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Hierarchical Models in Linear Regression

Basic Ideas

The literature on random effects models (term generally used by frequentists) or
hierarchical models (term generally used by Bayesians) is huge, deserving of an entire
course (or two) by itself. We will focus on getting the basic idea, and some simple
examples.

What do we mean by a hierarchical or random effects model?

These sorts of models refer to when the parameters of models themselves have dis-
tributions (hence there is a hierarchy of parameters), or the parameters come from
random distributions (hence the term random effects).

For example, consider the basic simple linear regression model:

Y = α + βX

This model assumes that for each individual contributing data, the effects (both
intercept and effect of X as given by β) are identical. In other words, all subjects are
subject to the identical intercept and slope.

It is easy to imagine that this is often not the case. Consider, for example, giving
an individual a drug to increase their bone mineral density (BMD). Now, in a simple
model we might assume that β is constant across individuals, but, more realistically,
one might consider β as a mean or average effect, and the effects for each individual
(owing to body chemistry, other medications they may be taking, etc.) may be
different.

Now, if we knew all of these effects, we may begin creating interaction models, which
would allow the slope (effect of the drug on BMD) to depend on other characteristics.
But if there are one or more unknown effects, we can create a hierarchical or random
effects model as follows:

Y = α + βfixedX + βrandomX

βrandom ∼ N(0, σ2)
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or equivalently

Y = α + βX

β ∼ N(µβ, σ
2)

Even simpler, we can have random effects / hierarchical models on the parameters of
a normal distribution. Consider the following example:

Suppose that mean diastolic blood pressure varies randomly in a population with
a mean of 70 mmHg, and standard deviation 10 mmHg. Suppose that in addition,
however, each individuals blood pressure also varies throughout the day about their
own individual means, with a standard deviation of 5 mmHg.

How could we model this situation?

Suppose we have m measures on each of n subjects. The following model seems to
mirror the two sources of variability:

xij ∼ N(µi, σ
2
w), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

µi ∼ N(µ, σ2
b ), i = 1, 2, . . . , n

Given some data and the above model, we could estimate the parameters from either
a frequentist or Bayesian perspective. We will simulate some blood pressure data,
and then show how estimation is done in R (frequentist) and WinBUGS (Bayesian).

# Simulate data for each individual in two stages:

# First stage: Randomly select means for each of 100 subjects:

> bp.means <- rnorm(100, mean=70,sd=10)

> bp.means

[1] 76.27620 73.28998 81.77357 71.82937 65.39472 ... etc ....

# Second stage, generate 10 individual data points

# for each of 100 subjects, one subject per row of the data set
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# Create an empty vector to store individual data

> bp.data <- rep(NA, 1000)

# Fill in vector with individual values of correct means

> for(i in 1:100) {

for(j in 1:10) {

bp.data[10*(i-1) + j] <- rnorm(1, mean=bp.means[i], sd=5)

}

}

# Note how bp.means match each row

> bp.data

[1] 78.491 81.989 77.345 78.327 75.952 86.086 81.257 75.299 69.783 71.300

[11] 72.918 70.602 65.253 70.061 75.387 69.744 68.688 68.035 67.458 82.689

[21] 82.443 78.124 71.675 77.090 90.796 86.059 81.560 83.870 82.229 76.975

[31] 70.801 79.688 81.731 77.678 73.670 69.109 75.066 68.126 80.726 68.882

[41] 66.379 60.884 69.669 69.959 59.245 61.227 71.388 76.070 64.878 66.273

[51] 63.037 58.527 59.353 54.285 59.518 61.577 55.452 65.067 62.005 65.482

................ etc ..........................

# We next need an indicator variable to show that the data

# are arranged in groups of 10.

> individual <- rep(NA, 1000)

> for(i in 1:100) {

for(j in 1:10) {

individual[10*(i-1) + j] <- i

}

}

# Check that it has worked

> individual

[1] 1 1 1 1 1 1 1 1 1 1

[11] 2 2 2 2 2 2 2 2 2 2

[21] 3 3 3 3 3 3 3 3 3 3

[31] 4 4 4 4 4 4 4 4 4 4

[41] 5 5 5 5 5 5 5 5 5 5

....... etc ............
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# Now fit a linear model with a random effect

# We use the lme (linear mixed effects model) function in R

# Need to prepare data for this function

# First create a factor variable for the individuals

Subject <- as.factor(individual)

# Then use groupedData function to create data structure for lme

# The nlme package, as it is not included with the base

# functions in R. It can be loaded in same way as BMA.

# A data frame is created called bp.data.frame:

> bp.data.frame <- data.frame(bp = bp.data, Subject)

# Line below shows that data are grouped by subject

> bp.grouped <- groupedData(bp ~ 1 | Subject, data=bp.data.frame)

# Take a look at the resulting data structure

> bp.grouped

Grouped Data: bp ~ 1 | Subject

bp Subject

1 78.49153 1

2 81.98980 1

3 77.34545 1

4 78.32754 1

5 75.95297 1

.........etc.........

# Same as a usual data frame, but with extra "by subject" structure

# Now run lme function

> output <- lme(bp ~ 1, data=bp.grouped)

> summary(output)

Linear mixed-effects model fit by REML

Data: bp.grouped

AIC BIC logLik

6490.722 6505.442 -3242.361

Random effects:
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Formula: ~1 | Subject

(Intercept) Residual

StdDev: 9.475058 5.197294

Fixed effects: bp ~ 1

Value Std.Error DF t-value p-value

(Intercept) 70.58773 0.9616544 900 73.40238 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.17141708 -0.61052249 -0.01657445 0.65436049 2.65165830

Number of Observations: 1000

Number of Groups: 100

# Fixed effects were just the overall mean, the intercept.

# Random effects fit a different mean for each subject, around the

# overall mean (intercept) of 70.58773.

# Note that both standard deviations were well fit, with

# between SD = 9.4 (truth = 10) and within SD = 5.2 (truth = 5)

# We can also see various other outputs of interest:

# Get estimated mean for each subject

# = difference from overall mean (intercept)

> output$coefficients

$fixed

(Intercept)

70.58773

$random

$random$Subject

(Intercept)

1 6.7913646

2 0.4818299

3 10.1884320

4 3.8446019

5 -3.8735294

6 -9.8602643

...etc...

100 -8.7640744

# So Subject 1 is about 6.7 points above average bp values, and so on.
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# Can look at residuals:

> output$residuals

fixed Subject

1 7.903807955 1.112443319

2 11.402075170 4.610710534

3 6.757719382 -0.033645254

4 7.739813071 0.948448435

5 5.365241734 -1.426122902

# Note two types of residuals, one ignoring individual Subject effect

# the other including it, so always lower.

# See help file for more details on lme.

# In particular, see help on lmeObject for all available outputs

We can also program the same example is WinBUGS:

# First convert data set from R for use in WinBUGS

> dput(bp.grouped$bp, file="g:\\bp.txt")

# We will cut and paste this file into a WinBUGS analysis window.

Write the program for WinBUGS:

model {

for( i in 1:100) # Loop over 100 subjects {

for (j in 1:10) # Loop over 10 data points per subjet

{ # Note [j,i] not [i,j]

bp[j,i] ~ dnorm(mu[i] , tau.w) # Data are normally distributed

} # about individual mean mu[i]

mu[i] ~ dnorm(mean.bp, tau.b) # Means are normally distributed

} # with overall mean mean.bp

mean.bp ~ dnorm(70, .001) # Prior for mean BP, var = 1/0.001 = 1000
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tau.w <- 1/(sigma.w*sigma.w) # Prior for within SD (precision)

sigma.w ~ dunif(0,100)

tau.b <- 1/(sigma.b*sigma.b) # Prior for between SD (precision)

sigma.b ~ dunif(0,100)

}

# Initial Values

list(sigma.w = 7, sigma.b = 12, mean.bp = 70)

# Data

# Note some changes needed from simple dput file:

# Add .Data word, reverse .Dim

list(bp=structure(.Data=c(78.491534163798, 72.9179967852737,

82.4433694101257, 70.8014851147823, 66.3791467338957,

63.0373238043374, 67.4878552683662, 85.0656743211218,

79.0398796878923, 78.5438769720441, 78.7772194526441,

71.9931192939269, 53.0873697753945, 59.7622998188586,

.................... etc ...........................

77.5633200078565, 58.1785984593208, 67.7575083592776,

78.578700312957, 60.9872446515102), .Dim = c(10, 100)))

# Results

node mean sd MC error 2.5% median 97.5% start sample

mean.bp 70.59 0.9571 0.009583 68.73 70.58 72.47 1001 10000

mu[1] 77.39 1.616 0.0165 74.22 77.4 80.57 1001 10000

mu[2] 71.07 1.615 0.01547 67.95 71.07 74.2 1001 10000

mu[3] 80.74 1.632 0.01429 77.55 80.73 83.95 1001 10000

mu[4] 74.44 1.614 0.01631 71.28 74.42 77.55 1001 10000

mu[5] 66.7 1.644 0.0169 63.49 66.73 69.89 1001 10000

............................. etc ................................

mu[99] 72.54 1.614 0.01439 69.4 72.53 75.73 1001 10000

mu[100] 61.82 1.606 0.01577 58.68 61.81 64.94 1001 10000

sigma.b 9.592 0.7088 0.007846 8.305 9.553 11.1 1001 10000

sigma.w 5.204 0.1227 0.001459 4.968 5.203 5.453 1001 10000

tau.b 0.01104 0.001616 1.768E-5 0.008123 0.01096 0.0145 1001 10000

tau.w 0.03698 0.001744 2.065E-5 0.03363 0.03693 0.04052 1001 10000



8

The results are more complete than what was available from R, but numerically
similar. We easily get CrIs from all parameters, and means are already including the
overall mean value (intercept).

Note the overall excellent results for all parameters.

Advantage of hierarchical models

Consider the BP example again. At one extreme, we could consider that each person
has their own mean, and estimate the means 10 data points at a time. In other words,
no pooling of data.

Advantage: Unbiased individual estimates. Disadvantage: Low accuracy

At the other extreme, we can consider all subjects similar enough, and just estimate
a single pooled estimate.

Advantage: High accuracy. Disadvantage: No individual estimates.

Hierarchical estimates are a compromise between these two extremes. One lets the
data decide on the degree of pooling. The more similar the mean estimates are, the
smaller σb will be, and the more pooling takes place. The more different the individual
means are, the larger σb will be, and less pooling takes place.

Advantages: High accuracy while retaining individual estimates.

Disadvantage: Some slight bias may be introduced to individual estimates, although
overall Mean Square Error is optimized.

Example of “bias” in BP example:

Compare mean estimates from “straight average of 10 individual values” to means
estimated by hierarchical (random effects) model:

Subject Mean Ind. Mean Hier Model
1 77.58343 77.39
2 71.08405 71.07
3 81.0827 80.74
4 74.548 74.44
5 66.59765 66.70

Recall that the overall mean was 70.59, and note that all estimates from the hierar-
chical model are slightly moved towards that value. This is the slight effect of pooling
here, only slight because σb was rather large. If we repeat the exercise with a smaller
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values for σb, this “borrowing of strength” or “movement towards the middle would
be larger.

The effect will also tend to be larger when there is a smaller number of observations
per subject.

Example to linear regression

CRP is a measure of inflammation, of interest to cardiologists for predicting future
heart attacks. The course web site has a CRP data set (crpWinBUGS.txt), which
is already in a format useable by WinBUGS. The data represent six CRP values
from each of 15 subjects, followed over three years, with measurements taken ev-
ery six months. There are a few missing values, but WinBUGS will handle these
automatically through imputation, which we will learn about in greater detail later.

We start by plotting these data in R. We can use read.table to get the data into
R, using the same data set formatted for R (need to erase the []’s that follow each
variable name, leaving the number inside the []’s, and take the word “END” away).
To plot the data, we would like a single line to represent the data from each subject,
so want a graph with 15 lines across it, one for each subject. R code such as the
following could be used.

> plot(1:6,crp.dat[1,], type="l", ylim=c(0,15), xlab="time", ylab="crp")

> for (i in 2:15){ points(1:6,crp.dat[i,], type="l", lty=i)}

Note that in using the lti=i option, the data from each patient are given a different
line type.

The plot is:
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There is clearly much individual to individual variability, and while there are some
individuals with much variation, subject specific means seems like a good idea. A
hierarchical model can be a good idea for longitudinal data of this type.

We next assume the following two-level hierarchical structure for the data:

• Within each subject, assume that the six CRP values are independent over time,
and follow a normal distribution with mean specific to that individual, but with
a variance (precision in WinBUGS) parameter common to all subjects.

• Further, assume that the subject-specific means over time follow a common
normal distribution across subjects.

Using non-informative priors for all unknown parameters (15 means for each subject,
one overall mean across all subjects, and two variance/precision parameters, one for
the variability within each subject over the time, and the other for the between subject
means), we will write and run a WinBUGS program.

The program and results are:

model

{

for(i in 1:15) { # Loop over 15 subuject
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for(j in 1:6) { # Loop over 6 points per subject

crp[i,j] ~ dnorm(mu[i], tau.within) # Within each subject, normal with

} # mean = mu[i], individual specific

mu[i] ~ dnorm(overall.mu, tau.between) # Overall normal mean is overall.mu

}

overall.mu ~ dnorm(0, 1.0E-3) # Prior for overall mean has variance 1000

tau.within ~ dgamma(0.001, 0.001) # Prior for tau=1/var

tau.between ~ dgamma(0.001, 0.001) # Could also use uniform on sigma

sigma.within <- 1 / sqrt(tau.within) # Convert sigma from tau

sigma.between <- 1 / sqrt(tau.between)

}

# Initial values

list(tau.within = 1, tau.between = 1, overall.mu = 0)

# Data Set

crp[,1] crp[,2] crp[,3] crp[,4] crp[,5] crp[,6]

3.66 2.09 2.15 1.13 1.90 1.33

3.16 3.82 2.48 NA 2.50 2.35

1.23 14.50 3.37 6.13 NA NA

6.04 6.56 4.72 4.50 7.25 NA

2.05 1.47 2.42 3.93 2.49 6.61

2.62 2.43 2.35 2.85 2.29 2.65

1.82 1.85 2.57 2.32 1.79 1.59

1.13 0.66 1.97 1.19 1.24 1.06

5.52 6.06 5.68 5.85 4.06 4.71

5.07 5.37 3.98 5.78 2.45 2.05

1.98 1.76 1.62 0.96 1.46 1.41

1.40 2.31 2.23 6.62 2.58 2.21

3.71 2.44 3.75 3.56 2.80 3.04

11.50 9.44 10.20 7.68 7.38 7.42

8.57 7.36 8.51 8.05 8.67 9.74

END

# Results after Running WinBUGS

node mean sd 2.5% median 97.5% start sample

mu[1] 2.198 0.6438 0.9268 2.198 3.448 1001 10000

mu[2] 2.976 0.685 1.604 2.983 4.33 1001 10000

mu[3] 6.043 0.7865 4.506 6.043 7.611 1001 10000

mu[4] 5.645 0.7007 4.263 5.641 7.016 1001 10000

............... etc .......................
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overall.mu 4.002 0.674 2.636 3.997 5.361 1001 10000

sigma.between 2.452 0.5457 1.639 2.365 3.748 1001 10000

sigma.within 1.633 0.1408 1.385 1.622 1.939 1001 10000

tau.between 0.1899 0.07903 0.07134 0.1787 0.3728 1001 10000

tau.within 0.3832 0.06488 0.2663 0.3802 0.5214 1001 10000

These results correspond to expectations, with overall mean around 4, and between
subject variance larger than within subject variance.

Situations where random effects or hierarchical mod-

els can be used

Repeated measures models: We have just seen an example with several mea-
surements per subject, so called repeated measurement data. Random ef-
fects/hierarchical models are especially useful when subjects are followed over
time, where each subject will contribute their own regression over time, so each
subject will have their own individual intercept and slope. Putting a hierarchical
model on the intercepts and/or slopes will improve individual estimates (again,
at the expense of a small amount of individual bias, and decreased overall mean
square error).

Nested data collection: Suppose patients are nested within doctors treating them,
the doctors are nested within hospitals where they work, hospitals are nested
within health regions, which are nested within cities, which are nested within
provinces, which are nested within the same country. A multiple layers hierar-
chical model can then be used to take into account the complex data structure.

Unknown interactions: A medication, for example, may act differently on each
and every subject (indeed, this is almost always the case, although individual
variation may be large or small). If factors which may effect how the drug works
for a given individual are unknown or unrecorded, then a hierarchical model can
be used (as in our introductory example).

In short, in epidemiology, one can argue that just about every model should include a
hierarchical component, and, indeed, these models are becoming extremely popular.

Conclusion

Hierarchical or Random Effects models are extremely important to epidemiology. We
have just touched on a few basic concepts. Hopefully you will see more in future
courses.


