (1 - ")((1- Cl)C2 - cowc12)' PlO = 

where 

7r(( l -  S1)SZ - covs12) 
n((1 - Sl)S2 - CovSl2) + (1 - ")(Cl(l - C2) - covc12)' PO1 = 

where 

"((1- Sl)(l - S2) + covs12) 
"((1 - S l ) ( l  - S2) + covs12) + (1 - 7T)(C1C2 + covc12)' PO0 = 

Full Conditional Distributions of Parameters in the Random Effects Model 

For the random effects model, the full conditional distributions of the parameters are as follows: 
d )+ff~-1(1 - K)(N-x,=l N dk)+Pn-l, 

p ( r  I d l , .  . . ,dN,ar r ,Pr r )  OC T ( ~ ~ = ~  
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