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Hierarchical Models in Logistic Regression

Motivation by Example

Suppose that we have a data set where nine different MD’s made decisions on 133
patients in total. On average, about 15 patients per MD, although the data were
not evenly distributed across MDs. The decisions involved whether to give a patient
thrombolysis or not in the emergency room.

There are Canadian guidelines as to whether to thrombolyse such patients or not,
so each physician was evaluated as to whether they followed the guidelines for each
subject they treated or not. For example, the first physician followed the guidelines
in 19 out of 20 patients she/he treated. While each physician has their own rate of
“success” (following the guidelines), it may be that overall, these rates may themselves
follow a pattern, i.e., have a statistical distribution.

The question is:

How can we best estimate each physician’s rate of correct decision making?

If we use each physician’s rate separately, then the sample sizes will be too small.

For example, the largest number of patients contributed by any MD was 24, and so
we would expect a very wide interval estimate from even the best case scenario.

On the other hand, it is probably quite unreasonable to assume that the true rate of
correct decision making is constant across physicians, as each has their own training,
background, and so on. Thus, we expect rates to different across physicians.

So, pooling of all data would provide an accurate estimate, but ignores individual
variability. Individual estimates take each MD’s ability into account, but will lead to
very poor accuracy owing to small sample sizes.

Is there a way to address this problem?

One answer is to use a hierarchical/random effects model, which allows us to reason-
ably accurately estimate both individual and overall rates of guideline adherence, in
exchange for an assumption: That the nine MDs are like a sample from a group of
MDs that collectively have rates that follow a statistical distribution. This “higher
level” distribution is why these models are called “hierarchical models”.

The data are from the MSc thesis of Dr. Michael Schull.
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Model We will now program this problem using a hierarchical model in WinBUGS.

model # Usual model statement in WinBUGS

{

for (i in 1:nmd) { # Loop over number of MDs = 9

x[i] ~ dbin(p[i],n[i]) # For each MD, number of

# successes is binomial

# with size = n[i], rate = p[i]

logit(p[i]) <- z[i] # Create a hierarchical

z[i] ~ dnorm(mu,tau) # distribution, by letting

} # logit of rates be normally

# distributed

# z is a "transformed" variable

# representing the rates p[i]

# on the logit scale

mu ~ dnorm(0,0.001) # Prior distribution for mu

tau ~ gamma(0.001, 0.001) # Prior distribution for tau

y ~ dnorm(mu, tau) # Predictive distribution for rate on logit scale

sigma <- 1/sqrt(tau) # Prior SD on the logit scale, FROM TAU

w <- exp(y)/(1+exp(y)) # Predictive dist transformed back to prob scale

}

Data

list(n=c( 20, 6, 24, 13, 12, 4, 24, 12, 18),
x=c( 19, 5, 22, 12, 11, 4, 23, 12, 16),
nmd=9)

Initial Values

list(mu=0, sigma=1)
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Results

node mean sd MC error 2.5% median 97.5% start sample
mu 2.642 0.3716 0.0294 1.973 2.63 3.357 1001 5000
tau 215.9 403.8 21.61 1.189 51.67 1447.0 1001 5000

sigma 0.2245 0.2467 0.01485 0.02631 0.1393 0.9187 1001 5000
p[1] 0.9301 0.02673 0.0018 0.8693 0.9332 0.9718 1001 5000
p[2] 0.9242 0.03447 0.002022 0.8463 0.9294 0.9689 1001 5000
p[3] 0.9277 0.0266 0.001763 0.8665 0.9316 0.9684 1001 5000
p[4] 0.9281 0.02856 0.001852 0.8598 0.9321 0.9712 1001 5000
p[5] 0.9279 0.0286 0.001851 0.8635 0.9319 0.9721 1001 5000
p[6] 0.9293 0.02987 0.001896 0.8636 0.9333 0.9758 1001 5000
p[7] 0.9313 0.02574 0.001803 0.8745 0.9343 0.9739 1001 5000
p[8] 0.932 0.02688 0.001838 0.8748 0.9347 0.9779 1001 5000
p[9] 0.9257 0.0288 0.001872 0.8595 0.93 0.9677 1001 5000

w 0.927 0.03535 0.001954 0.8524 0.9324 0.9725 1001 5000
y 2.638 0.4917 0.02993 1.753 2.624 3.565 1001 5000

Rerunning above, but with data changed so that first row is 10/20. Note how this
“outlier” is not pulled back as strongly towards the overall mean.

node mean sd MC error 2.5% median 97.5% start sample
mu 2.347 0.6308 0.02193 1.315 2.286 3.806 1001 4000
p[1] 0.5969 0.1161 0.003224 0.366 0.6 0.8094 1001 4000
p[2] 0.8614 0.0981 0.001751 0.6063 0.8834 0.9825 1001 4000
p[3] 0.9076 0.05137 0.001297 0.7848 0.9152 0.9808 1001 4000
p[4] 0.9075 0.06156 0.001603 0.7596 0.9193 0.9889 1001 4000
p[5] 0.9027 0.06282 0.001518 0.7504 0.9153 0.9875 1001 4000
p[6] 0.9104 0.07954 0.001975 0.6975 0.9322 0.9972 1001 4000
p[7] 0.933 0.04373 0.001305 0.8296 0.9413 0.9918 1001 4000
p[8] 0.9404 0.05143 0.001714 0.8086 0.9537 0.9982 1001 4000
p[9] 0.8888 0.06163 0.001315 0.7372 0.8989 0.9775 1001 4000

sigma 1.205 0.5925 0.02313 0.366 1.106 2.64 1001 4000
tau 1.525 2.806 0.1283 0.1441 0.8176 7.476 1001 4000

w 0.8579 0.1527 0.002682 0.385 0.9027 0.9957 1001 4000
y 2.339 1.452 0.03215 -0.4683 2.228 5.446 1001 4000
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Rerunning above, but with data changed so that first row is 100/200. Now very
strong outlier, results stays near 50% observed rate.

node mean sd MC error 2.5% median 97.5% start sample
mu 2.399 0.6767 0.01764 1.236 2.345 3.935 1001 4000
p[1] 0.5088 0.03571 5.547E-4 0.4406 0.5092 0.5817 1001 4000
p[2] 0.8565 0.1035 0.002056 0.5942 0.8801 0.9838 1001 4000
p[3] 0.9104 0.05155 9.935E-4 0.7889 0.9198 0.9822 1001 4000
p[4] 0.91 0.06435 0.00122 0.746 0.9248 0.99 1001 4000
p[5] 0.9066 0.06611 0.001272 0.7396 0.9202 0.9895 1001 4000
p[6] 0.9191 0.08212 0.002 0.6984 0.9439 0.9985 1001 4000
p[7] 0.9397 0.04166 8.286E-4 0.8367 0.9485 0.9934 1001 4000
p[8] 0.9499 0.04702 0.001143 0.8217 0.9635 0.9989 1001 4000
p[9] 0.8894 0.06441 0.001169 0.7325 0.902 0.9784 1001 4000

sigma 1.433 0.6118 0.01963 0.6696 1.311 3.024 1001 4000
tau 0.7414 0.5728 0.01634 0.1097 0.5827 2.242 1001 4000

w 0.8457 0.1816 0.003351 0.2951 0.9117 0.9977 1001 4000
y 2.396 1.714 0.03377 -0.8707 2.335 6.091 1001 4000

So, to summarize:

The hierarchical model allowed one to estimate the rate of each physician reasonably
accurately, assuming the model is reasonable.

When all rates were similar, sigma is small, and rates are bunched together (a lot
of “borrowing of strength”). When one (or in general, any number) rate sticks out
from the rest, the degree of “pull” back towards the overall mean depends on how
strong the result is (which in turn, depends on how different it is, and on the sample
sizes. Note that sigma grows in size as the individual rates are spread further apart,
meaning less “pull” back towards the overall mean.

Using this model, can also predict what the overall rate is, as well as the rate for the
“next similar physician”.

Example 2: Hierarchical Logistic Regression

The above example used a logit function, but there were no covariates. as we saw for
linear regression, on can also place hierarchical components on intercepts and beta
coefficients.

Consider the following example:
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We would like to estimate the rates of osteoporosis in Canada, but believe that they
differ not only by age and sex (higher rates in older females compared to younger
males), but also by province.

We have a data set of 10,000 female subjects, 1000 from each province. For each
subject, we have their age, province, and whether they have been diagnosed with
osteoporosis.

The data are in a file called osteo.txt, and we will create a hierarchical model that
accounts for possible differences across provinces, and provides probabilities that one
province has a higher rate compared to any other province.

The data structure is as follows:

The first 1000 data points are from Newfoundland, the next 1000 from Nova Sco-
tia, the next 1000 from New Brunswick, and then PEI, Quebec, Ontario, Manitoba,
Saskatchewan, Alberta, and BC, in that order.

model # Usual model statement in WinBUGS

{

for (j in 1:10) # Loop over 10 provinces

{

# Common index trick

for (i in index[j]:index2[j]) # Index for jth province

{

logit(p[i]) <- alpha[j] + beta*age[i] # Logit for individual probability

osteo[i] ~ dbern(p[i]) # Likelihood function for ith individual

} #

alpha[j] ~ dnorm(mu, tau) # Hierarchical component: provincial rates

} # "tied together" through normal distribution

mu ~ dnorm(0,0.001) # Prior on hierarchical mean

tau <- 1/(sigma*sigma) # Needed for WinBUGS

sigma ~ dunif(0,20) # Prior for hierarchical Sd

beta ~ dnorm(0, 0.001) # Prior for beta

pred.NFLD.50 <- exp(alpha[1] + beta*50)/(1+exp(alpha[1] + beta*50))

pred.QUEBEC.50 <- exp(alpha[5] + beta*50)/(1+exp(alpha[1] + beta*50))

pred.BC.50 <- exp(alpha[10] + beta*50)/(1+exp(alpha[10] + beta*50))

diff.quebec.bc <- pred.QUEBEC.50 - pred.BC.50 # Quebec - BC diff

p.quebec.bc <- step(pred.QUEBEC.50 - pred.BC.50) # p(Quebec > BC)

}

# Inits

list(alpha=c(0,0,0,0,0,0,0,0,0,0), beta=0.5, mu=0, sigma = 1)
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# Data

list(index = c(1, 1001, 2001, 3001, 4001, 5001, 6001, 7001,

8001, 9001),

index2 =c(1000, 2000, 3000, 4000, 5000, 6000, 7000,

8000, 9000, 10000),

age=c(39, 25, 36, 68, 67, 50, 39, 68, 31, 30, 54, 30, 30,

71, 30, 28, 49, 54, 29, 61, 35, 52, 29, 74, 70, 50, 41, 74, 74,

38, 29, 41, 27, 28, 57, 32, 32, 64, 45, 60, 56, 66, 65, 40, 64,

58, 51, 30, 48, 63, 50, 52, 67, 47, 44, 37, 41, 32, 35, 27, 58,

......................etc.................

55, 40, 27, 33, 37, 39, 28, 75, 37, 52, 57, 67, 25, 33, 34, 55,

39, 46, 28), osteo=c(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,

......................etc.................

0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0,

1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,

0, 0, 1, 1, 1, 1, 1, 1))

The results are as follows:

node mean sd MC error 2.5% median 97.5% start sample

alpha[1] -0.6307 0.09387 0.003661 -0.8123 -0.6306 -0.4466 1001 10000

alpha[2] -0.5916 0.09053 0.00362 -0.7634 -0.5923 -0.414 1001 10000

alpha[3] -0.437 0.08762 0.003624 -0.6053 -0.4376 -0.2607 1001 10000

alpha[4] -0.4934 0.08708 0.003542 -0.6622 -0.4931 -0.3201 1001 10000

alpha[5] -0.4047 0.0882 0.003568 -0.5745 -0.4054 -0.2329 1001 10000

alpha[6] -0.3533 0.09058 0.003677 -0.5269 -0.3532 -0.1722 1001 10000

alpha[7] -0.3739 0.09001 0.003639 -0.5478 -0.3743 -0.1951 1001 10000

alpha[8] -0.4318 0.08846 0.003605 -0.6019 -0.433 -0.2543 1001 10000

alpha[9] -0.4584 0.0879 0.003628 -0.627 -0.4588 -0.2862 1001 10000

alpha[10] -0.5 0.087912 0.003544 -0.6734 -0.5013 -0.3295 1001 10000

beta 0.002226 0.001352 6.719E-5 -4.721E-4 0.002239 0.004797 1001 10000

diff.quebec.bc 0.06421 0.03328 4.504E-4 0.003522 0.06245 0.1322 1001 10000

mu -0.4677 0.08147 0.003604 -0.6229 -0.4686 -0.3052 1001 10000

p[1] 0.3674 0.01559 3.223E-4 0.3369 0.3675 0.3984 1001 10000

p[2] 0.3602 0.01694 4.869E-4 0.3275 0.3602 0.394 1001 10000

p[3] 0.3659 0.01579 3.533E-4 0.3348 0.3659 0.3973 1001 10000

p[4] 0.3825 0.01654 3.561E-4 0.3499 0.3826 0.415 1001 10000
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p[9998] 0.3982 0.014 2.502E-4 0.3705 0.3983 0.4261 1001 10000

p[9999] 0.4019 0.01366 1.677E-4 0.3749 0.402 0.4289 1001 10000

p[10000] 0.3924 0.0152 4.08E-4 0.3623 0.3923 0.4223 1001 10000

p.quebec.bc 0.9823 0.1319 0.001347 1.0 1.0 1.0 1001 10000

pred.BC.50 0.4041 0.01363 1.404E-4 0.377 0.4041 0.4311 1001 10000

pred.NFLD.50 0.3731 0.01532 2.523E-4 0.3428 0.3731 0.4033 1001 10000

pred.QUEBEC.50 0.4683 0.03007 3.949E-4 0.4144 0.4666 0.5307 1001 10000

sigma 0.1212 0.04609 8.6E-4 0.05246 0.114 0.2299 1001 10000

tau 172.6 1786.0 69.06 18.95 76.94 364.7 1001 10000

One could have predicted rate for next person from each province of a given age, and
so on. Note that sigma was relatively large (on the logit scale) indicating substantial
differences in rates between provinces. Note that Quebec is highly likely to have a
larger rate than BC, with probability = 0.98. Also, note the very direct statement
arising from this variable, in comparison with p-values.

Final Comments

• One can have multiple level hierarchical models, accounting for hierarchical data
structure. For a detailed example see the paper:

Brophy J, Joseph L, Theroux P, on behalf of the Quebec Acute Coronary Care
Working Group. Medical decision making about the choice of thrombolytic
agent for Acute Myocardial Infarction. Medical Decision Making 1999;19(4):411-
418.

This paper used a four level model. It was programmed in WinBUGS, and
formed part of the PhD thesis of Dr. James Brophy.

• Frequentist random effects models can be programmed in R, perhaps less intu-
itive than those in WinBUGS, beyond the scope of this course.

• As discussed for linear regression models, one can almost always argue for a
hierarchial component to any regression model in epidemiology: Subjects are
treated by different physicians, in different hospitals, at different times, in dif-
ferent provinces, and so on.

Overall, hierarchical modelling is a very important topic, we have just scratched
the surface here, but be on the lookout for opportunities to better your models
through addition of hierarchical levels.


