
1

Multiple Linear Regression

Basic Concepts

Multiple linear regression is the extension of simple linear regression to the case of
two or more independent variables.

In simple linear regression, we had the basic equation:

Y = α + β ×X + “error”

whereas now this is extended to:

Y = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .+ βp ×Xp + “error”

As was also the case in simple linear regression, we can alternatively express the
model as:

E(Y ) = α + β1 ×X1 + β2 ×X2 + β3 ×X3 + . . .+ βp ×Xp

The “times” symbol is often omitted, giving the notation

Y = α + β1X1 + β2X2 + β3X3 + . . .+ βpXp + “error”

The outcome or dependent variable is again denoted by Y , while X1, X2, . . . , Xp

represents the set of independent or predictor variables. The parameter α represents
the intercept of the linear regression equation (intercept = the value of Y when all
independent variables X are set equal to zero), and β1, β2, . . . βp are the regression
coefficients for each independent variable, X1, X2, . . . , Xp, respectively. Note that p
represents the number of independent variables included in the model.

To interpret the β coefficients, we note that if X changes by one unit (for example,
changes from X = 0 to X = 1, or from X = 2.1 to X = 3.1, and so on), then the
mean of Y , E(Y ), changes by β, all else remaining equal.

As was the case for simple linear regression, in “simple” multiple regression, we need
to make several assumptions, including:

• The “errors” (again known as “residuals”) are independent N(0, σ2)
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• σ2 is constant throughout the range

• The relationship between each Xi and Y is a straight line.

Unlike linear regression restricted to one variable, in multiple linear regression we are
not restricted to linear relationships, because we can, for example, add polynomial
terms. We will soon reanalyze our fluoride DMF teeth example adding in a polynomial
term to improve our previous linear model.

Brief Outline: Estimation of Regression Coefficients

and the Residual Variance

Let’s write down the likelihood function for multiple linear regression and see how
the coefficients are estimated:

Recall once again that the likelihood function of a model gives the probability that
the data would be observed, given the unknown parameters, α, βi, i = 1, 2, . . . , p,
and σ2, in this case, where p is the number of independent variables. The form of the
multiple linear relationship, together with the normality assumption for the errors,
implies the following, for each data point included in the data set, i = 1, 2 . . . , n:

Yi ∼ N(α + β1Xi1 + β2Xi2 + . . . βpXip, σ
2)

Recall also the form of the normal distribution:

f(z) =
1√
2πσ

exp

(
−1

2

(
z − µ
σ

)2
)

Thus, the likelihood function contribution from a single data point (X1i, X2i, . . . , Xip, Yi)
pair is:

like(Yi) =
1√
2πσ

exp

−1

2

(
Yi − (α + β1Xi1 + β2Xi2 + . . . βpXip)

σ

)2


Since each data point is assumed independent of all others, and since independent
probabilities multiply (basic probability rule), we have the following likelihood for
our model:
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like(Y ) =
n∏

i=1

 1√
2πσ

exp

−1

2

(
Yi − (α + β1Xi1 + β2Xi2 + . . . βpXip)

σ

)2


As is often the case, frequentist inference proceeds by maximizing this likelihood
function to find estimates of α, the p βj’s and σ2. We will omit the details, but the
summary of the steps involved is identical to that from simple linear regression:

1. Take the logarithm of the likelihood function. Recall that the logarithm of
a function will have the same maxima as the function itself. Because of the
exponential term, the log is easier to maximize.

2. To find the values of α, βj, j = 1, 2, . . . , p and σ2 that maximize the logarithm
of the likelihood, take the (partial) derivatives with respect to α, the βj’s and
σ2, and set these equations equal to zero. Solving this system of equations (p+2
equations in p+ 2 unknowns) gives the maximum likelihood estimators for our
unknown parameters.

If the above steps are followed, we can find the the maximum likelihood estimates,
but, unlike the case for a single variable, the formulae are extremely tedious to solve
by hand, and not that intuitive to look at, and so are omitted here.

[Note to those who know some linear algebra: A compact way to express the estimated
beta coefficients is: β̂ = (X ′X)−1 Y , where X is a “design matrix” comprised of the
individual data points Xij arranged into a matrix, preceded by a column of ones
representing the “multipliers” of the α intercepts.]

Although we do not present the estimation formulae in complete detail (computer
packages such as R will do the calculations for us), it is still useful to note that, as
was the case with simple linear regression, all maximum likelihood estimators are
asymptotically (as sample size n goes to infinity) unbiased and minimum variance.
For finite sample sizes, α̂ and β̂ are unbiased but σ̂2 is not unbiased. Therefore, it is
more common to use an unbiased (but not maximum likelihood) estimator for σ2:

σ̂2 =
n∑

i=1

(Yi − Ŷ )2

n− (p+ 1)

Note that this is just the sum of squared distances from the data points to the
predicted line, divided essentially by the number of data points (adjusted for number
of degrees of freedom “lost” in estimating the parameters).



4

Inference for Regression Parameters

Inferences when there are more than one X variable are very similar to when there is
just a single independent variable. First, when making predictions for future obser-
vations, we use:

ŷi = α̂ + β̂1 × x1 + β̂2 × x2 + . . .+ β̂p × xp

Confidence intervals and tests (if you ever want to use a test!) also follow the same
principles (roughly, estimate ± 1.96 × SD) as in multiple linear regression, except the
formulae are a bit more complicated to write down, and, for purposes of this class,
we will trust computer packages such as R to do the computations for us. So, let’s
see some examples of using multiple linear regression.

Example of Multiple Linear Regression (Polynomial

Regression Example)

We continue with an example we have previously analyzed: You may recall that we
have already seen the data below, which describe the tooth decay experience of 7257
children 12–14 years old in 21 communities according to the fluoride concentration of
their public water supply. Remember that DMF denotes “Decayed, Missing or Filled
Teeth”.
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Community DMF per 100 Fluoride Concentration
Number children in ppm

1 236 1.9
2 246 2.6
3 252 1.8
4 258 1.2
5 281 1.2
6 303 1.2
7 323 1.3
8 343 0.9
9 412 0.6

10 444 0.5
11 556 0.4
12 652 0.3
13 673 0.0
14 703 0.2
15 706 0.1
16 722 0.0
17 733 0.2
18 772 0.1
19 810 0.0
20 823 0.1
21 1027 0.1

Last time we ran simple linear regression on this data set, with the following results:

> regression.out<-lm(dmf~flor)

> summary(regression.out)

Call: lm(formula = dmf ~ flor)

Residuals:

Min 1Q Median 3Q Max

-152.825 -94.305 1.575 56.495 322.575

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 732.34 38.55 18.996 8.1e-14

*** flor -279.20 38.18 -7.312 6.2e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 127.3 on 19 degrees of freedom Multiple

R-Squared: 0.7378, Adjusted R-squared: 0.724 F-statistic: 53.47
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on 1 and 19 DF, p-value: 6.199e-07

Note the very large standard errors for our parameter estimates, the large residuals
indicating a poor fit, and the graph of residuals below:

The residuals form a “U-shape”, suggesting that quadratic regression, or polynomial
regression of order two, meaning adding an “X2” or, in this case, “flor2” term may
substantially improve the fit.

We will now fit this quadratic multiple regression model using R. The commands we
will use are:

# First enter the data

> dmf.data <- data.frame(

dmf = c( 236, 246, 252, 258, 281, 303, 323, 343, 412, 444, 556, 652,

673, 703, 706, 722, 733, 772, 810, 823, 1027),

flor = c( 1.9, 2.6, 1.8, 1.2, 1.2, 1.2, 1.3, 0.9, 0.6, 0.5, 0.4, 0.3,

0.0, 0.2, 0.1, 0.0, 0.2, 0.1, 0.0, 0.1, 0.1))

> attach(dmf.data) # For convenience, to make the dmf and flor variables

> # available outside the data.frame

>

> plot(flor, dmf) # Create a scatter plot
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The graph and residual plot both strongly suggest a non-linear relationship between
DMF teeth and fluoride. We will use R to add a squared fluoride term to the regres-
sion, to see if the fit is improved:

# First create the fluoride squared variable:

> flor2 <- flor^2

# Look at the flor2 variable, the square of flor:

> flor2

[1] 3.61 6.76 3.24 1.44 1.44 1.44 1.69 0.81 0.36 0.25 0.16 0.09

0.00 0.04 0.01 0.00 0.04 0.01 0.00 0.01 0.01

# Next run the multiple linear (polynomial) regression model

# with both linear and quadratic terms:

> regression.out<-lm(dmf ~ flor + flor2)

# Look at the main results of the regression:

> summary(regression.out)
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Call:

lm(formula = dmf ~ flor + flor2)

Residuals:

Min 1Q Median 3Q Max

-138.510 -34.566 -1.510 31.240 277.030

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 811.51 31.55 25.721 1.20e-15 ***

flor -631.85 79.91 -7.907 2.90e-07 ***

flor2 164.48 35.19 4.675 0.000189 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 87.91 on 18 degrees of freedom

Multiple R-Squared: 0.8816, Adjusted R-squared: 0.8684

F-statistic: 67 on 2 and 18 DF, p-value: 4.578e-09

# Check the fit of this new regression as a plot against the data:

> x <- seq(0,3,by=0.005)

> plot(flor, dmf)

> points(x, regression.out$coefficients[1] + regression.out$coefficients[2]*x

+ regression.out$coefficients[3] * x^2, type="l")

# regression.out$coefficients[1] = intercept

# regression.out$coefficients[2] = slope for flor, the linear term

# regression.out$coefficients[3] = slope for flor2, the quadratic term
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Note the very dramatic improvement in fit when adding in the squared (quadratic)
fluoride term.

Note also the much improved residuals:

> regression.out$residuals

1 2 3 4 5 6

31.240279 -34.566092 44.911693 -32.139684 -9.139684 12.860316

7 8 9 10 11 12

54.926005 -33.073852 -79.613673 -92.705981 -29.087806 15.240852

13 14 15 16 17 18

-138.510276 11.279993 -43.970383 -89.510276 41.279993 22.029617

19 20 21

-1.510276 73.029617 277.029617

> hist(regression.out$residuals)



10

The residuals are almost perfectly normally distributed, with perhaps one “outlier”
out on the right.

Before leaving this example, we note the following additional points:

Interpretation of coefficients in polynomial regression: While the intercept re-
tains the same interpretation as in simple (univariate) linear regression, the
coefficient for the linear term, flor, changes when the flor2 quadratic term is
added to the model.

In the previous simple linear model, we have α = 732.34, while in the quadratic
polynomial regression model it was α = 811.41. While these two values are
somewhat different (the second estimate is better, since the quadratic model
fit better), both estimates are saying roughly the same thing: When there is
no fluoride added to the water in a community, there will be about 700 or 800
DMF teeth per 100 children. While these estimates differ numerically, they are
both estimating the same quantity.

On the other hand, the beta coefficient for the linear flor term changed from
β = −279.2 in the simple linear model to β = −631.85 in the second model.
This does NOT mean that for a one unit change in fluoride the second (better)
model almost tripled the estimate of the benefits of fluoride, because these
two estimates are NOT directly comparable in this way. The first estimate
of β = −279.2 does indeed estimate the effect of a one unit change in flor
on DMF teeth, and is interpreted as meaning that for every additional unit of
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flor, mean DMF teeth decreases by about 279 per 100 children (although, as
discussed previously, we know that estimate is not accurate because a linear
model did not fit that well).

Conversely, the estimate of β = −631.85 does NOT mean that an increase of
one unit of flor decreases DMF teeth by 631 per 100 children, because there
is another flor term in the equation, and both must be considered simulta-
neously in order to infer the correct relationship between DMF and flor. In
addition, because of the nonlinear nature of this relationship, there is no
unique “slope” that applies throughout the flor range. Let’s look at
two examples of one unit flor changes, first going from 0 to 1, and then going
from 1 to 2:

# Prediction for flor=0:

> DMF0 <- regression.out$coefficients[1] + regression.out$coefficients[2]*0

+ regression.out$coefficients[3] * 0^2

> DMF0

(Intercept)

811.5103

# Prediction for flor=1:

> DMF1 <- regression.out$coefficients[1] + regression.out$coefficients[2]*1

+ regression.out$coefficients[3] * 1^2

> DMF1

344.1396

# Prediction for flor=2:

> DMF2 <- regression.out$coefficients[1] + regression.out$coefficients[2]*2

+ regression.out$coefficients[3] * 2^2

> DMF2

205.7207

# Difference when changing flor from 0 to 1:

> DMF0 - DMF1

467.3707

# Difference when changing flor from 1 to 2:
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> DMF1 - DMF2

138.4190

So, a one unit change depends on where you start, it is not unique, unlike in
simple regression models. As the values of flor increases, the ”slope” becomes
less and less negative, so that the effect of adding more fluoride is diminished
for larger values. This is also clear from the graph of the regression function
above.

Beware of range: In any regression model, all conclusions apply only over the range
of the collected data. So here, with a reasonably good fitting model, we can
expect good predictions over the range, say, from 0 to 2.5 units of fluoride, but
not above 2.5 (where the curve starts to rise again, which is not likely).

Predictions in multiple regression models: As shown above, predictions for mul-
tiple regression models can be done “manually” once the coefficients are known
(or stored in an output object), but you can also do them more “automatically”
in R:

> regression.out$fitted.values

1 2 3 4 5 6 7 8

204.7597 280.5661 207.0883 290.1397 290.1397 290.1397 268.0740 376.0739

9 10 11 12 13 14 15 16

491.6137 536.7060 585.0878 636.7591 811.5103 691.7200 749.9704 811.5103

17 18 19 20 21

691.7200 749.9704 811.5103 749.9704 749.9704

or, for new values:

> new <- data.frame(flor=1.5, flor2=1.5^2)

# Just the predicted mean

> predict.lm(regression.out, newdata=new)

[1] 233.8112

# With CI for prediction for next city with value flor = 1.5

> predict.lm(regression.out, newdata=new, interval="prediction")

fit lwr upr

[1,] 233.8112 36.3615 431.2608

# With confidence interval for mean when flor=1.5

> predict.lm(regression.out, newdata=new, interval="confidence")

fit lwr upr

[1,] 233.8112 164.0108 303.6116
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The first interval is a prediction for the “next town” with a fluoride concen-
tration of 1.5, while the second interval is the confidence interval for the mean
prediction (i.e., for an infinite number of towns, each with value 1.5 . . . note
that second interval is much smaller than the first).

Regression coefficient confidence intervals from R: Confidence intervals for any
estimated parameter can also be calculated manually, for example, we can cal-
culate a confidence interval for β1 (i.e., linear term for flor):

Excerpt from above regression results were: Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 811.51 31.55 25.721 1.20e-15 ***

flor -631.85 79.91 -7.907 2.90e-07 ***

flor2 164.48 35.19 4.675 0.000189 ***

So a CI for flor is:

> -631.85 + c(-1,1)*(qt(0.975, df=18))*79.91

[1] -799.7347 -463.9653

Below we will see how to automate these calculations.

Higher order polynomial regression models: There is no reason to stop at a
quadratic model, in general one could go to higher orders in search of a better
fit, had the residuals indicated this might be fruitful. For example, one could
consider the model

DMF = α + β1 ∗ flor + +β2 ∗ flor2 + β3 ∗ flor3

and so on.

Other functions of the X variables: Rather than polynomial terms, one can also
try other terms, for example:

DMF = α + β1 ∗ flor + β2 ∗
√
flor

or

DMF = α + β ∗ log (flor)

and so on.
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R program for confidence intervals for multiple re-

gression

Once again, note that, R does not automatically provide confidence intervals for all
parameters in the summary, although it does provide all of the information needed
to obtain these confidence intervals, or one can use the confint function. For con-
venience, as we did for simple linear regression, we will create our own function to
output all of the usual information from a regression, plus confidence intervals.

Unlike simple linear regression, we cannot know in advance how many independent
(X) variables we will want to use in our function. Therefore, at the beginning, we
will discover the number of beta coefficients we need to estimate, and automatically
get confidence intervals for all of them.

Here is the function:

multiple.regression.with.ci <- function(regress.out, level=0.95)

{

################################################################

# #

# This function takes the output from an lm #

# (linear model) command in R and provides not #

# only the usual output from the summary command, but #

# adds confidence intervals for intercept and slope. #

# #

# This version accommodates multiple regression parameters #

# #

################################################################

usual.output <- summary(regress.out)

t.quantile <- qt(1-(1-level)/2, df=regress.out$df)

number.vars <- length(regress.out$coefficients)

temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)

for(i in 1:number.vars)

{

temp.store.result[i,] <- summary(regress.out)$coefficients[i] +

c(-1, 1) * t.quantile * summary(regress.out)$coefficients[i+number.vars]

}

intercept.ci <- temp.store.result[1,]

slopes.ci <- temp.store.result[-1,]

output <- list(regression.table = usual.output, intercept.ci = intercept.ci,

slopes.ci = slopes.ci)

return(output)

}
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# Now test the function:

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = dmf ~ flor + flor2)

Residuals:

Min 1Q Median 3Q Max

-138.510 -34.566 -1.510 31.240 277.030

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 811.51 31.55 25.721 1.20e-15 ***

flor -631.85 79.91 -7.907 2.90e-07 ***

flor2 164.48 35.19 4.675 0.000189 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 87.91 on 18 degrees of freedom

Multiple R-Squared: 0.8816, Adjusted R-squared: 0.8684

F-statistic: 67 on 2 and 18 DF, p-value: 4.578e-09

$intercept.ci

[1] 745.2254 877.7952

$slopes.ci

[,1] [,2]

[1,] -799.73982 -463.9532

[2,] 90.55367 238.3980

You may wish to modify the function to create “prettier” output, but it works.

Another example of multiple linear regression

The above example was really just a special case of multiple linear regression, because
we used only a single variable, fluoride, which was used multiple times (just twice, in
this case, linear and quadratic terms) in the same equation. We will now see a more
general example of multiple regression, involving several variables.

Consider predicting the percent heart rate achieved from other basic heart related
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measurements. We will use the data set from the course web page called “Heart-
Data.txt”. Definitions of the variables included are:

hr basal heart rate
bp basal blood pressure

pkhr peak heart rate
sbp systolic blood pressure

mphr percentage of maximum predicted heart rate achieved
age age

gender gender (male = 0, female=1)
baseef baseline cardiac ejection fraction (measures heart pumping efficiency)

We will see if we can predict mphr from the other variables using multiple linear
regression. Save the data set on your hard disk, and run the following R program to
obtain the results:

# Input data set as a data frame in R

> heart <- read.table(file="g:\\HeartData.txt", header=T)

# Check first few lines of data set

> heart[1:10,]

hr bp pkhr sbp mphr age baseef gender

1 92 103 114 86 74 85 27 0

2 62 139 120 158 82 73 39 0

3 62 139 120 157 82 73 39 0

4 93 118 118 105 72 57 42 1

5 89 103 129 173 69 34 45 0

6 58 100 123 140 83 71 46 0

7 63 120 98 130 71 81 48 1

8 86 161 144 157 111 90 50 1

9 69 143 115 118 81 81 52 1

10 76 105 126 125 94 86 52 0

# Quick scatter plots of all variables

> pairs(heart)
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Note that some variables look strongly related, e.g., mphr and pkhr (probably not a
surprise).

# Run a multiple linear regression with these variables, using mphr as the

# dependent variable, and all others as independent variables:

> regression.out <- lm(mphr ~ hr + bp + pkhr + sbp + age + baseef + gender, data=heart)

# Now run our recently developed function to get output with CIs:

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = mphr ~ hr + bp + pkhr + sbp + age + baseef + gender,

data = heart)

Residuals:

Min 1Q Median 3Q Max

-21.3654 -1.6474 0.2319 1.6702 24.3196

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -33.712293 2.374200 -14.199 < 2e-16 ***

hr 0.035350 0.014563 2.427 0.01553 *

bp -0.030073 0.010025 -3.000 0.00282 **

pkhr 0.603127 0.009739 61.928 < 2e-16 ***

sbp 0.032667 0.005682 5.749 1.49e-08 ***

age 0.525863 0.016094 32.674 < 2e-16 ***

baseef 0.010269 0.018996 0.541 0.58902

gender 0.328743 0.399230 0.823 0.41061

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.405 on 550 degrees of freedom

Multiple R-Squared: 0.9162, Adjusted R-squared: 0.9152

F-statistic: 859.2 on 7 and 550 DF, p-value: < 2.2e-16

$intercept.ci

[1] -38.37590 -29.04868

$slopes.ci

[,1] [,2]

[1,] 0.006743777 0.06395708

[2,] -0.049765950 -0.01038055

[3,] 0.583996404 0.62225759

[4,] 0.021505285 0.04382926

[5,] 0.494249025 0.55747657

[6,] -0.027045455 0.04758352

[7,] -0.455459465 1.11294500

Take a few minutes to look at each variable, especially at the confidence intervals,
and interpret the effect from each variable. Keep in mind the correct way to interpret
confidence intervals, according to where the upper and lower interval limits fall in
relation to the region of clinical equivalence.

In the above analyses, we simply took all possible variables, and ran a single linear
regression model with all variables included. This is, in fact, very bad practice. In
general, a better procedure would be something like:

1. Look at various descriptive statistics to get a feel for the data.

2. Separately, graph each independent variable against each dependent variable
(sometimes more than one dependent variable is of interest. This allows one to
see if trends are perhaps non-linear (possibly leading to data transformations
for either X or Y variables), as well as whether the variable looks “important”
(but remember that looks can sometimes be deceiving).
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3. For all variables being considered, calculate a correlation matrix of each variable
against each other variable. This allows one to begin to investigate possible
confounding and collinearity.

4. Perform a simple linear regression for each independent variable. This again
begins to investigate confounding, as well as providing an initial “unadjusted”
view of the importance of each variable, by itself.

5. Think about any “interaction terms” that you may want to try in the model.

6. Perform some sort of model selection technique, or, often much better, think
about avoiding any strict model selection by finding a set of models that seem
to have something to contribute to overall conclusions.

7. Based on all work done, draw some inferences and conclusions. Carefully inter-
pret each estimated parameter, perform “model criticism”, possibly repeating
some of the above steps (for example, run further models), as needed.

8. Other inferences, such as predictions for future observations, and so on.

The above should not be looked at as “rules” never to be broken, but can be used as
a rough guide as to how to proceed through a regression analysis.

In the next few lectures, we will carefully investigate each of these issues using this
same data set and others.


