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Interactions in Multiple Linear Regression

Basic Ideas

Interaction: An interaction occurs when an independent variable has a different
effect on the outcome depending on the values of another independent variable.

Let’s look at some examples. Suppose that there is a cholesterol lowering drug that is
tested through a clinical trial. Suppose we are expecting a linear dose-response over
a given range of drug dose, so that the picture looks like this:

This is a standard simple linear model. Now, however, suppose that we expect men
to respond at an overall higher level compared to women. There are various ways
that this can happen. For example, if the difference in response between women and
men is constant throughout the range, we would expect a graph like this:
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However, if men, have a steeper dose-response curve compared to women, we would
expect a picture like this:



3

On the other hand, if men, have a less steep dose-response curve compared to women,
we would expect a picture like this:

Of these four graphs, the first indicates no difference between men and women, the
second illustrates that there is a difference, but since it is constant, there is no inter-
action term. The third and fourth graphs represent the situation with an interaction
of the effect of the drug, depending on whether it is given to men or women.

In terms of regression equations, we have:

No effect of sex:

Y = α + β1 ∗ dose (+0× sex + 0× dose ∗ sex)

where Y represents the outcome (amount of cholesterol lowering), β1 represents
the effect of the drug (presumed here to be non-zero), and all other coefficients
for the rest of the terms (effect of sex and interaction term) are zero.

Sex has an effect, but no interaction:

Y = α + β1 ∗ dose + β2 × sex (+0× dose ∗ sex)

Sex has an effect with an interaction:

Y = α + β1 ∗ dose + β2 × sex + β3 × dose ∗ sex
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Let’s consider how to report the effects of sex and dose in the presence of interaction
terms. If we consider the first of the above models, without any effect of sex, it is
trivial to report. There is no effect of sex, and the coefficient β1 provides the effect of
dose. In particular, β1 represents the amount by which cholesterol changes for each
unit change in dose of the drug.

If we consider the second model, where there are effects of both dose and sex, in-
terpretation is still straightforward: Since it does not depend on which sex is being
discussed (effect is the same in males and females), β1 still represents the amount
by which cholesterol changes for each unit change in dose of the drug. Similarly, β2

represents the effect of sex, which is “additive” to the effect of dose, because to get
the effect of both together for any dose, we simply add the two individual effects.

Now consider the third model with an interaction term.

Things get a bit more complicated when there is an interaction term. There is no
longer any unique effect of dose, because it depends upon whether you are talking
about the effect of dose in males or females. Similarly, the difference between males
and females depends on the dose.

Consider first the effect of dose: The question of “what is the effect of dose” is not
answerable until one knows which sex is being considered. The effect of dose is β1 for
females (if they are coded as 0, and males coded as 1, as was the case here). This is
because the interaction term becomes 0 if sex is coded as 0, so the interaction term
“disappears”.

On the other hand, if sex is coded as 1 (males), the effect of dose is now equal to
β1 + β3. This means, in practice, that for every one unit increase in dose, cholesterol
changes by the amount β1 + β3 in males (compared to just β1 for females).

All of the above models have considered a continuous variable combined with a di-
chotomous (dummy or indicator) variable. We can also consider interactions between
two dummy variables, and between two continuous variables. The principles remain
the same, although some technical details change.

Interactions between two continuous independent

variables

Consider the above example, but with age and dose as independent variables. Notice
that this means we have two continuous variables, rather than one continuous and
one dichotomous variable.

In the absence of an interaction term, we simply have the model
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Y = α + β1 ∗ dose + β2 × age (+0× dose ∗ age)

where Y is the amount of cholesterol lowering (dependent variable). With no inter-
action, interpretation of each effect is straightforward, as we just have a standard
multiple linear regression model. The effect on cholesterol lowering would be β1 for
each unit of dose increase, and β2 for each unit of age increase (i.e., per year, if that
is the unit of age).

Even though age will be treated as a continuous variable here, suppose for an instant
it was coded as dichotomous, simply representing “old” and “young” subjects. Now
we would be back to the case already discussed above in detail, and the graph would
look something like this:

In this (hypothetical!) case, we see that the effects of dose on cholesterol lowering
starts higher in younger compared to older subjects, but becomes lower as dose is
increased.

What if we now add a middle category of “middle aged” persons? The graph may
now look something like this:
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And if even more categories of age were added, we might get something like this:

or this
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Now imagine adding finer and finer age categories, slowly transforming the age vari-
able from discrete (categorical) into a continuous variable. At the limit where age
becomes continuous, we would have an infinite number of different slopes for the effect
of dose, one slope for each of the infinite possible age values. This is what we have
when we have a model with two continuous variables that interact with each other.

The model we would then have would look like this:

Y = α + β1 ∗ dose + β2 × age + β3 × dose ∗ age

For any fixed value of age, say age0, notice that the effect for dose is given by

β1 + β3 ∗ age0

This means that the effect of dose changes depending on the age of the subject, so
that there is really no “unique” effect of dose, it is different for each possible age
value.

For example, for someone aged 50, the effect of dose is

β1 + 50× β3
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and for someone aged 30.5 it is:

β1 + 30.5× β3

and so on.

The effect of age is similarly affected by dose. If the dose is, say, dose0, then the effect
of age becomes:

β2 + dose0 × β3

In summary: When there is an interaction term, the effect of one variable that forms
the interaction depends on the level of the other variable in the interaction.

Although not illustrated in the above examples, there could always be further vari-
ables in the model that are not interacting.

Interactions between two dichotomous variables

Another situation when there can be an interaction between two variables is when
both variables are dichotomous. Suppose there are two medications, A and B, and
each is given to both males and females. If the medication may operate differently
in males and females, the equation with interaction term can be written as (suppose
coding is Med A = 0, Med B =1, Male = 0, Female=1):

Y = α + β1 ∗med + β2 × sex + β3 ×med ∗ sex

Here, however, there are only four possibilities, as given in the table below:

Case details Mean outcome for that case
Male on Med A α
Male on Med B α + β1

Female on Med A α + β2

Female on Med B α + β1 + β2 + β3

Without an interaction term, the mean value for Females on Med B would have been
α+β1 +β2. This implies a simple additive model, as we add the effect of beng female
to the effect of being on med B. However, with the interaction term as detailed above,
the mean value for Females on Med B is α + β1 + β2 + β3, implying that over and
above the additive effect, there is an interaction effect of size β3 .



9

Example with real data

Consider the data set below, which contains data about various body measurements,
as well as body fat. The goal is to check whether the independent variables Skinfold
Thickness (ST), Thigh Circumference (TC),and/or Midarm Circumference (MC) pre-
dict the independent variable Body Fat (BF), and if so, whether there is any evidence
of interactions among these variables.

Subject Skinfold Thickness Thigh Circumference Midarm Circumference Body Fat
1 19.5 43.1 29.1 11.9
2 24.7 49.8 28.2 22.8
3 30.7 51.9 37.0 18.7
4 29.8 54.3 31.1 20.1
5 19.1 42.2 30.9 12.9
6 25.6 53.9 23.7 21.7
7 31.4 58.5 27.6 27.1
8 27.9 52.1 30.6 25.4
9 22.1 49.9 23.2 21.3
10 25.5 53.5 24.8 19.3
11 31.1 56.6 30.0 25.4
12 30.4 56.7 28.3 27.2
13 18.7 46.5 23.0 11.7
14 19.7 44.2 28.6 17.8
15 14.6 42.7 21.3 12.8
16 29.5 54.4 30.1 23.9
17 27.7 55.3 25.7 22.6
18 30.2 58.6 24.6 25.4
19 22.7 48.2 27.1 14.8
20 25.2 51.0 27.5 21.1

We will follow these steps in analysing these data:

1. Enter the data, and create new variables, for all interactions, including three
two by two interaction terms, as well as the single interaction term with all
three variables.

2. Look at descriptive statistics for all data.

3. Look at scatter plots for each variable.

4. Calculate a correlation matrix for all variables.

5. Calculate a simple liner regression for each variable.

6. Calculate a multiple linear regression for all variables, without interactions.
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7. Add in various interactions, to see what happens.

8. Draw overall conclusions based on the totality of evidence from all models.

# Enter the data:

> st<-c(19.5, 24.7, 30.7, 29.8, 19.1, 25.6, 31.4, 27.9, 22.1, 25.5, 31.1,

30.4, 18.7, 19.7, 14.6, 29.5, 27.7, 30.2, 22.7, 25.2)

> tc<-c(43.1, 49.8, 51.9, 54.3, 42.2, 53.9, 58.5, 52.1, 49.9, 53.5, 56.6,

56.7, 46.5, 44.2, 42.7, 54.4, 55.3, 58.6, 48.2, 51.0)

> mc<-c(29.1, 28.2, 37.0, 31.1, 30.9, 23.7, 27.6, 30.6, 23.2, 24.8, 30.0,

28.3, 23.0, 28.6, 21.3, 30.1, 25.7, 24.6, 27.1, 27.5)

> bf<-c(11.9, 22.8, 18.7, 20.1, 12.9, 21.7, 27.1, 25.4, 21.3,

19.3, 25.4, 27.2, 11.7, 17.8, 12.8, 23.9, 22.6, 25.4, 14.8,

21.1)

# Create new variables, for all interactions, including three two

# by two interaction terms, as well as the single interaction term

# with all three variables.

> st_tc <- st*tc

> st_mc <- st*mc

> tc_mc <- tc*mc

> st_tc_mc <- st*tc*mc

# Create a data frame with all data:

> fat <- data.frame(st, tc, mc, st_tc, st_mc, tc_mc, st_tc_mc, bf)

# Look at the data

> fat

st tc mc st_tc st_mc tc_mc st_tc_mc bf

1 19.5 43.1 29.1 840.45 567.45 1254.21 24457.10 11.9

2 24.7 49.8 28.2 1230.06 696.54 1404.36 34687.69 22.8

3 30.7 51.9 37.0 1593.33 1135.90 1920.30 58953.21 18.7

4 29.8 54.3 31.1 1618.14 926.78 1688.73 50324.15 20.1

5 19.1 42.2 30.9 806.02 590.19 1303.98 24906.02 12.9

6 25.6 53.9 23.7 1379.84 606.72 1277.43 32702.21 21.7
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7 31.4 58.5 27.6 1836.90 866.64 1614.60 50698.44 27.1

8 27.9 52.1 30.6 1453.59 853.74 1594.26 44479.85 25.4

9 22.1 49.9 23.2 1102.79 512.72 1157.68 25584.73 21.3

10 25.5 53.5 24.8 1364.25 632.40 1326.80 33833.40 19.3

11 31.1 56.6 30.0 1760.26 933.00 1698.00 52807.80 25.4

12 30.4 56.7 28.3 1723.68 860.32 1604.61 48780.14 27.2

13 18.7 46.5 23.0 869.55 430.10 1069.50 19999.65 11.7

14 19.7 44.2 28.6 870.74 563.42 1264.12 24903.16 17.8

15 14.6 42.7 21.3 623.42 310.98 909.51 13278.85 12.8

16 29.5 54.4 30.1 1604.80 887.95 1637.44 48304.48 23.9

17 27.7 55.3 25.7 1531.81 711.89 1421.21 39367.52 22.6

18 30.2 58.6 24.6 1769.72 742.92 1441.56 43535.11 25.4

19 22.7 48.2 27.1 1094.14 615.17 1306.22 29651.19 14.8

20 25.2 51.0 27.5 1285.20 693.00 1402.50 35343.00 21.1

# Look at descriptive statistics for all data.

> summary(fat)

st tc mc st_tc

Min. :14.60 Min. :42.20 Min. :21.30 Min. : 623.4

1st Qu.:21.50 1st Qu.:47.77 1st Qu.:24.75 1st Qu.:1038.3

Median :25.55 Median :52.00 Median :27.90 Median :1372.0

Mean :25.31 Mean :51.17 Mean :27.62 Mean :1317.9

3rd Qu.:29.90 3rd Qu.:54.63 3rd Qu.:30.02 3rd Qu.:1608.1

Max. :31.40 Max. :58.60 Max. :37.00 Max. :1836.9

st_mc tc_mc st_tc_mc bf

Min. : 311.0 Min. : 909.5 Min. :13279 Min. :11.70

1st Qu.: 584.5 1st Qu.:1274.1 1st Qu.:25415 1st Qu.:17.05

Median : 694.8 Median :1403.4 Median :35015 Median :21.20

Mean : 706.9 Mean :1414.9 Mean :36830 Mean :20.20

3rd Qu.: 861.9 3rd Qu.:1607.1 3rd Qu.:48423 3rd Qu.:24.27

Max. :1135.9 Max. :1920.3 Max. :58953 Max. :27.20

# Look at scatter plots for each variable.

> pairs(fat)
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# Calculate a correlation matrix for all variables.

> cor(fat)

st tc mc st_tc st_mc tc_mc

st 1.0000000 0.9238425 0.4577772 0.9887843 0.9003214 0.8907135

tc 0.9238425 1.0000000 0.0846675 0.9663436 0.6719665 0.6536065

mc 0.4577772 0.0846675 1.0000000 0.3323920 0.7877028 0.8064087

st_tc 0.9887843 0.9663436 0.3323920 1.0000000 0.8344518 0.8218605

st_mc 0.9003214 0.6719665 0.7877028 0.8344518 1.0000000 0.9983585

tc_mc 0.8907135 0.6536065 0.8064087 0.8218605 0.9983585 1.0000000

st_tc_mc 0.9649137 0.8062687 0.6453482 0.9277172 0.9778029 0.9710983

bf 0.8432654 0.8780896 0.1424440 0.8697087 0.6339052 0.6237307

st_tc_mc bf

0.9649137 0.8432654

0.8062687 0.8780896

0.6453482 0.1424440
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0.9277172 0.8697087

0.9778029 0.6339052

0.9710983 0.6237307

1.0000000 0.7418017

0.7418017 1.0000000

Looking at the scatter plots and correlation matrix, we see trouble. Many of the
correlations between the independent variables are very high, which will cause severe
confounding and/or near collinearity. The problem is particularly acute among the
interaction variables we created.

Trick that sometimes helps: Subtract the mean from each independent variable,
and use these so-called “centered” variables to create the interaction variables.

This will not change the correlations among the non-interaction terms, but may reduce
correlations for interaction terms.

# Create the centered independent variables:

> st.c <- st - mean(st)

> tc.c <- tc - mean(tc)

> mc.c <- mc - mean(mc)

# Now create the centered interaction terms:

> st_tc.c <- st.c*tc.c

> st_mc.c <- st.c*mc.c

> tc_mc.c <- tc.c*mc.c

> st_tc_mc.c <- st.c*tc.c*mc.c

# Create a new data frame with this new set of independent variables

fat.c <- data.frame(st.c, tc.c, mc.c, st_tc.c, st_mc.c, tc_mc.c, st_tc_mc.c, bf)

> fat.c

st.c tc.c mc.c st_tc.c st_mc.c tc_mc.c st_tc_mc.c bf

1 -5.805 -8.07 1.48 46.84635 -8.5914 -11.9436 69.332598 11.9

2 -0.605 -1.37 0.58 0.82885 -0.3509 -0.7946 0.480733 22.8

3 5.395 0.73 9.38 3.93835 50.6051 6.8474 36.941723 18.7

4 4.495 3.13 3.48 14.06935 15.6426 10.8924 48.961338 20.1

5 -6.205 -8.97 3.28 55.65885 -20.3524 -29.4216 182.561028 12.9

6 0.295 2.73 -3.92 0.80535 -1.1564 -10.7016 -3.156972 21.7

7 6.095 7.33 -0.02 44.67635 -0.1219 -0.1466 -0.893527 27.1

8 2.595 0.93 2.98 2.41335 7.7331 2.7714 7.191783 25.4
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9 -3.205 -1.27 -4.42 4.07035 14.1661 5.6134 -17.990947 21.3

10 0.195 2.33 -2.82 0.45435 -0.5499 -6.5706 -1.281267 19.3

11 5.795 5.43 2.38 31.46685 13.7921 12.9234 74.891103 25.4

12 5.095 5.53 0.68 28.17535 3.4646 3.7604 19.159238 27.2

13 -6.605 -4.67 -4.62 30.84535 30.5151 21.5754 -142.505517 11.7

14 -5.605 -6.97 0.98 39.06685 -5.4929 -6.8306 38.285513 17.8

15 -10.705 -8.47 -6.32 90.67135 67.6556 53.5304 -573.042932 12.8

16 4.195 3.23 2.48 13.54985 10.4036 8.0104 33.603628 23.9

17 2.395 4.13 -1.92 9.89135 -4.5984 -7.9296 -18.991392 22.6

18 4.895 7.43 -3.02 36.36985 -14.7829 -22.4386 -109.836947 25.4

19 -2.605 -2.97 -0.52 7.73685 1.3546 1.5444 -4.023162 14.8

20 -0.105 -0.17 -0.12 0.01785 0.0126 0.0204 -0.002142 21.1

# Look at the new correlation matrix

> cor(fat.c)

st.c tc.c mc.c st_tc.c st_mc.c tc_mc.c

st.c 1.0000000 0.9238425 0.45777716 -0.4770137 -0.17341554 -0.2215706

tc.c 0.9238425 1.0000000 0.08466750 -0.4297883 -0.17253677 -0.1436553

mc.c 0.4577772 0.0846675 1.00000000 -0.2158921 -0.03040675 -0.2353658

st_tc.c -0.4770137 -0.4297883 -0.21589210 1.0000000 0.23282905 0.2919073

st_mc.c -0.1734155 -0.1725368 -0.03040675 0.2328290 1.00000000 0.8905095

tc_mc.c -0.2215706 -0.1436553 -0.23536583 0.2919073 0.89050954 1.0000000

st_tc_mc.c 0.4241959 0.2054264 0.62212493 -0.4975292 -0.67215024 -0.7398958

bf 0.8432654 0.8780896 0.14244403 -0.3923247 -0.25113314 -0.1657072

st_tc_mc.c bf

0.4241959 0.8432654

0.2054264 0.8780896

0.6221249 0.1424440

-0.4975292 -0.3923247

-0.6721502 -0.2511331

-0.7398958 -0.1657072

1.0000000 0.2435352

0.2435352 1.0000000

Still not perfect, but notice that the correlations have been drastically reduced for
some of the interaction variables.

Why does this work? Consider two variables that are highly correlated:

> x<- 1:10

> x2 <- x^2

> cor(x,x2)
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[1] 0.9745586

> plot(x,x2)

> x.c <- x-mean(x)

> x2.c <- x.c^2

> cor(x.c, x2.c)

[1] 0

> plot(x.c, x2.c)

By “balancing” positive and negative values, correlations are reduced. We will start
looking at the regressions.

# Calculate a simple linear regression for each variable (not the

interactions).

> regression1.out <- lm(bf ~ st.c)

> regression2.out <- lm(bf ~ tc.c)

> regression3.out <- lm(bf ~ mc.c)

> multiple.regression.with.ci(regression1.out)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.1950 0.6305 32.029 < 2e-16 ***

st.c 0.8572 0.1288 6.656 3.02e-06 ***

---
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$intercept.ci

[1] 18.87033 21.51967

$slopes.ci

[1] 0.5866281 1.1277449

> multiple.regression.with.ci(regression2.out)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.1950 0.5613 35.979 < 2e-16 ***

tc.c 0.8565 0.1100 7.786 3.6e-07 ***

---

$intercept.ci

[1] 19.01574 21.37426

$slopes.ci

[1] 0.6254123 1.0876808

> multiple.regression.with.ci(regression3.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.1950 1.1611 17.393 1.06e-12 ***

mc.c 0.1994 0.3266 0.611 0.549

---

$intercept.ci

[1] 17.75561 22.63439

$slopes.ci

[1] -0.4867950 0.8856523

# Two of the three variables seem to have a strong effect,

# but effect of mc.c is inconclusive (NOT NEGATIVE!!)

# Calculate a multiple linear regression for all variables,

# without interactions.

> regression4.out <- lm(bf ~ st.c + tc.c + mc.c)

> multiple.regression.with.ci(regression4.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 20.1950 0.5545 36.418 <2e-16 ***

st.c 4.3341 3.0155 1.437 0.170

tc.c -2.8568 2.5820 -1.106 0.285

mc.c -2.1861 1.5955 -1.370 0.190

---

$intercept.ci

[1] 19.01943 21.37057

$slopes.ci

[,1] [,2]

[1,] -2.058507 10.726691

[2,] -8.330476 2.616780

[3,] -5.568367 1.196247

Compared to the univariate results, we see many changes, because of high confounding
between st.c and tc.c. Since they provide such similar information, we will drop tc.c
(somewhat arbitrary choice, in general, this choice can be made from substantive
theory or preferences).

> regression5.out <- lm(bf ~ st.c + mc.c)

> multiple.regression.with.ci(regression5.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.1950 0.5582 36.180 < 2e-16 ***

st.c 1.0006 0.1282 7.803 5.12e-07 ***

mc.c -0.4314 0.1766 -2.443 0.0258 *

---

$intercept.ci

[1] 19.01733 21.37267

$slopes.ci

[,1] [,2]

[1,] 0.7300389 1.27113097

[2,] -0.8040683 -0.05881575

# Much better result, note how much narrower CI’s are, both

# variables have at least a small effect, likely of clinical interest.
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# Add in the interaction between st.c and mc.c

> regression6.out <- lm(bf ~ st.c + mc.c + st_mc.c)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.37496 0.60663 33.587 2.89e-16 ***

st.c 0.98153 0.13171 7.452 1.37e-06 ***

mc.c -0.42338 0.17875 -2.369 0.0308 *

st_mc.c -0.02259 0.02803 -0.806 0.4321

---

$intercept.ci

[1] 19.08896 21.66095

$slopes.ci

[,1] [,2]

[1,] 0.7023131 1.26075526

[2,] -0.8023074 -0.04446157

[3,] -0.0820029 0.03682957

# Draw overall conclusions based on the totality of evidence

# from all models.

There is no strong evidence of an interaction, but can we rule it out?

Checking the descriptive statistics of the interaction term st_mc.c, we see that a 1
SD change means a change of

> sqrt(var(st_mc.c))

[1] 20.99732

# Take the coefficient, multiply by this SD, we get:

> sqrt(var(st_mc.c)) * -0.02259

[1] -0.4743296

# Similarly, for upper and lower CI limits:

> sqrt(var(st_mc.c)) * c(-0.0820029, 0.03682957)

[1] -1.7218415 0.7733224

All effects are very small, so it does look like we can strongly state that there is
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no interaction here. Had the CI been wider and included clinically interesting ef-
fects, it would have been inconclusive (this is extremely common when investigating
interactions).

Final Comments

• We have looked only at “first order” interactions, and only at interactions be-
tween two variables at a time. However, second order interactions, or interac-
tions between three or more variables are also possible.

• For example, it is not difficult to find situations where one independent X1

variable may be related to an outcome Y say with a quadratic term, and, at
the same time, this variable interactions with another continuous or indicator
variable, say Z. For example, we may have an equation like this:

Y = α + β1X + β2X
2 + β3Z + β4XZ + β5X

2Z

or more simply

Y = α + β1X + β2X
2 + β3Z + β4XZ

• As another example, there may be three variables which all interact with each
other. A possible equation may then look like this:

Y = α + β1X + β2W + β3Z + β4XWZ

• This can become even more complicated if both two and three variable interac-
tions co-exist. For example, we may have an equation like this:

Y = α + β1X + β2W + β3Z + β4XWZ + β5XW + β6XZ + β7WZ

or

Y = α + β1X + β2W + β3Z + β4XWZ + β5XW + β6XZ

and so on.

• In all of the above cases, the principles detailed above for simpler interactions
apply.

• A general practical problem with all interactions is that they can be hard to
detect in small or moderately sized data sets, i.e., the confidence intervals for the
interaction term β coefficients will be very wide, and thus inconclusive. There
is not much that can be done about this at the analysis stage of a study, but if
you are planning a study you can try to ensure a large enough sample size, and
measure all variables as accurately as possible.


