
1

Dummy Variables in Multiple Linear Regression

Basic Idea

We start by considering a simple linear regression with a single variable that is di-
chotomous rather than continuous. Recall that in simple linear regression, we had
the basic equation:

Y = α + β ×X

Suppose that instead of a continuous X variable such as age, we have a dichotomous
variable, such as gender, or a multiple categorical variable, such as country of birth,
or type of employment (e.g., student, office worker, or miner, etc.). How does the
nature of the regression change when such variables are used?

We actually saw an example of this at the end of last lecture, when we used gender
as a variable in our multiple regression predicting mphr, the percentage of maxi-
mum predicted heart rate achieved. Let’s revisit that example, using a simple linear
regression of these two variables.

First, let’s see some descriptive statistics about these two variables. Note that we
coded the gender variable as males=0 and females=1. This is called a “dummy
variable’, where the 0’s and 1’s represent males and females, respectively. It is quite
common to code variables in this way, because internally, statistical programs use
numbers in all of their calculations, not words. So, even if you did not code your
dichotomous or multi-categorical variables using numbers, they will be converted by
the program into numbers.

# Input data set as a data frame in R

> heart <- read.table(file="g:\\HeartData.txt", header=T)

> attach(heart) # For convenience, to allow direct access to variables

# outside of the data frame.

> summary(gender)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6057 1.0000 1.0000
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> summary(mphr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

38.00 69.00 78.00 78.57 88.00 133.00

> summary(mphr[gender==0]) # Look at males only

Min. 1st Qu. Median Mean 3rd Qu. Max.

38.00 68.75 78.00 78.70 89.00 133.00

> summary(mphr[gender==1]) # Look at females only

Min. 1st Qu. Median Mean 3rd Qu. Max.

39.00 70.00 78.00 78.49 87.00 132.00

> boxplot(list(males=mphr[gender==0],females=mphr[gender==1]))

There does not seem to be much difference between males and females, but, in any
case, we will next run a simple linear regression of these two variables:

> regression.out <- lm(mphr ~ gender)

> multiple.regression.with.ci(regression.out)

$regression.table

Call: lm(formula = mphr ~ gender)

Residuals:
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Min 1Q Median 3Q Max

-40.6955 -9.4882 -0.4882 9.5118 54.3045

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.6955 1.0204 77.125 <2e-16 ***

gender -0.2073 1.3110 -0.158 0.874

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 15.13 on 556 degrees of freedom Multiple

R-Squared: 4.496e-05, Adjusted R-squared: -0.001754 F-statistic:

0.025 on 1 and 556 DF, p-value: 0.8744

$intercept.ci [1] 76.69123 80.69968

$slopes.ci [1] -2.782458 2.367880

As expected, we see no evidence of a difference in mphr between genders. Looking
at the confidence interval, we see that the difference is at most 2 or 3 points in either
direction, a clinically negligible difference. Therefore, we can strongly conclude no
gender difference exists in mphr, at least from these data.

Because the data were coded as 0/1, the coefficient is directly interpreted as the
female (1) – male (0) difference. In other words, females on average were -0.2073
points lower than males, a negligible difference.

Coding as Factor Variables

One can have R automatically do dummy variable coding, using a “factor” declara-
tion, as follows:

# Create a new gender variable that will be coded as

# male/female, rather than 0/1

> gender2 <- gender # Make a copy of the variable gender

> gender2[gender2==1] <- "female" # Change 1’s to female

> gender2[gender2==0] <- "male" # Change 0’s to male

# Check a few values

> gender2[1:10]
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[1] "male" "male" "male" "female" "male" "male" "female" "female"

[9] "female" "male"

> gender[1:10]

[1] 0 0 0 1 0 0 1 1 1 0

# Everything seems to work, so convert gender2 to be a factor variable:

> gender2 <- as.factor(gender2)

# Do some comparisons of the different types of variables:

> summary(gender2)

female male

338 220

> summary(gender)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6057 1.0000 1.0000

# Finally, rerun regression with this new factor variable:

> regression.out <- lm(mphr ~ gender2)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = mphr ~ gender2)

Residuals:

Min 1Q Median 3Q Max

-40.6955 -9.4882 -0.4882 9.5118 54.3045

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.4882 0.8232 95.345 <2e-16 ***

gender2male 0.2073 1.3110 0.158 0.874

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 15.13 on 556 degrees of freedom

Multiple R-Squared: 4.496e-05, Adjusted R-squared: -0.001754

F-statistic: 0.025 on 1 and 556 DF, p-value: 0.8744



5

$intercept.ci

[1] 76.87120 80.10513

$slopes.ci

[1] -2.367880 2.782458

Results are the same as before, but note that R has recognized that gender2 is a
factor variable, and has in fact chosen males as the variable to report, indicated by
the name “gender2male” it used, meaning that the coefficient and CI are reversed
but numerically the same as the previous regression run with the original “gender”
variable.

Another Example With Multi-Level Factor Vari-

ables

We will now go through another multiple regression example, this time with several
factor variables, some with more than two levels.

Background: Government statisticians in England conducted a study of the relation-
ship between smoking and lung cancer. The data concern 25 occupational groups
(here categorized into three main categories, for convenience, not necessarily scien-
tific reasons!) and are condensed from data on thousands of individual men. The
explanatory variables are work category and the number of cigarettes smoked per
day by men in each occupation relative to the number smoked by all men of the same
age. This smoking ratio is 100 if men in an occupation are exactly average in their
smoking, it is below 100 if they smoke less than average, and above 100 if they smoke
more than average. The response variable is the standardized mortality ratio for
deaths from lung cancer. It is also measured relative to the entire population of men
of the same ages as those studied, and is greater or less than 100 when there are more
or fewer deaths from lung cancer than would be expected based on the experience of
all English men.

Variable Names:

Occupation: occupation category of the subjects (Outdoor/Factory/Office)
Smoke.Index: relative ranking of amount of smoking, with 100 being average
Cancer.Index: relative ranking of deaths due to lung cancer, with 100 being average

The actual data set is:
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Smoke.Index Cancer.Index Occupation
77 84 Outdoor
137 116 Outdoor
117 123 Factory
94 128 Factory
116 155 Factory
102 101 Factory
111 118 Office
93 113 Outdoor
88 104 Factory
102 88 Factory
91 104 Factory
104 129 Factory
107 86 Factory
112 96 Factory
113 144 Factory
110 139 Office
125 113 Outdoor
133 125 Outdoor
115 146 Outdoor
105 115 Office
87 79 Office
91 85 Office
100 120 Outdoor
76 60 Office
66 51 Office

We will perform a regression analysis to determine the effects of Occupation category
and Smoke.Index on the outcome, Cancer.Index.

# Start by entering the data set:

> Smoke.Index <- c( 77 , 137 , 117 , 94 , 116 , 102 , 111 , 93 , 88 , 102,

91 , 104 , 107 , 112 , 113 , 110 , 125 , 133 , 115 , 105 , 87 , 91 ,

100 , 76 , 66 )

> Cancer.Index <- c( 84 , 116 , 123 , 128 , 155 , 101 , 118 , 113 , 104 ,

88 , 104 , 129 , 86 , 96 , 144 , 139 , 113 , 125 , 146 , 115 , 79 , 85 ,

120 , 60 , 51 )

> Occupation <- c("Outdoor" , "Outdoor" , "Factory" , "Factory" ,

"Factory" , "Factory" , "Office" , "Outdoor" , "Factory" , "Factory" ,

"Factory" , "Factory" , "Factory" , "Factory" , "Factory" , "Office" ,

"Outdoor" , "Outdoor" , "Outdoor" , "Office" , "Office" , "Office" ,

"Outdoor" , "Office" , "Office" )
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# Convert Occupation to a factor variable

> Occupation <- as.factor(Occupation)

# Create a data frame with all variables

> cancer <- data.frame(Smoke.Index, Cancer.Index, Occupation)

# Quick summary of the data

> summary(cancer)

Smoke.Index Cancer.Index Occupation

Min. : 66.0 Min. : 51.0 Factory:11

1st Qu.: 91.0 1st Qu.: 88.0 Office : 7

Median :104.0 Median :113.0 Outdoor: 7

Mean :102.9 Mean :108.9

3rd Qu.:113.0 3rd Qu.:125.0

Max. :137.0 Max. :155.0

# Do some preliminary plots to investigate relationships

> plot(Smoke.Index, Cancer.Index)

# Create some boxplots for the factor variable
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> boxplot(list(Factory=Cancer.Index[Occupation=="Factory"],

Office=Cancer.Index[Occupation=="Office"],

Outdoor=Cancer.Index[Occupation=="Outdoor"]))

> boxplot(list(Factory=Smoke.Index[Occupation=="Factory"],

Office=Smoke.Index[Occupation=="Office"],

Outdoor=Smoke.Index[Occupation=="Outdoor"]))

Notice that there seems to be a very strong correlation between Smoke.Index and
Cancer.Index, while the boxplots indicate possible effects for Occupation as well, on
both variables. The possible relationship between Smoke.Index and Occupation has
implications for possible confounding (we will discuss confounding in detail later).

Now to perform the regression calculations:

# First, two simple linear regressions (for later comparison)

> regression.out <- lm(Cancer.Index ~ Smoke.Index)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = Cancer.Index ~ Smoke.Index)
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Residuals:

Min 1Q Median 3Q Max

-27.9950 -18.6450 0.7632 14.2881 32.6174

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 24.1231 0.124 0.902110

Smoke.Index 1.0292 0.2314 4.448 0.000184 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.5 on 23 degrees of freedom

Multiple R-Squared: 0.4624, Adjusted R-squared: 0.439

F-statistic: 19.78 on 1 and 23 DF, p-value: 0.0001845

$intercept.ci

[1] -46.90241 52.90234

$slopes.ci

[1] 0.5504845 1.5078365

> regression.out <- lm(Cancer.Index ~ Occupation)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = Cancer.Index ~ Occupation)

Residuals:

Min 1Q Median 3Q Max

-41.429 -13.429 -3.714 14.636 46.571

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 114.364 7.498 15.252 3.51e-13 ***

OccupationOffice -21.935 12.024 -1.824 0.0817 .

OccupationOutdoor 2.351 12.024 0.196 0.8468

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 24.87 on 22 degrees of freedom

Multiple R-Squared: 0.1633, Adjusted R-squared: 0.08721

F-statistic: 2.146 on 2 and 22 DF, p-value: 0.1407
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$intercept.ci

[1] 98.81348 129.91379

$slopes.ci

[,1] [,2]

[1,] -46.87079 3.000659

[2,] -22.58507 27.286373

> regression.out <- lm(Cancer.Index ~ Smoke.Index + Occupation)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = Cancer.Index ~ Smoke.Index + Occupation)

Residuals:

Min 1Q Median 3Q Max

-31.0627 -16.2543 0.2586 14.2311 29.6061

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5868 27.8911 0.523 0.60645

Smoke.Index 0.9577 0.2615 3.663 0.00145 **

OccupationOffice -10.5420 10.1037 -1.043 0.30864

OccupationOutdoor -4.5897 9.7980 -0.468 0.64430

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.88 on 21 degrees of freedom

Multiple R-Squared: 0.4895, Adjusted R-squared: 0.4165

F-statistic: 6.711 on 3 and 21 DF, p-value: 0.002375

$intercept.ci

[1] -43.41585 72.58948

$slopes.ci

[,1] [,2]

[1,] 0.4139858 1.501451

[2,] -31.5537844 10.469884

[3,] -24.9657680 15.786372

What can be concluded from these analyses (mostly from looking at the confidence
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intervals)?

1. First, examine the “full model”, the one with both independent variables in-
cluded. The confidence interval for Smoke.Index goes from about 0.4 to 1.5.
This means (roughly speaking, remember the Bayesian interpretation of fre-
quentist confidence intervals) that there is a 95% chance that the true effect of
Smoke.Index on Cancer.Index is between these numbers for each unit increase
in Smoke.Index. In other words, for every 1% rise, cancer also increases by
about 1% (point estimate was 0.9577), and even the lower limit of 0.4 is quite
high. Therefore the effect is very strong.

2. On the other hand, there is much less evidence for an effect from Occupation, at
least as crudely categorized here. Both confidence intervals are very wide, both
potentially clinically interesting and the null (0) effect. All we can conclude
here is that these results are inconclusive. More research will need to be done
to further investigate this relationship.

3. Note that the estimated values for OccupationOffice and OccupationOutdoor
are both negative (in the multiple regression model), and that they are both
interpreted in relation to the Factory workers. Therefore, the Factory workers
had the highest cancer levels, once we have adjusted for Smoke.Index.

4. In the univariate analysis, and also seen in the boxplots, it appears that Factory
had lower CancerIndex compared to Outdoor, which were highest. However, in
the second boxplot, we saw that Outdoor workers also smoked the most. Thus,
once adjusting for the effects of smoking, the effect of Outdoor occupation is
lower. This is an example of confounding, which we will cover in more detail
later.

5. While for continuous variables like Smoke.Index, coefficients (and CI limits) are
interpreted as effects per unit change, for factor variables, they are interpreted
as the difference between having that value of the factor versus the “reference
category”, that is, the one left out in the regression table.

6. Finally, let’s compare the univariate results to the multivariate. For Smoke.Index,
the CI from the univariate results were (0.55, 1.51), similar to but slightly higher
than the multivariate result. This is owing to the confounding with the second
independent variable, Occupation. Similarly, as already discussed, Occupation
estimates change because of confounding with Smoke.Index.

In the next few lectures, we will investigate various issues in multiple regression in
detail, including confounding, interactions, goodness of fit of a model, and model
selection.


