Confounding and Collinearity in Multivariate Logistic Regression

We have already seen confounding and collinearity in the context of linear regression,
and all definitions and issues remain essentially unchanged in logistic regression.

Recall the definition of confounding:

Confounding: A third variable (not the independent or dependent variable of inter-
est) that distorts the observed relationship between the exposure and outcome.
Confounding complicates analyses owing to the presence of a third factor that
is associated with both the putative risk factor and the outcome.

Criteria for a confounding factor:

1. A confounder must be a risk factor (or protective factor) for the outcome
of interest.

2. A confounder must be associated with the main independent variable of
interest.

3. A confounder must not be an intermediate step in the causal pathway
between the exposure and outcome.

All of the above remains true when investigating confounding in logistic regression
models.

In linear regression, one way we identified confounders was to compare results from
two regression models, with and without a certain suspected confounder, and see how
much the coefficient from the main variable of interest changes.

The same principle can be used to identify confounders in logistic regression. An
exception possibly occurs when the range of probabilities is very wide (implying an
s-shaped curve rather than a close to linear portion), in which case more care can be
required (beyond scope of this course).

As in linear regression, collinearity is an extreme form of confounding, where variables
become “non-identifiable”.

Let’s look at some examples.

Simple example of collinearity in logistic regression

Suppose we are looking at a dichotomous outcome, say cured = 1 or not cured =
0, from a certain clinical trial of Drug A versus Drug B. Suppose by extreme bad



luck, all subjects randomized to Drug A were female, and all subjects randomized to
drug B were male. Suppose further that both drugs are equally effective in males and
females, and that Drug A has a cure rate of 30%, while Drug B has a cure rate of
50%.

We can simulate a data set that follows this scenario in R as follows:

# Suppose sample size of trial is 600, with 300 on each medication
> drug <- as.factor(c(rep("A", 300), rep("B", 300)))

# Ensure that we have collinearity of sex and the medication

> sex <- as.factor(c(rep("F", 300), rep("M", 300)))

# Generate cure rates of 30% and then 50%

> cure <- c(rbinom(300, 1, 0.3), rbinom(300, 1, 0.5))

# Place variables into a data frame, check descriptive statistics

> cure.dat <- data.frame(cure=cure, sex=sex, drug=drug)

> summary (cure.dat)
cure sex drug

Min. :0.00 F:300 A:300
1st Qu.:0.00 M:300 B:300
Median :0.00
Mean :0.42
3rd Qu.:1.00
Max. :1.00

# Run a logistic regression model for cure with both variables in the model
> output <- glm(cure ~ drug + sex, family = binomial)

# Use usual summary when there is collinearity

> summary (output)

Call:
glm(formula = cure ~ drug + sex, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max



-1.2637 -0.8276 -0.8276 1.0935 1.5735

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8954 0.1272 -7.037 1.96e-12 **x

drugB 1.0961 0.1722 6.365 1.96e-10 **x

sexM NA NA NA NA

Signif. codes: O ’xxx’ 0.001 ’*x’ 0.01 ’x’ 0.056 >.” 0.1’ ’ 1

(Dispersion parameter for binomial

816.35
774,17

on 599
on 598

Null deviance:
Residual deviance:

family taken to be 1)

degrees of freedom
degrees of freedom

AIC: 778.17

Number of Fisher Scoring iterations: 4

Notice that R has automatically eliminated the sex variable, and we see that the
OR for drug B compared to drug A is exp(1.0961) = 2.99, which is close to correct,
because OR = (.5/(1-.5))/(.3/(1-.3)) = 2.33, and the Cl is (exp(1.0961 - 1.96*%0.1722),
exp(1.0961+ 1.96%0.1722)) = (2.13, 4.19).

In fact, this exactly matches the observed OR, from the table of data we simulated:

> table(cure.dat$cure, cure.dat$drug)

A B
0 213 135
1 87 165

> 213%165/(87%135)
[1] 2.992337

# Why was sex eliminated, rather than drug?
# Depends on order entered into the glm statement

# Check the other order:

> output <- glm(cure ~
> summary (output)

sex + drug, family = binomial)

Coefficients: (1 not defined because of singularities)



Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.8954 0.1272 -7.037 1.96e-12 *x*x
sexM 1.0961 0.1722 6.365 1.96e-10 *x*x
drugB NA NA NA NA

# Exactly the same numerical result, but for sex rather than drug.

Second example of collinearity in logistic regression

A more subtle example can occur when two variables act to be collinear with a third
variable.

Collinearity can also occur in continuous variables, so let’s see an example there:

# Create any first independent variable (round to one decimal place)
> x1 <- round(rnorm(400, mean=0, sd=1), 1)

# Create any second independent variable (round to one decimal place)
> x2 <- round(rnorm(400, mean = 4, sd=2), 1)

# Now create a third independent variable that is a direct function
# of the first two variables

> x3 <- 3%x1 + 2 *x2

# Create a binary outcome variable that depends on all three variables
# Note that the probability of the binomial is an inv.logit function

> y <- rbinom(400, 1, exp(xl + 2*x2 -3 * x3)/(1+ exp(xl + 2*x2 -3 * x3)))
# Put all variables into a data frame

> collinear.dat <- data.frame(xl=x1, x2=x2, x3=x3, y=y)

# If looked at pairwise, the perfect collinearity is not obvious

> pairs(collinear.dat)
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One can see high correlations, but cannot tell that there is perfect collinearity. But
let’s see what happens if we run an analysis:

> output <- glm(y ~ x1 + x2 + x3, data = collinear.dat, family = binomial)
Warning message:

fitted probabilities numerically O or 1 occurred in:

glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

# Note the warning message below...R has detected collinearity
> summary (output)

Call:
glm(formula = y ~ x1 + x2 + x3, family = binomial, data = collinear.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.811e+00 -3.858e-03 -7.593e-05 -2.107e-08 3.108e+00

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.7036 0.9001 1.893 0.0584



x1 -7.8162 1.8864 -
x2 -4.6763 1.1203 -
x3 NA NA

Signif. codes: 0 ’*%*x’ 0.001 ’x*x*’

(Dispersion parameter for binomial

Null deviance: 242.030 on 399

4.144 3.42e-05 *xx
4.174 2.99e-05 *xxx
NA NA

)

0.01 ’x’> 0.05 ’.” 0.1 1

family taken to be 1)

degrees of freedom

Residual deviance: 30.292 on 397

AIC: 36.292

degrees of freedom

Number of Fisher Scoring iterations: 11
# x3 has been eliminated, other variables reasonably estimated.

# If we want to get the CIs automatically, rerun model without x3
# and use logistic.regression.or.ci function, or more simply,
# Jjust use the built-in confint function in R

> output <- glm(y ~ x1 + x2, data
Warning message:
fitted probabilities numerically O or 1 occurred in:

glm.fit(x = X, y = Y, weights = weights, start = start, etastart

collinear.dat, family = binomial)

etastart,
# Above warning message refers to strong results, not collinearity

> logistic.regression.or.ci(output)
$regression.table

Call:
glm(formula = y

x1 + x2, family = binomial, data = collinear.dat)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.811e+00 -3.858e-03 -7.593e-05 -2.107e-08 3.108e+00
Coefficients:

Estimate Std. Error z value Pr(>lzl|)
(Intercept) 1.7036 0.9001 1.893 0.0584 .
x1 -7.8162 1.8864 -4.144 3.42e-05 *xx
x2 -4.6763 1.1203 -4.174 2.99e-05 *xx
Signif. codes: O ’**xx’ 0.001 ’*x’ 0.01 ’x”> 0.05 ’>.” 0.1’ ’ 1



(Dispersion parameter for binomial family taken to be 1)

Null deviance: 242.030 on 399 degrees of freedom
Residual deviance: 30.292 on 397 degrees of freedom
AIC: 36.292

Number of Fisher Scoring iterations: 11

$intercept.ci
[1] -0.06050707 3.46779874

$slopes.ci

[,1] [,2]
[1,] -11.513417 -4.119032
[2,] -6.872168 -2.480528

$0R
x1 x2
0.0004031407 0.0093129598

$0R.ci

[,1] [,2]
[1,] 9.995083e-06 0.01626024
[2,] 1.036228e-03 0.08369899

# Two very strong effects, not surprising given data set
# construction

# Check a few fitted values
> output$fitted[1:6]

1 2 3 4 5 6
6.932227e-01 4.244699e-03 1.219659e-07 2.220446e-16 1.269672e-10 2.220446e-16

# Note how close some values are to zero, others much higher.

In real practice, most collinearity problems happen when several categorical variables
line up to “perfectly predict” another variable.



Example of confounding in logistic regression

Let’s consider a similar example again, but with 3 not quite perfectly derived from
the first two variables:

# Create any first independent variable (round to one decimal place)
x1 <- round(rnorm(400, mean=0, sd=1), 1)

# Create any second independent variable (round to one decimal place)
x2 <- round(rnorm(400, mean = 4, sd=2), 1)

# Now create a third independent variable that is a

related by not a direct function of the first two variables
# Dbecause of the error term added

=+

x3 <- round(3*x1 + 2 *x2 + rnorm(400, mean = 0, sd=5), 1)

# Create a binary outcome variable that depends on all three variables
# Note that the probability of the binomial is an inv.logit function

# We will use smaller effects this time as well, more realistic.

# Note that a coefficient of 0.2 has an OR of

# exp(0.2) = 1.22 / one unit change

y <- rbinom(400, 1, exp(.2*xl + .3*x2 -.3 * x3)/(1+ exp(.2*xl + 2%xx2 -3 * x3)))
# Put all variables into a data frame

confounding.dat <- data.frame(xl=x1, x2=x2, x3=x3, y=y)

# If looked at pairwise, the very strong confounding is not obvious
# ©Dbecause it arises from three variables working together

pairs(confounding.dat)
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Note the smaller effects as shown in the graphics.

Now to analyze the data, comparing univariate to multivariate model outputs.

# First univariate logistic regressions for each of the three variables

> output <- glm(y ~ x1, data = confounding.dat, family = binomial)
> logistic.regression.or.ci(output)
$regression.table

Call:
glm(formula = y ~ x1, family = binomial, data = confounding.dat)

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.3020 0.1260 -10.337 < 2e-16 **x
x1 -0.3484 0.1203 -2.897 0.00377 *xx*
$0R
x1
0.7058417

$0R.ci
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[1] 0.5576294 0.8934473

> output <- glm(y ~ x2, data = confounding.dat, family = binomial)
> logistic.regression.or.ci(output)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.97316 0.26430 -3.682 0.000231 *x*x*
x2 -0.07689 0.06109 -1.259 0.208142

$0R
x2
0.9259914

$0R.ci
[1] 0.8215029 1.0437700

> output <- glm(y ~ x3, data = confounding.dat, family = binomial)
> logistic.regression.or.ci(output)
$regression.table

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.85231 0.16717 -5.098 3.43e-07 **x*
x3 -0.05655 0.01683 -3.359 0.000781 *xx*

$0R
x3
0.9450173

$0R.ci
[1] 0.9143465 0.9767169

# Now let’s run a logistic regression with all three variables included:

> output <- glm(y ~ x1 + x2 + x3, data = confounding.dat, family = binomial)
> logistic.regression.or.ci(output)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.06718 0.27464 -3.886 0.000102 ***
x1 -0.16353 0.14926 -1.096 0.273257
x2 0.04321 0.08537 0.506 0.612738
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x3 -0.05209 0.02629 -1.981 0.047561 =*

$0R
x1 x2 x3
0.8491411 1.0441583 0.9492457

$0R.ci

[,1] [,2]
[1,] 0.6337649 1.137710
[2,] 0.8832837 1.234333
[3,] 0.9015722 0.999440

To investigate the above results for confounding, let’s form a comparative table:

Multivariate Univariate
Variable OR CI OR CI
x1 0.85 (0.63, 1.11) | 0.71 (0.56, 0.89)
x2 1.04 (0.88,1.23) | 0.93 (0.82, 1.04)
X3 0.95 (0.90, 1.00) | 0.95 (0.91, 0.98)

Note how drastically different the results are, especially for x1. All CIs cross 1 in the
multivariate model, but only x2 crosses 1 in the univariate models, the CI widths are
smaller in the univariate models. OR’s also change by large amounts.

As x2 may not be contributing much, we can also run a model with just x1 and x3.

> output <- glm(y ~ x1 + x3, data = confounding.dat, family = binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.96730 0.18904 -5.117 3.11e-07 **x*

x1 -0.19265 0.13802 -1.396 0.1628
x3 -0.04310 0.01933 -2.230 0.0258 *
$0R

x1 x3

0.8247687 0.9578197
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$0R.ci

[,1] [,2]
[1,] 0.6292859 1.0809767
[2,] 0.9222138 0.9948003

Not much change from the model with all three variables.

We will soon see how we can run all interesting models with a single command using
the bic.glm model selection function. This will allow us to investigate confounding
and model selection at the same time.

Real example of confounding in logistic regression

Low birth weight is of concern, because infant mortality rates and birth defect rates
are very high for low birth weight babies. A woman’s behavior during pregnancy
(including diet, smoking habits, and receiving prenatal care) can greatly alter the
chances of carrying the baby to term and, consequently, of delivering a baby of normal
birth weight.

The following data are collected:
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Variable Coding
Low Birth Weight (0 = Birth Weight > 2500g, low

1 = Birth Weight < 2500g)

Age of the Mother in Years age
Weight in Pounds at the Last Menstrual Period lwt
Race (1 = White, 2 = Black, 3 = Other) race

Smoking Status During Pregnancy (1 = Yes, 0 = No)  smoke
History of Premature Labor (0 = None 1 = One, etc.) ptl
History of Hypertension (1 = Yes, 0 = No) ht
Presence of Uterine Irritability (1 = Yes, 0 = No) ui

Number of Physician Visits During the First Trimester ftv
(0 = None, 1 = One, 2 = Two, etc.)

Birth Weight in Grams bwt

We might suspect some confounding. For example, smoking may be related to weight
and hypertension, and so on.

We will follow all of our usual steps in analyzing these data. Recall that the steps
are:

1. Look at various descriptive statistics to get a feel for the data. For logistic
regression, this usually includes looking at descriptive statistics within “outcome
= yes = 1”7 versus "outcome = no = 0”7 groups.

2. The above “by outcome group” descriptive statistics are often sufficient for
discrete covariates, but you may want to prepare some graphics for continuous
variables.

3. For all continuous variables being considered, calculate a correlation matrix of
each variable against each other variable. This allows one to begin to investigate
possible confounding and collinearity.

4. Similarly, for each categorical/continous independent variable pair, look at the
values for the continuous variable in each category of the other variable.

5. Finally, create tables for all categorical /categorical independent variable pairs.
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6. Perform a simple logistic regression for each independent variable. This begins
to investigate confounding (we will see in more detail next class), as well as
providing an initial “unadjusted” view of the importance of each variable, by
itself.

7. Think about any “interaction terms” that you may want to try in the model.

8. Perform some sort of model selection technique, or, often much better, think
about avoiding any strict model selection by finding a set of models that seem
to have something to contribute to overall conclusions.

9. Based on all work done, draw some inferences and conclusions. Carefully inter-
pret each estimated parameter, perform “model criticism”, possibly repeating
some of the above steps (for example, run further models), as needed.

10. Other inferences, such as predictions for future observations, and so on.

Read in the data set, save as a data frame
lbw.dat <- read.table(file="g:\\lbw.txt", header=T)

Convert factor variables

> 1bw.dat$smoke <- as.factor(lbw.dat$smoke)

> 1bw.dat$race <- as.factor(lbw.dat$race)

> 1lbw.dat$ptl <- as.factor(lbw.dat$ptl)

> 1bw.dat$ht <- as.factor(lbw.dat$ht)

> 1bw.dat$ui <- as.factor(lbw.dat$ui)
# Summarize
> summary (1bw.dat)

low age 1wt race smoke ptl

Min. :0.0000 Min. :14.00 Min. : 80.0 1:96 0:115 0:159
1st Qu.:0.0000 1st Qu.:19.00 1st Qu.:110.0 2:26 1: 74 1: 24
Median :0.0000 Median :23.00 Median :121.0 3:67 2: b5
Mean :0.3122 Mean :23.24 Mean :129.8 3: 1
3rd Qu.:1.0000 3rd Qu.:26.00 3rd Qu.:140.0

Max. :1.0000 Max. :45.00 Max. :250.0

ht ui ftv bwt

0:177 0:161 Min. :0.0000 Min. 1 709

1: 12 1: 28 1st Qu.:0.0000 1st Qu.:2414
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Median :0.0000 Median :2977
Mean :0.7937 Mean 12945
3rd Qu.:1.0000 3rd Qu.:3475
Max. :6.0000 Max. :4990

# Examining the categorical variables, ptl has few cases at 2 or 3, so
# combine these categories with category 1.

> for (i in 1:length(lbw.dat$ptl)) { if (lbw.dat$ptl[i] == 2 | lbw.dat$ptl[i] == 3)
1bw.dat$ptl[i] <- 13}

> summary (lbw.dat$ptl)
0 1 2 3
159 30 0 0

# Look at some correlations for continuous variables

> pairs(list(age=1lbw.dat$age, lwt=lbw.dat$lwt, ftv=1lbw.dat$ftv, bwt=1lbw.dat$bwt))
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Some correlations to keep in mind, e.g., age and lwt, although nothing too extreme.

Although included up to this point, the outcome variable low is in fact just a di-
chotomized version of the bwt variable, so the latter is omitted for the rest of these
analyses.

Should also check some tables and values of continuous variables against categorical
variables, T leave this as an exercise. [And, since we will soon see another way to
check for confounding, this is not always needed.|

# Run univariate regressions

> output <- glm(low ~ age, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.38458 0.73212 0.525 0.599
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age -0.05115 0.03151 -1.623 0.105

$0R
age
0.9501333

$0R.ci
[1] 0.8932232 1.0106694

> output <- glm(low ~ lwt, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.99831 0.78529 1.271 0.2036
1wt -0.01406 0.00617 -2.279 0.0227 *

$0R
1wt
0.98604

$0R.ci
[1] 0.9741885 0.9980358

> output <- glm(low ~ race, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.1550 0.2391 -4.830 1.36e-06 *x**
race?2 0.8448 0.4634 1.823 0.0683 .
race3d 0.6362 0.3478 1.829 0.0674 .
$0R
race? race3

2.327536 1.889234

$0R.ci

[,1] [,2]
[1,] 0.9385074 5.772384
[2,] 0.9554579 3.735596

> output <- glm(low ~ smoke, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)
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Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.0871 0.2147 -5.062 4.14e-07 **x*
smokel 0.7041 0.3196 2.203 0.0276 *

$0R
smokel
2.021944

$0R.ci

[1] 1.080660 3.783111
> output <- glm(low ~ ptl, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>lzl|)

(Intercept) -1.0571 0.1813 -5.831 5.5e-09 x*xx*x
ptll 1.4626 0.4144 3.529 0.000417 *xx
$0R

ptll
4.317073
$0R.ci

[1] 1.916128 9.726449

> output <- glm(low ~ ht, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>lzl|)

(Intercept) -0.8771 0.1650 -5.315 1.07e-07 *x*x
htl 1.2135 0.6083 1.995 0.0461 x*
$0R

htl
3.365385
$0R.ci

[1] 1.021427 11.088221

> output <- glm(low ~ ui, data = lbw.dat, family=binomial)
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> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>lzl|)

(Intercept) -0.9469 0.1756 -5.392 6.97e-08 **x
uil 0.9469 0.4168 2.272 0.0231 *
$0R

uil
2.577778
$0R.ci

[1] 1.138905 5.834499

> output <- glm(low ~ ftv, data = lbw.dat, family=binomial)
> logistic.regression.or.ci(output)

Coefficients:
Estimate Std. Error z value Pr(>lzl)

(Intercept) -0.6868 0.1948 -3.525 0.000423 x*x**
ftv -0.1351 0.1567 -0.862 0.388527
$0R

ftv
0.8736112
$0R.ci

[1] 0.6425933 1.1876819
# Run a multivariate model

> output <- glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,
data = lbw.dat, family=binomial)

> logistic.regression.or.ci(output)
$regression.table

Call:
glm(formula = low ~ age + lwt + race + smoke + ptl + ht + ui +
ftv, family = binomial, data = lbw.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6305 -0.7894 -0.5094 0.9119 2.2257
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Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.644476 1.223889 0.527 0.59849
age -0.039548 0.038305 -1.032 0.30186
1wt -0.015078 0.007034 -2.143 0.03207 x*
race?2 1.218791 0.533168 2.286 0.02226 *
race3 0.819439 0.450466 1.819 0.06890 .
smokel 0.859459 0.409836 2.097 0.03599 x*
ptll 1.218512 0.463015 2.632 0.00850 *x
htl 1.860429 0.708161 2.627 0.00861 *x
uil 0.719299 0.463419 1.552 0.12062
ftv 0.050900 0.175456 0.290 0.77174
Signif. codes: O ’**xx’ 0.001 ’*x’ 0.01 ’x> 0.05 *>.” 0.1’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

234.67
196.75

Null deviance:
Residual deviance:

on 188 degrees of freedom
on 179 degrees of freedom

AIC: 216.75

Number of Fisher Scoring iterations: 4

$intercept.ci
[1] -1.754303 3.043254

$slopes.ci

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]

$0R

0.9612237 0.9850356 3.3830948 2.2692275 2.3618819 3.3821520

ht1

age

[,1]
.11462392 0.
.02886411 -0.
.17380164 2
.06345768 1
.06619565 1
.31101897 2
.47245923 3
.18898481 1
.29298669 0

1wt

uil

[,2]
035527619
001290897

.263780165
.702336654
.662721742
.126005387
.248398230
.627582912
.394786830

race2

ftv

6.4264914 2.0529937 1.0522177

race3

smokel

ptll



$0R.ci

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
(8,]
[9,]

OO, PP, OFr OO

[,1] [,2]
.8917014 1.036166
.9715485 0.998710
.1898195 9.619383
.9385138 5.486753
.0678046 ©5.273645
.3648151 8.381320
.6039338 25.749063
.8277991 5.091553
. 7460321 1.484068

Compare univariate to multivariate results:

Multivariate Univariate
Variable OR CI OR CI
age 0.96 (0.89, 1.04) | 0.95 (0.89, 1.01)
lwt 0.99 (0.97,1.00) | 0.99 (0.97, 1.00)
race2 3.39  (1.19,9.62) | 2.02 (0.93, 5.77)
race3 227  (0.94,5.49) | 1.89 (0.96, 3.74)
smokel  2.36 (1.06, 5.27) | 2.02 (1.08, 3.78 )
ptll 3.38  (1.36, 8.38) | 4.32 (1.92,9.73)
ht1 6.42 (1.60, 25.75) | 3.37 (1.02, 11.09)
uil 2.05 (0.83,5.09) | 2.58 (1.14,5.83)
ftv 1.05 (0.75,1.48) | 0.87 (0.64, 1.19)
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Maybe some confounding with race, htl, ftv, etc. We could investigate this further
here, but will rather revisit this example after covering model selection and the bic.glm
program, which makes such investigations much easier.



